User's Guide
and Reference

TList™

Enhanced Outline Control

Version 4

Copyright © 1994, 1995, 1996, 1997, and 1998

Bennet-Tec Information Systems, Inc.

 All rights reserved

Bennet-Tec Information Systems, Inc.

Information in this document is subject to change without notice. Companies, names and data used in examples herein are fictious unless otherwise noted. No part of this document may be reproduced, transmitted or translated in any form or by any means, electronic or mechanical, for any purpose, without the written permission of Bennet-Tec Information Systems, Inc.

© 1994,1995, 1996, 1997, 1998 Bennet-Tec Information Systems, Inc.

All rights reserved.

The following trademarks are used in this document. Whenever you come across them, please remember that they are the trademarks or registered trademarks of the companies shown below.

 Microsoft, Windows, Visual C++ and Visual Basic are trademarks of Microsoft Corporation in the USA and other countries.

Published by

Bennet-Tec Information Systems, Inc.

10 Steuben Drive, Jericho, NY 11753

E-Mail:
Controls@Bennet-Tec.Com

WWW:
http://www.Bennet-Tec.com

Phone:
(516) 433-6283

Fax:
 (516) 822-2679

Table Of Contents

1C H A P T E R 1: Introduction

On-Line Help
2
Distribution Notes
2
Installation Files
3
Technical Support
3
C H A P T E R 2: TList Features and Programming Techniques
5
Design-Time Support
5
Visual Elements and Hot Spots
5
Display Features
7
Keyboard Interface
8
Navigating the List - Choosing an Indexing Scheme
9
How to Add or Delete Items
12
Boosting Performance
13
Expanding and Collapsing the Outline
14
Selection Support
14
Color Support
15
Picture Support
16
Palette Support
17
Transparent Bitmap Support
17
Hiding TList Items
17
Objects and Object Collections
18
How to Specify Default Properties
19
How to Specify and Work with Associated Hidden Data
20
How to Work with Virtual Items
21
How to Use TList Grids for Column/Table Data
22
How to Work with Databases
26
How to Use Tree Buffers to Manipulate the Tree
29
How to Support Drag Drop
30
How to Support OLE Drag Drop
31
How to Sort or Search a Tree
31
How to Access the Clipboard
32
How to Save and Load Lists - File I/O
32
How to Support In-place Editing
34
How to Use Bookmarks
34
How to Assign Categories - TList Mark Support
35
How to Control the Display of Plus/Minus Pictures
36
How to Upgrade an Old TList 3/Pro OCX Project to Use TList OCX
36
How to Upgrade an Old VBX Based Project to Use TList OCX in Place of the VBX
37
How To Detect the Version Number Of TList
38
How to Trap Right Mouse Clicks
38
New Internet Interfaces
39
How to Navigate a Web Site with TList
39
String Support
40
Backward Compatibility
40
C H A P T E R 3: Using the TDesigner Application
41
Introduction
41
TDesigner Layout
41
Using the Tree Window
43
Using the Tree Event Viewer Window
44
Using the Properties Window
44
Using the Item Properties Window
45
Using Grid Cell Properties Window
45
Specifying TDesigner Defaults
45
Hints for Web Site Designers
46
Setting up ToolTips
47
Selecting Colors
48
Setting up Pictures
49
Modifying Tree Line Settings
51
Specifying Drag Drop Settings
52
Controlling Selection
52
Controlling Expanding/Collapsing
53
Controlling Text Display
53
Controlling Fonts
55
Controlling Marks
55
Associating Additional Data with an Item
56
Specifying Sorting Method
57
Controlling Miscellaneous Settings
57
Controlling Item Cell Default Settings
58
Setting up Background
58
Specifying Scrollbar Appearance
59
Setting up Item And Grid Cell Borders
59
Setting up Item And Grid Cell Alignment
59
Specifying Virtual Items
60
Setting up Item Visibility
60
Setting up Item And Grid Cell Tag
60
Setting up LevelDefs
60
Specifying a Tree Grid
60
Specifying Item Grids
60
Properties You Cannot Set with TDesigner
60
C H A P T E R 4: Properties, Events, Methods, Functions
63
TList Control
64
TListCellDef Object
75
TListColDef Object
76
TListColDefs Object Collection
77
TListDataObject Object
78
TListDataObjectFiles Object
78
TListGrid Object
78
TListGridCell Object
80
TListLevelDef Object
80
TListLevelDefs Object Collection
81
TListValue Object
81
TListValues Object Collection
81
C H A P T E R 5: Properties, Events, Methods, Functions Reference
83
About Property
83
ActiveGrid Property
83
Add Property
83
AddItem Method
84
AddItem2 and AddItem2Ex Methods
85
AddRow Method
87
AfterEditing Event
88
Align Property
89
AllowResizing Property
89
Appearance Property
90
AutoExpand Property
91
AutoFillColTitles and AutoFillRowTitles Properties
91
AutoScrDuringDragDrop Property
92
BackColor and DefItemCellBackColor Property
92
BackColorBkg Property
93
BackPicture and BackPictureAlignment Properties
93
BackwardCompatible Property
94
BeforeDrag Method
94
BorderColor and DefItemCellBorderColor Properties
94
BorderStyle and DefItemCellBorderStyle Properties
95
BottomIndex Property
96
Caption Property
96
CellDef Property
97
Cells Property
97
Col and Row Properties
98
ColDelimiter Property
98
ColTitleCellDef Property
99
ColTitlesHeight Property
99
ConvertTabsToCols Property
99
Count Property
100
Clear Method
100
ClearItem Property
100
Click Event
101
Clipboard Property
101
CoerceIndex Property
102
Collapse Event
102
CopyBuffer Method
103
CopyItem Property
103
CopyItemSub Property
103
CopyOne Property
104
CopySelected Property
104
CurrentIndexMethod Property
105
CurrentItem Property
106
CurrentParent Property
106
CurrentItemBM Property
107
DefItemCellAlignment and Alignment Properties
107
DefItemCellPictureAlignment and PictureAlignment Properties
108
DefItemCellTextAlignment and TextAlignment Properties
109
DblClick Event
109
DefMultiLine Property
110
DisableNoScroll Property
110
Drag Method
111
DragDrop, DragOver Events
111
DragHighlight Property
112
DragIcon Property
112
DragMode Property
112
DrawFocusRect Property
113
DropTarget Property
113
EditingKeyDown Event
114
EditingKeyPress Event
114
EditingKeyUp Event
114
Enabled Property
114
Environment Property
115
Expand Event
115
Expand Property
116
ExpandChildren Property
117
ExpandEx Property
117
ExpandNewItem Property
117
ExplorerCompatible Property
118
FastAddItem and FastAddItemEx Methods
118
File Property
118
Files Property
119
Find … Methods
120
FixedSize Property
121
Font Property
121
FontBold, FontItalic, FontStrikethru, FontUnderline Properties
122
FontName Property
122
FontSize Property
123
ForeColor Property
123
Format Property
124
FreeBuffer Method
127
FullPath Property
127
GetData Method
128
GetFormat Method
128
GetItemByXY Method
129
GetItemRect Method
130
GotFocus Event
131
GradientColorFrom, GradientColorTo, and GradientStyle Properties
131
Grid Property
132
GridCellClick Event
132
GridCellDblClick Event
133
GridCellDef Property
133
GridLinesColor Property
134
GridLinesStyle Property
134
HasGrid Property
135
HasSubItems Property
135
Height Property
135
HelpContextID Property
136
HScroll and VScroll Events
136
HWnd Property
137
Image Property
138
ImageStretch Property
139
Indent Property
139
Indentation Property
140
Index Property
140
IndexByBM Method
141
Insert Property
141
InsertItem Property
142
InvBorderStyle Property
142
InvImage Property
142
InvStyle Property
143
IsClipboardAvailable Property
144
IsItemVisible Property
144
IsValidBM Method
145
IsValidBuffer Method
145
ItemAlwaysHidden Property
145
ItemBackColor and ItemForeColor Properties
146
ItemBM Property
146
ItemCell Property
147
ItemClick Event
147
ItemDblClick Event
148
ItemEditText Property
148
ItemFont… Properties
149
ItemGrid Property
149
ItemIndex Property
150
ItemIndexToRow Method
150
ItemHasGrid Property
150
ItemHeight Property
151
ItemImageDefWidth and ItemImageDefHeight Property
151
ItemMark Property
152
ItemMultiLine Property
152
ItemParent Property
153
ItemParentBM Property
153
ItemPMPicType Property
153
ItemPrevSibling and ItemNextSibling Properties
154
Items Property
154
ItemQueryData Event
155
ItemSorted Property
155
ItemSortingKey Property
156
ItemTag Property
157
Item...Value Properties
158
ItemValues and ItemHasValue Properties
158
ItemVirtualParent and ItemVirtualCount Properties
159
ItemUrl Property
160
HitTest Method
160
KeyDown and KeyUp Events
161
KeyPress Event
161
Left Property
162
LevelDefs Property
162
List Property
162
ListCount Property
163
ListCountEx Property
163
ListIndex Property
163
LoadAndAdd Property
164
LoadAndInsert Property
165
LoadBuffer Method
165
LoadData Method
166
LostFocus Event
166
MarkClick and MarkDblClick Events
166
MarkedItemsAlwaysHidden Property
167
MarkPicture Property
167
MarkTag Property
168
MarkWidth and MarkHeight Properties
168
MoveTo Method
168
MouseCol and MouseRow Properties
169
MouseDown and MouseUp Events
169
MouseMove Event
170
MousePointer Property
170
Move Method
170
MSOutlineAdd Property
171
MultiLine Property
171
MultiSelect Property
171
Name Property
172
NewIndex Property
172
NoIntegralHeight Property
173
NoPictureRoot Property
173
OLEDragDrop Event
173
OLEDropMode Property
174
OLEDragOver Event
175
OnDragDrop and OnDragOver Methods
176
PasteBuffer Method
177
Parent Property
177
ParentItemIndex Property
178
PathSeparator Property
178
Picture and PictureSelected Properties
178
Picture... Properties
179
PicturePalette Property
180
PicInMultiLine Property
180
PictureClick Event
180
PictureDblClick Event
180
PictureMark Property
181
PicturePlus and PictureMinus Properties
181
PictureType Property
181
PlusMinusClick and PlusMinusDblClick Events
182
Redraw Property
182
Refresh Method
183
RefreshItems Method
183
RemoveItem Method
184
RemoveRow Method
184
RequestEditing Event
184
RowHeight Property
185
RowTitleCellDef Property
186
RowTitlesWidth Property
186
Save Property
186
SaveBuffer Method
187
SaveData Method
187
SaveOne Property
188
SaveSub Property
188
Scrollbars Property
189
ScrollHorz Property
189
SelBackColor and SelForeColor Properties
189
Selected Property
190
SelectEx Property
191
SelItemCount Property
191
SelItemIndex Property
191
SetFocus Method
192
Shift Property
192
ShiftStep Property
193
ShowCaption Property
194
ShowChildren Property
194
ShowHiddenItems Property
194
ShowColTitles Property
195
ShowRowTitles Property
195
ShowTitles Property
195
SmartDragDrop Property
195
Sorted Property
196
SortingMethod and SortingKey Properties
197
TabIndex Property
197
TabStop Property
198
TabStopDistance Property
198
Tag Property
199
Text Property
199
TitleHeight Property
200
TitlePicture Property
200
TitleText Property
200
TitleVisible Property
200
TitleWidth Property
200
TListCopyBuffer Function
200
TListFind … Functions
200
TListFreeBuffer Function
201
TListGetItemByXY Function
202
TListGetItemRect Function
202
TListIndexByBM Function
202
TListIsClipboardFormatAvailable Function
202
TListIsValidBM Function
202
TListIsValidBuffer Function
203
TListLoadBuffer Function
203
TListPasteBuffer Function
203
TListSaveBuffer Function
203
TListTranslateIndex Function
203
ToolTipsBackColor Property
204
ToolTipsForeColor Property
204
ToolTipsMode Property
204
ToolTipsViewStyle Property
204
Top Property
205
TopIndex Property
205
TranslateIndex Method
206
TransparentBackground Property
206
TransparentBitmap Property
206
TransparentBitmapColor Property
207
TreeGrid Property
207
TreeLinesColor Property
207
TreeLinesStyle Property
208
TriggerEvents Property
208
UpdateBackground Method
208
Url Property
209
Value Property
209
ValueName Property
209
Version Property
210
ViewStyle Property
211
ViewStyleEx Property
211
Visible Property
212
WebAutoNavigate Property
212
WebTargetFrame Property
213
WebURLBase Property
213
WebGoBack Method
213
WebGoForward Method
213
WebNavigate Method
214
Width Property
214
WidthOfText Property
215
WidthOfTextMin Property
215
XOffset Property
216
ZOrder Method
216
A P P E N D I X A: Error Messages
217
A P P E N D I X B: Specifications and Limitations
221
I N D E X
223

C H A P T E R 1:

Introduction

TList is an outline control, a special type of list box which allows you to display items in a list hierarchically. This is useful in organizing and displaying logically grouped elements, using either text, pictures, or a combination of the two. Using TList, one can create directory trees as exemplified by File Manager, display a bill of materials, or track discussion threads in an on-line conference. The possibilities are endless.

TList provides full function capabilities not found in other outline components:

· Full Programmatic Support - The maximum in flexibility

· Independent pictures, fonts, font styles, foreground and background colors for each item

· WordWrapped Multi-Line Text Items (even within a column)

· Flexible indexing scheme supports a choice of access mechanisms

· Supports simple and extended multiple selections

· Powerful features to support list reorganization

· Sorting and Searching- by visible data (any column) or hidden data

· Establishment of Categories - independent of hierarchy, display category bitmaps, hide or display individual items by category

· Fast, flicker-free operation

• Enhanced Drag Drop support

· ScrollBar and Scroll control

• No 64 K memory limitation

· Item Bookmarks

• Multiple Roots

· ToolTips

• Clipboard

· Caption

• In Place Editing

· Fast Easy File I/O - Save or load Trees and branches with a single line of code

· Associated Item Data including variants, strings, OLE objects, pictures, integers etc.
 NEW Store multiple named hidden data values for each item

· NEW Windows Explorer Compatible display and Keyboard Navigation

· NEW Great Internet Support - Full compatibility with Microsoft Internet Explorer

· NEW Associate a URL with each item

· NEW NO PROGRAMMING NEEDED - TDesigner application allows
 you to build a list and specify Tree behavior at design time
· NEW Background Bitmap and Transparent Background support

· NEW True Column support - Using TreeGrids and ItemGrids

· NEW Virtual Items and Nested Virtual Items (tested with 2 billion items in a tree)

· NEW Invisible items

• NEW OLE Drag Drop

· NEW Multiple Item data support

• NEW Focus controlling

· NEW FAST - in fact blazing speed (tested with 500,000 items in a tree)

On-Line Help

TList has an on-line Help system that includes all of the information contained in this guide. To access Help on a TList property, highlight the item in the properties list window at design time and press F1.

Distribution Notesxe "Distribution Notes"

xe "Licensing Restrictions"
Design Time Use: As a reminder, the TList installation kit may not itself be distributed or shared among developers. A separate license must be purchased for each individual who will use the control within a design environment (one in which code can be written using TList, or the TList properties can be directly accessed). This includes consultants, maintenance engineers, and testers regardless of whether the individual is directly interacting with code related to TList.

Application Distribution: The TList4.OCX file itself may be freely distributed with your application. You should redistribute the appropriate custom control file TLIST4.OCX with your application and install it on the end-user's PC in the Windows\System or any other directory where DLLs can be found. In addition, the following Microsoft DLL’s are required for support of TList ActiveX controls and should be included with your distribution:

Files
Description

TList4.OCX
32-bit TList Pro ActiveX Control

MFC42.DLL
Support DLL (Microsoft Foundation Class DLL)

MSVCRT.DLL
Support DLL (Microsoft Visual C++ Run-time Library DLL)

OLEAUT32.DLL
Support for OLE Automation

OLEPRO32.DLL
Note that OlePro32 and OleAut32 are codependent and must be of versions compatible with one another

License Reminder: When you create and distribute applications using the TList control, you should notify Bennet-Tec of the application name and contact point. Prior to distribution you should make sure each developer using TList has registered his/her license by sending in the registration forms. A separate copy of TList must be purchased for each individual loading TList in a design time environment. Applications may not be distributed until the developers have registered their licenses and Bennet-Tec has been informed of the application name.

Installation Files

The TList installation disk includes the following files:

File
Description

TLIST4.OCX
The 32-bit TList ActiveX Custom Control.

TLIST4.HLP
The help file

TLIST4.BAS
File with symbolic constant and function declarations

Various application code samples

TCONV32.EXE
TList Project Converter (version 3 to Version 4)

TDES32.EXE
TList List Designer Application

Note Only the licensed developers may have on their computers and use the design time files TList4.HLP, TDES32.EXE, TLICENSE.EXE, BTLIC32.DLL. These files MAY NOT be redistributed or shared among developers!

Technical Support

Free Technical support is provided by phone, fax or e-mail during the first 30 days following purchase. After 30 days Bennet-Tec reserves the right to charge for Technical support. Technical Support is provided only to registered users who have returned the registration form with full information including the name of the individual developer. Prior to calling Bennet-Tec, it is suggested that developers visit the Support section of our Web site (www.Bennet-Tec.com) for answers to commonly asked questions.

C H A P T E R 2:

TList Features and Programming Techniques

The TList control displays items in a list box hierarchically. Each item can have subordinate items, which are visually represented by indentation levels. When an item is expanded its subordinate items are visible; when an item is collapsed its subordinate items are hidden. Items in the TList control can also display graphical elements to provide visual cues about the state of an item.

You can manipulate individual items, groups of items, or the control as a whole by setting properties and responding to events.

Design-Time Support xe "New in Version 4!"
The TDesigner application replaces the old TList Property Pages. Now TDesigner is started in response to right clicking TList on a form and selecting the Properties menu.

It is also possible to run TDesigner as a stand-alone application. This allows you to save files defining the TList property settings and tree structure you desire without writing any code. See the chapter, Using TDesigner Application, for details.

Files created with the TDesigner application can be loaded in any TList based application using the LoadData method at run-time. Applications can also use the SaveData method to create data files which can be read by TDesigner, or by other TList applications with the LoadData method.

Visual Elements and Hot Spotsxe "Visual Elements"

xe "Display"

xe "Hot Spots"
TList is organized as a hierarchic list. Each member of the list is generally referred to as an item. The hierarchic indentation level is specified by the Shift property and the items are indexed/enumerated in order as specified by the CurrentIndexMethod property.

TList can display graphics and text for each item in a list. An item can have several visual elements. The ViewStyle and ViewStyleEx properties control which of these elements are displayed.
Each graphical element - plus/minus, tree lines, text, and pictures - is a hot spot graphic. Clicking a hot spot triggers a special set of events. In addition if the WebAutoNavigate property is set, double clicking on an item will activate the Web navigation features of TList. The following diagram shows an item's possible hot spots.

[image: image1.wmf]Multi Line

Text

- Hot spots for an item

Picture

Plus/Minus Picture

Item Cell

Mark Picture

Item Text

Item Cell Picture

· Plus/Minus Picture - a picture on which the user can click in order to expand or collapse the tree. The picture is set using the PicturePlus and PictureMinus properties. Clicking on the bitmap will trigger PlusMinusClick and PlusMinusDblClick events. Additionally the tree may be collapsed or expanded depending on the AutoExpand property. Setting the ExplorerCompatible property automatically sets the images for the plus and minus bitmaps.

· Tree Lines - vertical and horizontal lines that link items with subordinate items. Tree lines may be drawn in a variety of styles, solid, dashed, and are controlled by the TreeLinesStyle property. The color of the tree lines may be set with the TreeLinesColor property. Setting the ExplorerCompatible property automatically sets the TreeLinesStyle and Color to emulate Windows 95 Explorer

· Picture - the picture displayed for an item. You can specify the default images, which are displayed depending on the state of the item using the PictureRoot, PictureOpen, PictureClosed, PictureLeaf, and PictureInverted properties. Specific images may be set for each item in the list (overriding the Picture defaults) by setting the Image and InvImage properties. The PictureType and NoPictureRoot properties indicate how TList identifies which images to display. Clicking on the picture will result in PictureClick and PictureDblClick events.

· Item Cell - the region in which the text is displayed for an item. Item cells may have their own distinct back color from the rest of the item. In fact in the case where data is presented in grid/columnar fashion, there will be several ttem cells - one for each column - each of which may have its own foreground and background color and its own item cell picture and text.

· Item Cell Picture - an image displayed with the text in the item cell portion of an item. The alignment of the image with respect to the text is controlled by DefItemCellAlignment and Alignment properties, while the alignment of the picture within its area of the cell is controlled by the DefItemCellPictureAlignment and PictureAlignment properties.

· Item Text - text displayed for an item. Initially set when using the AddItem or InsertItem methods, the text may also be read and manipulated by reference to the List property (an indexed array). Clicking on the text will generate click and or double click events. The font, foreground and background colors may be specified for each item using ItemFont..., ItemForeColor and ItemBackColor properties. Alignment of the text within the text area of an item cell is controlled by the DefItemCellTextAlignment and TextAlignment properties. Within a grid, formatting for each column in an item may be independently set for each item cell.

· Indentation - an item's level of subordination. Each level of indentation is a level of subordination specified by the Shift or Indent property. The ShiftStep property determines the horizontal offset between hierarchic levels.

· Mark Picture - a category based picture displayed for an item, selected from an array of mark pictures. TList supports the assigning of a mark (a numeric category identifier) to each item in the outline. Each mark may have a picture assigned to it (using the MarkPicture array). Setting the ViewStyleEx property to 2 or 3 causes TList to display the mark picture along the left margin of the control window for any elements having an associated mark with a specified mark picture. Clicking on the mark picture triggers MarkClick and MarkDblClick events.

Display Featuresxe "Visual Elements"

xe "Display"
· Color and Font Formatting - each item in a TList may be assigned a foreground and background color as well as font characteristics (name, bold, italics, strikethrough, underline). In addition the LevelDef.CellDef and ColDef.CellDef properties may be used to apply defaults based on hierarchic indentation or column location (when working within a grid).

· Selection Display - the InvStyle and InvImage properties control how selected items are displayed when selected.

·

Focus Rectangle - by default TList draws a rectangle around the most recently selected item in order to indicate which item has the focus. TList's DrawFocusRect property determines whether to display a focus rectangle. With DrawFocusRect set, the InvStyle determines the extent and presentation of the rectangle.

· ToolTips - xe "Tool Tips"TList can automatically display tooltips, showing the full text of an item, when the mouse cursor is moved over an item clipped by the borders of the control. Full control over the style and color of the tip box is provided via the ToolTipsMode, ToolTipsViewStyle, ToolTipsForeColor, and ToolTipsBackColor properties.

· Explorer Compatible Display Support - TList's ExplorerCompatible property allows you to make TList look like Windows 95 Explorer Outline. In this mode TList will automatically supply plus/minus bitmaps, and set the color and style of tree lines. This property also controls TList behavior in response to a number of additional keystrokes like Ctrl-Right, Ctrl-Left etc., see Keyboard Interface section for details.

· XOffset - the XOffset property sets the left offset of TList elements (how far from the left edge of the control the item’s text, picture, etc. begin).

· Indentation Spacing - TList allows you to specify the horizontal offset between hierarchical indentation levels. This is set in twips using the ShiftStep property.

· Scrolling and Scrollbars - TList allows the developer to control display of the scrollbars using the ScrollBars property. Programmatically scrolling the control may be accomplished using the ScrollHorz, BottomIndex and TopIndex properties. TList also provides events triggered BEFORE scrolling of the control, see HScroll and VScroll events.

· MultiLine Text and WordWrapping - TList supports the presentation of multiple line word wrapped text. Simply set the DefMultiLine property to True in order to default all items to wordwrapped text. Different items may be given distinctive word wrapping behavior (overriding the DefMultiLine property) by setting the ItemMultiLine property for the desired item. The width of the word wrapped line is controlled by the WidthOfText property. To control the vertical alignment of pictures next to multiple lines of wrapped text, set the PicInMultiLine property.

Example:

TList.WidthofText = .5 ' TList.Width

TList.ItemMultiLine(5) = True

TList.List(5) = a_Very_Long_String$

TList.PicInMultiLine = 0 ' Picture at top

· Tab Characters and Grid Columns - for the simplest display of columnar data, TList supports the use of a Tab character, Chr$(9), to separate text within an item. The spacing between tab locations is specified by the TabStopDistance property. This may be used to present columns of data. For best results, make sure that the TabStopDistance is greater that length (in twips) of any string within one of the columns. TList also offers full support for displaying the entire tree within a collapsible grid of independently formatted and accessible columns with column and row titles. It is even possible to displaying grids/tables as children of specified items. For more information, refer to the section, Using Tables/Grids/Columns.

· Caption - TList supports an optional caption at the top of the control. Setting the ShowCaption property to True displays the caption. The text is controlled by the standard Caption property.
· Background Image and Gradient Fill - TList provides support for a background image (set with the BackPicture property) which may be tiled, centered, stretched, or aligned within the image boundaries as specified by the BackPictureAlignment property. TList also supports a gradient background set using the GradientColorFrom, GradientColorTo, and GradientStyle properties.
· Transparent Background - TList supports a transparent background style set by the TransparentBackground property. To update what is shown through the transparent background the UpdateBackground method is provided.
Keyboard Interfacexe "Keyboard Interface"
End-Users may use the keyboard to select items in a TList control's list. The following table lists the keys and their actions:

This key
Moves focus

UP ARROW
To the previous item, if any

DOWN ARROW
To the next item, if any

HOME
To the first item that is visible

END
To the last item that is visible

PAGE UP
Backward one page, or to the first item currently displayed

PAGEDOWN
Forward one page, or to the last item currently displayed

In addition, you can use two keys to scroll horizontally in a list, this is useful when the length of an item's text is larger than will fit within the width of the control.

Key
Action

RIGHT ARROW
Scroll to the right

LEFT ARROW
Scroll to the left

If the ExplorerCompatible property is set to "1 - Keystrokes" or "3 - Keystrokes and Tree Lines appearance", the following keystrokes are also processed:

Key
Action

SHIFT-LEFT OR LEFT
Moves ListIndex to the parent of current parent or closes the current parent.

SHIFT-RIGHT OR RIGHT
Expands current parent or moves ListIndex to the first child of the current parent.

CTRL-RIGHT
Scrolls control to the right (if the horizontal scrollbar is visible) without changing of the ListIndex.

CTRL-LEFT
scrolls control to the left (if the horizontal scrollbar is visible) without changing the ListIndex.

CTRL-HOME
Scrolls control to the top without changing the ListIndex.

CTRL-END
Scrolls control to the bottom without changing the ListIndex.

CTRL-UP
Scrolls control one item up without changing the ListIndex.

CTRL-DOWN
Scrolls control one item down without changing the ListIndex.

CTRL-PAGEUP
Scrolls control one page up without changing the ListIndex.

CTRL-PAGEDOWN
Scrolls control one page down without changing the ListIndex.

PLUS
Expands currently selected item.

MINUS
Collapses currently selected item.

ASTERISK
Expands/collapses all items

Navigating the List - Choosing an Indexing Schemexe "Indexes"

xe "Property Array Index"

xe "TList Indexes"

xe "CurrentIndexMethod property"

xe "Navigating"

xe "Technique"

xe "How to"
Manipulation of an outline requires a mechanism for identifying individual elements within the control. TList actually supports three distinct methods of enumerating items in the list. The method in current use is set by the CurrentIndexMethod property.

The three methods are:

1. Enumeration of all items counting from the first (0) to the last. This is the default setting.

2. Enumeration including only visible items.

3. Enumeration by path name plus index to immediately subordinate items.

These methods are reviewed below. The method in use at any time is specified by the CurrentIndexMethod property: The TranslateIndex method may be used to translate an index from one index method to another.

1. Enumeration of ALL items: With the CurrentIndexMethod property of the control set to its default value of 0 (also specified by the constant TLSYS_ENUM) each item in the control is enumerated with an index according to its position from the top of the list. The index of the first item is 0. The index of the last item is equivalent to the number of items minus 1 (TList.ListCount - 1).

[image: image2.wmf]Item1

Item1.1

Item1.2

Item1.2.1

Item1.2.2

Item1.3

Item1.3.1

Item2

invisible items

Index 0

Current item

Item1.2.1.1

Item1.2.1.2

TList control

Accessing

Notes

Index 1

Index 2

Index 3

Index 4

Index 5

Index 6

Index 7

Index 8

Index 9

2. Enumeration of Visible Items: Setting the CurrentIndexMethod property to a value of 1, (specified by the constant TLSYS_VIS) indexes items in a manner similar to the first method but enumerating only visible items.

[image: image3.wmf]Item1

Item1.1

Item1.2

Item1.2.1

Item1.2.2

Item1.3

Item1.3.1

Item2

invisible items

Index 0

Current item

Can not be accesed

Can not be accesed

Item1.2.1.1

Item1.2.1.2

TList control

Accessing

Notes

Index 1

Index 2

Can not be accesed

Can not be accesed

Index 3

Index 4

Index 5

3. Enumeration by Path Name and Index: With the CurrentIndexMethod property set to 2, TList is navigated by reference to a path (similar to a DOS directory path) pointing to a parent item, and only the subset list of items which are direct children of the specified parent is enumerated. The parent of the sublist is referred to as the current parent and the path to this item is specified using the CurrentParent property.

Note setting the CurrentParent property does NOT change the ListIndex property and does NOT change the selection of items within the Tree.
The path specifies the location of an item within the tree. Think of it as the route TList must travel, starting at the root item, to get to items that are subordinate to another item. In specifying the path, each item except for the root item (which is always represented by the string as defined in the PathSeparator property) has a name. The name is the same as the item's displayable text, which is specified by elements of the List property array.

For example, in the tree pictured below, "Item 1.2 " is the current parent and only "items 1.2.1" and "Item 1.2.2" would be enumerated - they would be list elements 0 and 1 respectively:

[image: image4.wmf]Item1

Item1.1

Item1.2

Item1.2.1

Item1.2.2

Item1.3

Item1.3.1

Item2

Visibility not

Can not be accesed

Index 0

Index 1

Current item

Cannot be accesed

Cannot be accesed

Can not be accesed

Can not be accesed

Cannot be accesed

Item1.2.1.1

Item1.2.1.2

Can not be accesed

Can not be accesed

considered in

TList control

Accessing

Notes

indexing scheme.

To specify the sublist parent, set the CurrentParent property by reference to its path.

Each item in the control has a name. The name is the same as the item's displayable text, which is specified by elements of the List property array. A path specification may consist of the item names separated by a path delimiter character (as set by PathSeparator property). Alternatively an item in the path may be specified by its position within its parent's list of subordinates.

For example to specify Item 1.2 in the list above set:

TList1.CurrentParent = "\Item1\Item1.2"

or

' indicating child #1 of Root #0

TList1.CurrentParent = "\#0\#1"

or

' indicating child #1 of Root item named "Item1"

TList1.CurrentParent = "\Item1\#1"

or

' indicating child named "Item 1.2" of Root #0

TList1.CurrentParent = "\#0\Item 1.2"

All items (both visible and invisible) immediately subordinate to this current parent are then indexed sequentially.

Only items subordinate to the current parent can be accessed by index in this way. Neither the current parent itself, nor any item not subordinate to the current parent can be accessed by index. To access such items using this indexing method, you must designate a new current parent. To access item(s) of the upper level (such as Item 1 and Item 2 in the outline above), you must change the current parent to the root item. Actually the current parent may be referred to by Index of -1 when in this index mode, or by index -2 at all other times.

The path of any subordinate item may be determined using the FullPath property. It is then possible to change the current parent from 1.2 to 1.2.2 in the list above using the statements:

x$ = TList1.FullPath(1) 'Returns the full path of element indexed as 1

TList1.CurrentParent = x$

The CurrentParent property can accept either string or long specifying the index of a new parent.

Special Index Values

Regardless of the setting of the CurrentIndexMethod property settings, TList has 3 special index values, which may be used to quickly identify key items in the list.

· -1 refers to the parent of the list. With the CurrentIndexMethod property set to 0 or 1, this means the TList control as a whole. Use this index with the ExpandEx property to expand/collapse the entire tree, or with Copy... and Add properties to copy an entire list or to add to the end of the current list. With the CurrentIndexMethod property set to 2, the parent of the list is the same as the item specified by the CurrentParent property.

· -2 refers to the item specified by the CurrentParent property. This is most useful when the CurrentIndexMethod property is set to 2.

· -3 refers to the most recently added item, or the item whose hierarchic indentation has most recently been changed. Using an index of -3 is faster than reading the NewIndex property.

Finding an Item's Parentxe "How to"
TList provides an ItemParent property, which may be used to find the immediate parent.

Note ItemParent will always return –2 when used in conjunction with CurrentIndexMethod property set to 2.

The FullPath property may also be readily parsed to identify the complete ancestry of a given item.

Finding the Next Siblingxe "How to"
To get the next sibling of an item read the ItemNextSibling property.

Note This will always return the next child of the same parent. Likewise the ItemPrevSibling property will return the previous sibling of the same item. A value of -4096 indicates no previous or next sibling.

How to Add or Delete Itemsxe "Adding items"

xe "Removing items"

xe "Technique"

xe "How to"
A full set of operations for reorganization of a structure of the list is available with TList control. The following table summarizes the basic methods of adding and deleting elements from the list.

How to:
You can use:

Add an item to the end of the list.
The AddItem method.

Add an item as a new last child of an item.
The AddItem method with second parameter (or, using the CurrentIndexMethod property set to 2, set the CurrentParent property to point to the desired parent, and use AddItem method without second parameter).

Insert an item before another item at the same indentation level.
The InsertItem property, (or the AddItem method with second parameter and with the MSOutlineAdd property set to True – functions just like MSOutline control).

Remove an item.
The RemoveItem method.

Remove all subordinate items from an item.
The ClearItem property.

Remove all items from a list.
The Clear method.

The behavior of the AddItem method is controlled by the MSOutlineAdd property. This property provides MSOutline control compatibility.

Other mechanisms for adding items to a list include:

· Building the list using the TDesigner application

· Loading data from a TList data file (see section on File I/O)

· Loading data from a tree buffer (frequently used in Drag Drop operations)

· Pasting items from the clipboard

· Adding virtual items to a TList

The simplest way to specify columnar type data is to use delimiters when adding items to TList. Just set the ConvertTabsToCols and ColDelimiter properties before calling the AddItem method.

TList1.ConvertTabsToCols = True

TList1.ColDelimiter = Asc("^")

TList1.AddItem "Fred^Jones^SomeStreet^New York"

TList1.AddItem "Sarah^Lenore^Another Ave^Florida"

TList provides a wide range of properties and objects to allow specification of every aspect of a grid. Refer to sections on Using TList Grids and Using TList with a Database for further information.

Boosting Performancexe "Performance"

xe "Speed"

xe "Technique"

xe "How to"
Bennet-Tec has listened carefully to the needs of TList users over the years and recognizes the importance of performance. We have totally restructured TList internally to maximize performance especially when building a tree. In addition the following notes will help you to achieve the best performance possible based on your application needs:

Always set the Redraw property to False before making extensive changes to the list, and reset it back to True when you are done making changes. This will greatly enhance performance by eliminating the need for many screen updates.

Important Use the special index value "-3" to reference the most recent item added (or whose indentation was changed) in TList. This is significantly faster than using the NewIndex property.

When setting individual images for items in TList, remember that Visual Basic's LoadPicture function always returns a reference to a unique image even if loading the same image many times. It is MUCH faster and much more efficient in system resources to load the image just once and then reference it repeatedly. See the Image property description for more details

To build a list with many item specific formatting details, use the AddItem2 and AddItem2Ex methods, not the AddItem method. These new methods are the easiest way to add items one by one to the end of the tree while setting the item formatting (font, font style, and color) at the same time.

If you have a huge tree with many items which may or may not be seen by the end user (depending on the expand state of the tree) you may also want to consider using Virtual items which are only loaded when TList needs to refer to them. Setting the ItemVirtualCount property tells TList that a given item has a certain number of virtual children. When the end-user expands the list, TList will generate an ItemQueryData event in which you can then supply it with the necessary data. This will save memory and cut down on the time to build and display the initial tree

For really impressive performance use TList’s builtin FileI/O capabilities to Save a complete tree to a file and load the tree from the file as needed. Loading a tree from a TList data file is significantly faster than building the tree one item at a time. If a tree will be modified by an end-user, you can make use of this feature by saving the tree before exiting the application and reloading next time the application starts. Even if the tree is based on an external data source you can save the TList data file each time and simply compare the dates on the external data source and the TList data file to determine if the Tree really needs to be rebuilt.

Expanding and Collapsing the Outlinexe "AutoExpand property"

xe "Expand property"

xe "ExpandEx property"

xe "Expanding and Collapsing"

xe "Technique"

xe "How to"
TList allows you to control whether the control automatically expands and collapses branches of the tree in response to end-user actions. This behavior is controlled by the AutoExpand property. Various settings allow support for clicks on plus/minus pictures, and double clicks on the text of an item.

TList also provides full programmatic control over expanding and collapsing the tree. Setting the Expand property of a given item to True will expand that branch to show all immediate children of an item. Expanding an item whose parent is collapsed will first expand the parent and then expand the item itself. Setting the ExpandEx property to True expands a branch including all subordinates (not just immediate children). To expand the entire Tree use the special index of -1 with the ExpandEx property, set

TList.ExpandEx(-1) = True

By default, new items added to the tree are NOT expanded. Their children will not be immediately seen. To change this default behavior set the ExpandNewItem property to True.

TList triggers an Expand event when the list is expanded and a Collapse event when the list is collapsed. If Virtual Items need to be displayed when an item is expanded, TList will also trigger the ItemQueryData event at which time the needed data may be supplied by the application. The ItemQueryData event will be triggered after the Expand event.

The ExpandChildren event may be used to tell TList to recall the expand/collapse state of subordinate branches of a Tree when a higher level parent is collapsed.

Note TList saves the expand/collapse state of items when copying to a clipboard, copying to a tree buffer or saving to a TList data file.
For further information refer to descriptions of the AutoExpand, Expand, ExpandEx, ExpandChildren, and ExpandNewItem properties and the Expand event.

Selection Supportxe "MultiSelect property"

xe "Selection"

xe "Technique"

xe "How to"
TList’s MultiSelect property allows the developer to specify whether a user may select one item at a time, or multiple items. Selections may be made by mouse click, dragging, or programmatic setting of the Selected and SelectEx properties.

The SelItemCount property returns the total number of selected items.

The SelItemIndex property contains an array of all the indices of selected items. Reading this property returns the index of the Nth selected item.

The Selected property is an array of all elements in the list which are selected. To select an item programmatically set the Selected property for that item to True:

TList.Selected(5) = True

To determine if an item is selected, read the Selected property.

To select all subordinate elements of a given item, set the SelectEx property. Specifying an index of -1 selects the entire list (as defined by the CurrentIndexMethod property).

The CopySelected property copies all selected items to a tree buffer from which they may be saved to a file, or inserted to another location of the same or a different tree.

Note By default the changes to the SelItemIndex, SelItemCount, and ListIndex properties all occur BEFORE the MouseDown event is triggered. In some cases (particularly when conducting drag drop operations in a multi-select list, it may be useful to have TList modify these properties only after the MouseDown event is completed. The SmartDragDrop property may be set for this purpose.

See the InvStyle and InvImage properties for information on controlling the display of selected items.

Color Supportxe "Colors"

xe "Special Colors"

xe "Transparent Color"

xe "Technique"

xe "How to"
TList offers a great deal of flexibility in applying colors to list elements and the background. Text and background colors can be set for the control as a whole, item by item, column by column (in a grid), or even cell by cell (again in a grid). Distinct colors may be specifed for tree lines, grid lines, selected items, and even tooltips.

The following properties may be used:

To Set
Use Property

Background Colors
BackColor, SelBackColor
ItemBackColor, DefItemCellBackColor
GradientColorFrom, GradientColor To
BackColorBkg

ForeGround Text Colors
ForeColor
SelForeColor
ItemForeColor

Tree Line Color
TreeLinesColor

Grid Line Colors
GridLinesColor

Cell Border Colors
DefItemCellBorderColor

ToolTipsColors
ToolTipsBackColor
ToolTipsForeColor

ForeGround and BackGround Colors are determined according to the following scheme:

First for the control as a whole

Then using properties specified by LevelDefs.CellDef settings

Then using Item specific properties

Then Column.CellDef definitions

Then specific Grid cells

For example:

TList1.ForeColor = SomeColor

TList1.LevelDefs(Level).CellDef.ForeColor = SomeColor

TList1.ItemForeColor(Item) = SomeColor

TList1.ItemGrid(Item).ColDefs(Column).Celldef.ForeColor = SomeColor

' Or

TList1.Grid.ColDefs(Column).Celldef.ForeColor = SomeColor

TList1.Grid.Cells(Row, Column).CellDef.ForeColor = SomeColor

Color Values

Colors must be one of the following:

· A normal Windows RGB color. You can specify this with the RGB function, the QBColor function, or by using the Visual Basic color palette.

· A system default color. You can specify one of these by using one of the global constants for color listed in the Visual Basic file CONSTANT.TXT.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).

Many TList color properties can accept the special color:

Const COLOR_TRANSPARENT = &H2000000

Also you can use the following constant to reset a color property to a default setting:

Const COLOR_DEFAULT = &H1

Neither dithered colors nor transparent colors may be applied to foreground color properties including: ItemForeColor, ForeColor, SelForeColor, TreeLinesColor, GridLinesColor, ToolTipsForeColor, and DefItemCellBorderColor. These properties can accept only pure (non-dithered) colors.

Picture Supportxe "Pictures"

xe "Special Pictures"

xe "Technique"

xe "How to"
TList provides support for the display of many images within a list. The following Picture and Image properties are available:

· Plus/Minus pictures - set with PicturePlus and PictureMinus properties. Display of these images is determined by the ViewStyleEx property.

· Mark Pictures - displays images based on an item's item mark category - set by assigning images to the MarkPicture array, and setting the ItemMark property for a given item to reference the array. Display of these images is also determined by the ViewStyleEx property. Mark pictures are displayed along the left margin of the control window.

· Item image (Open, Closed, Leaf, Root) - the PictureLeaf, PictureClosed, PictureOpen, and PictureRoot properties are used to determine the image based on whether an item has children and the item's expand/collapse state. Note that these picture properties may be set for TList as a whole or to a TListLevelDef object to define defaults based on heirarchic indentation level. To display the main image the ViewStyle property must be less than or equal to 3. Also the PictureType property should be set to its default value of 0.

· Item Image (individual Image) - specifies a distinct individual image for individual TList items, set the Image property for that item. This overrides PictureOpen, PictureClosed, etc, on an item-by-item basis. The InvImage property may also be set to specify a distinct image for when the item is selected. Again, the ViewStyle property must be less or equal to zero in order for the item image to be displayed.

· Multiple Cell Pictures - every item in a TList has one or more cells (multiple cells are displayed if the item is also a row of a TreeGrid or ItemGrid with multiple columns). Each cell can contain both text and a picture. The picture is assigned with the Picture property of a CellDef object. Setting the PictureSelected property tells TList to display a different image when the item is selected. The alignment of the picture in a cell with respect to text is controlled by the Alignment, DefItemCellAlignment, DefItemCellPictureAlignment, and CellPictureAlignment properties.

TList1.ItemCell(1).Picture = Picture1.Picture

TList1.Grid.Cells(2,2).CellDef.Picture = Picture1.Picture

TList1.ItemCell(1).PictureSelected = Picture1.Picture

As with Fonts and Colors, Images may be defined on an Item by Item basis, by Level, by column or by cell.

See also: PicInMultiLine property; PlusMinusClick ; PlusMinusDblClick; PictureClick; PictureDblClick.
You can reset the images referenced by the various picture properties using 2 methods:

1. Using the Nothing Visual Basic constant.

Set TList1.Grid.GridCellDef.Picture = _

LoadPicture("NotEmpty.BMP")

Set TList1.Grid.Cells(5, 5).CellDef.Picture = _

Nothing

2. Using the LoadPicture function result.

Set TList1.Grid.GridCellDef.Picture = _

LoadPicture("NotEmpty.BMP")

Set TList1.Grid.Cells(5, 5).CellDef.Picture = _

LoadPicture()

The first method (setting the picture to Nothing) truly resets the picture property as if it had never been set .In the second method, TList assumes that there is a real (but empty) picture is specified for an object.

The difference is important only for the Picture and PictureSelected properties. If there is a default picture defined (for instance a default cell picture may be set by with the ColDef.CellDef.Picture property, or a default may be set with LevelDef, GridCellDef objects) then this default image will be displayed after removing the item's picture property with the first method. The default image will not be displayed if the item image is cleared with the second method.

Palette Supportxe "Palette"

xe "New in Version 4!"

xe "Technique"

xe "How to"
To force all pictures to be displayed with the same color palette use PalettePicture property.

Transparent Bitmap Supportxe "Pictures"

xe "Transparent Bitmap"

xe "New in Version 4!"

xe "Technique"

xe "How to"
TList supports a transparent color for bitmaps. To set this mode on, use TransparentBitmap property. To specify the transparent color use TransparentBitmapColor property.

Note Setting of TransparentBitmap property to True will result in lower speed of TList refreshing.

Hiding TList Itemsxe "Hidden Items"

xe "New in Version 4!"

xe "Technique"

xe "How to"
The new ItemAlwaysHidden property keeps items hidden (not visibly shown within the tree) even if its parent is expanded and other children are shown to the user. For example, if we have the following actual tree structure:

Item1

Item 1.1

Item 1.2 '(Expanded)

Item 1.2.1

Item 1.2.2 '(Hidden)

Item 1.2.3

Item 1.3 ' (Collapsed)

Item 1.3.1

Item 1.3.2

The user will see the following representation on the screen:

Item1

Item 1.1

Item 1.2

Item 1.2.1

Item 1.2.3 ' (There is no Item 1.2.2 shown)

Item 1.3

Setting the ShowHiddenItems property to True forces TList to display items regardless of their always hidden state.

The ItemAlwaysHidden property is different from the TList IsItemVisible (read-only) property. If ItemAlwaysHidden is set to True, it means that this item cannot be shown until this property is set back to False. If IsItemVisible returns False for an item it can mean either that the ItemAlwaysHidden property is True, OR simply that one of this item’s parents is collapsed.

It is also possible to hide a group of items all at once. Use MarkedItemsAlwaysHidden property to make always hidden all items with a given mark.

 Objects and Object Collectionsxe "New in Version 4!"
Starting with version 4, TList now exposes several new interface elements as a set of objects providing access to a variety of new design elements.

TList objects include:

· TListGrid
- refers to a grid object (can be a TreeGrid holding the entire TList, or an ItemGrid holding just a grid of items subordinate to some parent).

· TListValue
- holds an associated data element. Normally not visible, but it can be assiged to a Grid column for display.

· TListLevelDef
- manages default formatting for items of a given hierarchic indentation level.

· TListColDef
 - describes a Grid column including column titles

· TListCellDef
- holds a standard set of attributes like background color, text color, font etc.

· TListGridCell
- describes a Grid cell

As you see, all TList object names begin with the prefix "TList".

TList also supports a number of object collections (TListLevelDefs, TListColDefs, and TListValues). All object collections have a Count property and an Items property. These properties may be used to enumerate all existing objects stored in an object collection.

Note that objects can be referenced in a number of ways, either as members of an objects collection, or by a TList property returning an object. These Object Reference properties include:

· ActiveGrid
- refers to a TListGrid object

· Grid
- refers to a TListGrid object

· ItemGrid
- refers to a TListGrid object

· LevelDefs
- refers to a TListLevelDef object

· ItemCell
- refers to a TListCellDef object

· Values
- refers to a TListValue object

· Cells
- refers to a TListGridCell object

The example below illustrates how Visual Basic’s For Each statement can be used to enumerate all data associated with item 100 (this code assigns the same value 666 to all data for the item):

Dim TListValues1 As TListValues

' TList1.ItemValues(100) returns a TListValues object

TListValues1 = TList1.ItemValues(100)

Dim X As TListValue

For Each X In TListValues1

X = 666

Next

The sample rewritten in shorter form:

Dim X As TListValue

For Each X In TList1.ItemValues(100)

X = 666

Next

This code below sets default background color for all columns of a grid to green:

Dim TListColDefs1 As TListColDefs

TListColDefs1 = TList1.Grid.ColDefs

Dim X As TListColDef

For Each X In TListColDefs1

X.BackColor = QBColor(x.Index mod 16)

Next

also:

Dim I as Integer

For I = 0 To 255 ' for each possible indentation level

'Set alternating default back and fore colors
TList1.LevelDefs(I).CellDef.BackColor _

= QBColor(I Mod 16)

TList1.LevelDefs(I).CellDef.ForeColor _

= QBColor(15 - I Mod 16)

Next

For I = 0 to TList1.Grid.ColDefs.Count

TList.Grid.ColDefs(I).Backcolor = QBColor(I mod 16)

Next

The sample rewritten in shorter form:

Dim X As TListColDef

For Each X In TList1.ColDefs

X.BackColor = QBColor(X.Index mod 16)

Next

How to Specify Default Properties xe "Technique"

xe "How to"

xe Colors"

xe "Formatting" xe "Fonts" xe "New in Version 4!"
TList allows the user to set up multiple levels of inheritance to determine the fonts, colors and images to be used to display an item, or even an individual cell of an item.

Fonts and colors (foreground and background) are determined according to the following scheme:

1. First for the control as a whole:

TList1.ForeColor = SomeColor

' or

TList1.FontName = SomeFontName

2. Then using properties specified by LevelDef.CellDef object settings:

TList1.LevelDefs(Level).CellDef.ForeColor = SomeColor

3. Then using item specific properties:

TList1.ItemForeColor(Item) = SomeColor

4. Then ColDef.CellDef object definitions:

TList1.ItemGrid(Item).ColDefs(Column).Celldef.ForeColor = SomeColor

' Or

TList1.Grid.ColDefs(Column).Celldef.ForeColor = SomeColor

5. Then specific grid cells:

TList1.Grid.Cells(Row, Column).CellDef.ForeColor

 How to Specify and Work with Associated Hidden Dataxe "ItemData replacement"

xe "User defined data"

xe "ItemXXXValue replacement"

xe "Associated Data"

xe "Hidden data"

xe "ItemValue property"

xe "Technique"

xe "How to"

xe "New in Version 4!"
TList offers a number of ways to store associated data with each TList item (row): these data elements can be recalled for a given item, used as search or sort criteria (see How to Sort or Search a Tree), or displayed as data in a grid (see How to Use TList Grids for Column/Table Data).

ItemTag Property - The simplest way to store associated data is to use the ItemTag property. This array property can store one data element per item. The data can be String, Integer, Long, Single, Picture, even OLE or Variant.

ItemXXXValue Properties - Users of past editions of TList may also recall the ItemIntValue, ItemStrValue, ItemLngValue, ItemSngValue and ItemPicValue properties. These are still supported for compatibility purposes but they are limited, inefficient and obsolete. Future support is not guaranteed and so these properties should be avoided.

ItemMark and MarkTag Properties - The ItemMark property holds an integer value from 0 to 255. While not really intended as a data storage mechanism it is a very useful way of categorizing items. Setting an ItemMark value associates a TList Item with an element from the MarkTag and MarkPicture array. With ViewStyleEx set to 2 or 3, The appropriate mark picture will be shown for each item. Moreover, whole groups of items can be hidden or displayed quickly by using the MarkedItemsAlwaysHidden property
Values Objects - TList also provides a mechanism for storing an unlimited number of named associated data (values) for each TList item (row). These values are accessible via the Values property, which returns a reference to an object collection in which all values are stored. To access a value you can use a statement such as:

TList1.ItemValues(100, "FirstName").Value = "John"

The "FirstName" string is a name, which is used as a key, to find data you are interested in. There is no such operation as add-a-new-value. A new value object is created whenever you ask for its data for the first time.

TList1.ItemValues(100, "SecondName").Value = "Smith"

TList1.ItemValues(100, "Age").Value = 100

To check whether a value really exists use the ItemHasValue property (this avoids accidentally creating an object value by trying to read a value, which may not yet exist):

if TList1.ItemHasValue(100, "Age") Then

MsgBox "Age is specified!"

End If

The ItemHasValue property may also be used to remove a value from the item:

TList1.ItemHasValue(100, "SecondName") = False

or

TList1.ItemValue(100, "SecondName") = Nothing

To remove all values from the item use the following statement:

TList1.ItemHasValue(100) = False

or

TList1.ItemValues(100) = Nothing

If you need to add many values to the same item, you can optimize peformance by referring to the Values collection:

Dim ValuesOfTheItem As TListValues

Set ValuesOfTheItem = TList1.ItemValues(100)

ValuesOfTheItem("SecondName") = "Smith"

ValuesOfTheItem("CityName") = "Los Angeles"

ValuesOfTheItem("Age") = 100

ValuesOfTheItem("Salary") = 3456.456

In addition, TList allows text and picture data to be stored in the MarkTag and MarkPicture arrays and associated with given items by category using the ItemMark property.

Note that named data elements may be readily displayed in a TList grid. See the section Using TList Grids for further information.

 How to Work with Virtual Itemsxe "Technique"

xe "How to"

xe "Virtual Items"

xe "Performance"
ItemVirtualParent and ItemVirtualCount are powerful properties that eliminate the need for building the complete tree list at once, resulting in significant performance gains and memory/resource savings when dealing with very large lists.

Instead of immediately adding each item by calling the AddItem method, only items to be always kept in memory are added directly (for instance using the AddItem method). Place holders for the remaining items (children of directly added items) are added by setting the ItemVirtualCount property to indicate the number of virtual children for a given parent item. The control then triggers an ItemQueryData event to notify the application when data is needed (for example when a parent having virtual children is expanded), so the application can supply the data to the control.

The ItemVirtualCount property is used internally by TList to calculate the minimum and maximum values for the control’s vertical scroll bar, the delta for each of the scrollbars thumb positions, and the proper index values for items later in the list.

The Item for which ItemVirtualParent or ItemVirtualCount property was set is called "virtual parent". These items have their ItemVirtualParent property set to True and the ItemVirtualCount property >= 0. Children of virtual parents are called "virtual children".

When the control needs data, such as when an item with virtual children is expanded or when a property of a Virtual child is read, the ItemQueryData event is fired.

Sub TList1_ItemQueryData (ByVal ItemIndex As Long, _

ByVal SiblingIndex As Long)

Inside the ItemQueryData event subroutine, the application should fill in the data requested by the control. The ItemIndex parameter indicates which item, out of the entire list in the tree, needs to be loaded with data. The SiblingIndex indicates which virtual child out of all the parent's children is being loaded. That’s all there is to it. TList makes virtual data trees simple.

Note Each item added using the Add property can have virtual children. But an item can have either only virtual children or non-virtual ones, not both.

Virtual Child Items cannot have additional non-virtual children, but they can have virtual children and any number of virtual grand children:

Private Sub TList1_ ItemQueryData(_

ByVal ItemIndex As Long, ByVal SiblingIndex As Long)

TList1.AddItem "Child1",ItemIndex

TList1.AddItem "Child2",ItemIndex

End Sub

Virtual children are not kept in memory forever: they are automatically discarded when not needed and when the control has time to remove them. When the control next needs to use data of discarded items it fires the ItemQueryData event again. Only virtual items which have subordinates or whose ItemVirtualParent property is set to True are kept in memory forever.

It is possible to add children to virtual children. It is also possible to make virtual children virtual parents:

TList1.Clear

TList1.AddItem "Non-Virtual Item"

TList1.ItemVirtualCount(0) = 100

TList1.ItemVirtualCount(1) = 1000

TList1.ItemVirtualCount(50) = 10000

TList1.AddItem "Non-virtual kid of a virtual parent", 10

This feature is not limited by the nesting level.

ItemQueryData is not fired for virtual children which have children or for which ItemVirtualParent property was set to True. Such items are called "fixed".

ItemQueryData is fired only when absolutely necessary, so it will not be generated, for example, for items which are not visible. It is also generated only once for visible items and not generate again if TList's window needs repainting; only scrolling or property changes will fire this event again.

ItemQueryData is fired when virtual child property settings are retrieved:

TList1.Clear

TList1.AddItem "Non-Virtual Item"

TList1.ItemVirtualCount(0) = 100

. . .

MsgBox TList1.List(50)

In this sample ItemQueryData(50, 48) is triggered when the List property is read.

Selection is kept separately from the virtual items so it is possible to preserve multiple selections for virtual children (even if there are millions of them).

To make virtual items of zero indentation, use -1 index with the ItemVirtualParent and ItemVirtualCount properties:

TList1.ItemVirtualCount(-1) = 1000

Note All previously existing TList items are removed after this property call.

Virtual Children Limitations

Virtual Children cannot be hidden or sorted. When copied or saved to a file only virtual children with subordinates are really saved.

A Virtual parent can have only virtual children, it is not possible to apply AddItem or InsertItem operations on it. But virtual children of such parents can have either virtual or non-virtual children (not both together).

Bookmarks can be retrieved for Virtual children, but they are not valid as soon as the item for which bookmark is asked for is unloaded, this is very short time and therefore we can consider that bookmarks cannot be used with Virtual items.

Virtual Children can be edited (using ItemEditText property) but the data will be lost when the item is removed from memory.

 How to Use TList Grids for Column/Table Dataxe "Columns"

xe "TList Grids" xe "ItemGrid - Definition"

xe "Tree Grid - Definition"

xe "Tree Grid - Definition" xe "Grid"

xe "How to" xe "Technique"
There are 2 types of grids which can be shown in TList:

· Tree Grid - this wraps the entire TList tree within a collapsable grid as shown below:

[image: image5.png]
· Item Grid - this wraps only direct subordinates of the specified item.

[image: image6.png]
Item Grids can be shown for any number of items. And it is possible to have an Item Grid shown inside a Tree Grid.

Both grids use the same set of properties and methods. TList’s Grid object is responsible for either type of grid.

Visually a grid has the following parts:

· Column titles - shown in row 0 of a TreeGrid or ItemGrid. Use the Grid.Cells(0, XXX).Text property to set/retrieve the column title string.(xxx refers to the specific column).

· Rows - each item provides data for one row. The RowHeight property may be used to set the height of any row.

· Row titles – optionally shown as the first column in a TreeGrid. Use the Grid.Cells(XXX, 0).Value property to set/retrieve row title strings. Use Grid.ShowRowTitles to hide or show the column holding row titles. Note that RowTitles are shown only for TreeGrids, not for ItemGrids.
· Grid cells - each item has Values collection of Value objects. each of them provides data for a cell of an item’s row. use Grid.Cells(Row, Col) to set/retrieve cell values.

Creating a Grid

To create a Grid or to modify the number of columns, set the Grid.Cols property. For example:

TList1.Grid.Cols = 6 ' Specifies a TreeGrid with 6 columns
' Specifies 5 columns in the Grid held by item 1
TList1.ItemGrid(1).Cols = 5
or

' add a new column to the TreeGrid
TList1.Grid.Cols = TList1.Grid.Cols + 1
The default characteristics of cells in the table can then be set with the ColDefs object

TList1.Grid.ColDefs(1).Width = 1440 ' width of column 1 = 1 inch
or

TList1.ItemGrid(1).ColDefs(3).BackColor = QBColor(2)
To set the number of rows and columns use the Grid.Rows property.

Use the AddRow method to quickly add several values to a row:

' This code adds a new row as a last row in the Grid.

TList.Grid.AddRow _

"RowTitle" & Chr$(9) & "TextOfCol 1" Chr$(9) & "TextOfCol 2"

Tab characters are used in the AddRow method as a delimiter to identify which data goes in which column. The string preceding the first column delimiter is considered a Row title and will not be shown if the Grid.ShowRowTitles property is false. Setting the ConvertTabsToCols property will cause TList to similarly parse data presented with the AddItem method. The column delimiter may be changed with the ColDelimiter property.

Display of Row and Column headings

The display of Column and Row titles is determined by the Grid (or ItemGrid) ShowRowTitles and ShowColTitles properties. By default TList will enumerate column titles "A, B, C, D, …. Z, AA, AB, ….", and Row titles "1, 2, 3, 4". Grid.AutoFillRowTitles and Grid.AutoFillColTitles properties control this display.

Referencing Grid Cells

There can be only one TreeGrid in a TList object. It is referenced as TList.Grid.

ItemGrids are owned by individual items in a list and are referenced by the standard TList index number as in TList1.ItemGrid(1).

Grid cells belonging to either a TreeGrid or ItemGrid may be referenced by the Cells property's row and column numbers (starting with row 0 for column titles row and column 0 for row titles column).

Accessing Cell Data and Pictures

The Text contained in the various cells is determined by the Values property of each cell.

TList1.Grid.Cells(0,1).Value = "Column Heading 1"

TList1.Grid.Cells (5,0).Value = "Row Heading 5"

TList1.Grid.Cells (3,3).Value = _

"This text will be shown in Row 3, Column 3"

TList1.ItemGrid (3).Cells(2,2).Value = _

"show me in row 2, column 2 of grid owed by item 3.

Cell Formatting

Individual cells may be formatted within TList using the CellDefs object. For example:

TList1.Grid.Cells(2,2).celldef.font.name = "Arial"

TList1.Grid.Cells(2,2).celldef.ForeColor = QBColor(1)

Determining Active Grid Cells and Selection

Clicking in a TList triggers a GridCellClick event. It is possible to determine where he clicked by reading the Grid, Row and Col properties of the referenced GridCell object. Moreover the ActiveGrid property will be reset by TList to that Grid.

The MouseRow and MouseCol properties of a TList Grid determine where the mouse is during a MouseMove or MouseDown event.

How Row Numbers and Item Indexes Compare

In addition to referencing Grid cells by row/column coordinates, each row in a grid also corresponds to a distinct indexed TList item. Row 0, which contains column titles, is an exception - this row is not considered a separate item but is part of the item which parents the grid. Thus row numbers and standard TList list indexes will NOT coincide. Enumerating items in TList, indices start with 0 and increment for every row - not including column titles. Row counts start with the column title row in a grid as row 0.

Assume the following grid setup

TList1.Clear

TList1.Grid.Cols = 5

TList1.AddRow "Row1" & Chr$(9) & "Fred" Chr$(9) & "Smith"

TList1.AddRow "Row2" & Chr$(9) & "Paul" Chr$(9) & "Jones"

In this example, Column titles (row 0) have not to be explicitly set (they will be automatically assigned by TList). The first row added with the AddRow method is row 1. This corresponds to the first indexed item (index =0). The second row added here (row 2) corresponds to the 2nd TList item (index 1). If we now read the List property we will see that both TList.Grid.Cells(1,0).Value and TList.List(0) return "Row1" while both TList.Grid.Cells(2,0) and TList1.List(1) return a value of "Row2".

The rest of the data has been parsed into columns and may be retrieved with either Grid.Cells(row,col) property or with ItemValues property. Thus both TList1.Grid.Cells(2,1).Value and TList1.ItemValues(1, "I1").Value return a value of "Paul". ("I1" is the default value name, which automatically generated for a new added column 1, "I2" would be the default value name for column 2)

Note The TListGrid objects have an ItemIndexToRow method which can be used to translate from index to row Number

Using ValueNames and ItemValues to Set Column Data.

TListValue objects have an ItemIndex property which returns the index of the item which owns the value:

MsgBox "Index = "& TList1.Grid.Cells(20,10).Value.ItemIndex

Using ValueNames give us flexibility in grouping of data. Using this approach we can easily specify what data are to be displayed in a column. As explained above, each row in a TList Grid corresponds to a standard TList item. The ItemValues data corresponds to data in the cells. Now remember that ItemValues may be referenced by number or by ValueName. The ValueName property may also be assigned to a ColDef object instructing TList to take associated data elements using that name and display the values in the appropriate column.

TList1.Grid.ColDefs(1).ValueName = "FirstName"

TList1.Grid.ColDefs(2).ValueName = "SecondName"

TList1.Grid.ColDefs(3).ValueName = "CityName"

Now, if an item has a value which has a ValueName of "FirstName" , this data will be displayed in the 1st column:

TList1.ItemValues(1, "FirstName").Value = "Ann"

TList1.ItemValues(1, " SecondName ").Value = "Smith"

TList1.ItemValues(1, " CityName ").Value = "Los Angeles"

TList1.ItemValues(2, "FirstName").Value = "Jane"

TList1.ItemValues(2, " SecondName ").Value = "Smith"

TList1.ItemValues(2, " CityName ").Value = "Atlanta"

' 1 | 2 | 3

' Ann | Smith | Los Angeles

' Jane | Smith | Atlanta

Changing the ValueName associated with a Column will immediately update the control and show the desired data in the column, unless the Redraw property is set to False. Likewise changing the ItemValues will update the displayed data for ColDef's pointing to that data.

{QUOTE from a GreenTree sample} How to Work with Databasesxe "How to" xe "Technique"

xe "Databases - working with"
TList is NOT a bound control. There are, however, many ways of showing a database structure with TList.

Navigating Records of a Table

Lets assume a database such as might be used for a Bill of Materials for some manufactured equipment, or for a company's organizational chart. Thus we have a database table where records refer to parts (or organizational groups), each of which may also have sub-parts. There is nothing special distinguishing parts and sub parts and they may be mixed in the same table. The level of hierarchy is essentially an ancestral tree. So we want to display this hierarchy in TList.

· Assume a database table with the following fields:

' DisplayText - text to be shown in the list

' ParentText - text shown in parent, blank if a root item

' ItemType - a numeric category, perhaps used to indicate fabricated or purchased part

' AssociatedData1 - perhaps the price of the part

' AssociatedData2 - perhaps the Vendor Name
· Open the database:

Dim DB As Database

Set DB = OpenDatabase(x)

· Open a Recordset, sorting the records by ParentText, this will insure when building the list that the parents are loaded first:

Dim RS as RecordSet

Set RS = TABLENAME ' NEED TO SPECIFY SOME TABLE HERE…

· Loop through all records, adding items to their parents:

TList1.ReDraw = False ' don't update display while building the list

RS.MoveFirst

Do Until RS.EOF

ParentName = RS.Fields("ParentText").Value

ParentID = TList1.FindItem(ParentName,0,0,TList1.ListCount-1)

DisplayText = RS.Fields("DisplayText").Value

TList1.AddItem DisplayText, ParentID

Index = TList1.NewIndex

TList1.ItemMark(Index) = RS.Fields("ItemType").Value

TList1.ItemValues(Index, "Price") = RS.Fields("Price").Value

TList1.ItemValues(Index, "Vendor") = RS.Fields("Vendor").Value

RS.MoveNext

Loop

· Display price and vendor information in columns (visible data already in column 1):

TList1.Grid.ColDefs(2).ValueName = "Price"

TList1.Grid.ColDefs(3).ValueName = "Vendor"

· Visibly update the list:

TList1.ReDraw = True

Using Virtual Children to Show a Database Structure

What follows is an example of how TList can be used to view all non-system tables of any database, using the Virtual Children features of TList to minimize the data actually held in memory at any time:

· Assume a database of the following structure:

Table1

FieldAttr1
FieldAttr2
FieldAttr3

Field1
Field2
Field3

Field1
Field2
Field3

Table2

FieldAttr1
FieldAttr2
FieldAttr3

Field1
Field2
Field3

Field1
Field2
Field3

Table3

FieldAttr1
FieldAttr2
FieldAttr3

Field1
Field2
Field3

Field1
Field2
Field3

· Open the database:

Dim DB As Database

Set DB = OpenDatabase(x)

· Create root level (zero indentation) TList items which refer to Table Names:

Dim I As Long

For I = 0 To DB.TableDefs.Count - 1

 If ((Left$(DB.TableDefs(I).Name, 4) <> "MSys") Then

 TList1.AddItem DB.TableDefs(I).Name

· Fill in Grid objects of root level items, with column headers information:

 Dim J As Long

 TList1.ItemGrid(-3).Cols = DB.TableDefs(I).Fields.Count + 1

 For J = 1 To DB.TableDefs(I).Fields.Count

 TList1.ItemGrid(TList1.NewIndex).Cells(0, J) = _

 DB.TableDefs(I).Fields(J).Name

 Next J

· Set ItemVirtualParent property:

 Dim RS As Recordset

 Set RS = DB.OpenRecordset(DB.TableDefs(I).Name)

 If Not RS Is Nothing Then

 If Not RS.EOF And Not RS.BOF Then

 TList1.ItemVirtualParent(TList1.NewIndex) = True

 Else

 TList1.ItemVirtualParent (TList1.NewIndex) = False

 End If

 End If

· We are done with primary filling of TList:

 End If

Next I

· Now TList tree looks like:

Table1

Table2

Table3

· When the user double clicks on a node, the node expands and Expand event is generated:

Private Sub TList1_Expand(Index As Long)

'We need to make sure that the number of virtual items in

' this branch match the number of records in the database

 Dim RS As Recordset

 If TList1.ItemVirtualParent(Index) = True Then

 If TList1.ItemVirtualParent(Index)= True Then

 Set RS = DB.OpenRecordset(Node.Text,_

 dbOpenDynaset)

 RS.MoveLast

 TList1.ItemVirtualCount(Index) =

 RS.RecordCount

 TList1.ItemTag(Index) = RS

 End If

 End If

End Sub

· Now, when TList needs to draw an item, it starts generating ItemQueryData events to fill in table’s fields, there you need to fill in Node object with proper information:

Private Sub TList1_ItemQueryData(ByVal Index As Long, _

ByVal, ByVal SiblingIndex As Long)

 Dim I As Long

 Dim ParentIndex As Long

 ParentIndex = TList1.ItemParent(Index)

 Dim Grid As TListGrid

 Set Grid = TList1.ItemGrid(ParentIndex)

 Dim RS As Recordset

 Set RS = TList1.ItemTag(ParentIndex)

 If Index <= RS.RecordCount Then

 RS.AbsolutePosition = Index

 Dim GridCell As TListGridCell

 For I = 0 To Grid.Cols – 1

 Set GridCell = Grid.Cells(0,I)

 If Not IsNull(RS.Fields(GridCell.Text)) Then

 TList.ItemValues(Index,GridCell.Value.ValueName)_

 = RS.Fields(GridCell.Text)

 End If

 Next I

 End If

End Sub

How to Use Tree Buffers to Manipulate the Treexe "tree buffer"

xe "Adding items"

xe "Removing items"

xe "How to" xe "Technique"
TList allows the developer to copy items from the outline to a buffer, the tree bufferxe "tree buffer". The tree buffer is simply a memory area pointed to by a long integer, created so you can easily edit the tree structure. This buffer stores information about one or more items in the list. A new tree buffer is created whenever any of the properties CopyItem, CopyOne, CopySelected or CopyItemSub are read (returning a long integer pointing to the tree buffer). You can then copy those items to another location by writing the tree buffer value (as returned by the copy properties) to either the Insert or Add property. Once created, a tree buffer value is valid within your application for any instance of the TList control so you can even copy elements of a tree between TList controls.

There may be up to 10000 buffers in the system simultaneously (if we have enough memory for storing items which are in these buffers). When a tree buffer is no longer needed, the associated memory should be released by calling the FreeBuffer method. After that, the buffer value is no longer valid (it doesn't point to anything), and any property that accepts such a tree buffer value will generate trappable error. It is possible to check if a tree buffer value is valid using the IsValidBuffer method.

How to
You can use

Copy an item with its subordinate items to a tree buffer.
CopyItem property

Copy an item without its subordinate items to a tree buffer.
CopyOne property

Copy an item's subordinate items to a tree buffer.
CopyItemSub property

Copy selected items with their subordinate items to a tree buffer.
CopySelected property

Insert item(s) from a tree buffer before a specified item.
Insert property

Add item(s) from a tree buffer to the end of the subordinate item(s) list of a specified item (as children of the item).
Add property

Notes
1. Adding new items to TList does not automatically expand the new item's parent (if any) to show the newly added item unless the ExpandNewItem property is set to True. This will depend on the Expand property setting corresponding to the parent item, or the setting of the ExpandNewItem property.

2. When you no longer need the tree buffer, free the associated memory by calling the FreeBuffer method.

3. Each new item added to the list adds approximately 16 bytes plus the length of the text to the memory requirements of TList. Individually assigned fonts, colors and images add to the memory usage.

4. To prevent the control from updating while items are being removed or inserted use the Redraw property as shown below:

TList1.Redraw = False

 ' Some operations

 '
maybe some AddItem or ItemForeColor settings.

 ' End of operations

TList1.Redraw = True

5. Bookmarks are NOT preserved for items copied to a tree buffer.

How to Support Drag Drop xe "Drag Drop"

xe "AutoScrDuringDragDrop Property"

xe "Scrolling"

xe "How to" xe "Technique"
The following list identifies features of the TList control you can use to implement drag drop within your application:

· Support of the standard DragMode and DragIcon properties and DragOver, and DragDrop events.

· A DragHighlight property determines the appearance of items as other items or controls are dragged over them.

· A DropTarget property provides for easy identification of the item under the mouse while dragging.

· Tree buffers and clipboard support to facilitate copying items from one control to another(see How to add, delete, or copy item(s)).

· Automatic Scrolling during Drag Drop. This is controlled using the AutoScrDuringDragDrop property. We could have made the property name longer but our fingers got tired.

· Smart selection of a currently dragged item. This is controlled using the SmartDragDrop property. If you set this property to True, items won’t change their selection state while they are being dragged (as would otherwise happen when you depressed the mouse to initiate dragging).

The OCX edition of TList doesn’t support (or require) DragEx, DragIconEx properties or the DragOverEx and DragDropEx events.

To use TList Drag Drop features within the OCX edition of TList you must include the OnDragOver, OnDragDrop and BeforeDrag methods within your code as follows:

- Call the OnDragOver method in the first line of your DragOver event:

Private Sub TList1_DragOver(Source As Control, X As Single, _

Y As Single, State As Integer)

TList1.OnDragOver X, Y, State

. . .

End Sub

- Call the OnDragDrop method in the first line of your DragDrop event:

Private Sub TList1_DragDrop(Source As Control, X As Single, _

Y As Single)

TList1.OnDragDrop X, Y

. . .

End Sub

- Call the BeforeDrag method before the call to Drag method, which initiates the Drag Drop:

TList1.BeforeDrag

TList1.Drag 1

General Drag Drop Technique

There are many ways to handle Drag Drop within TList. You may choose to allow the user to drag between two TList controls, within a single TList, or between TList and some other Drag Drop source or destination. When dragging within a TList you may choose to treat the dropped data as a child of the drop target or insert a new item before the drop target. You may wish to restrict the allowed drop targets or drag sources. The choice is up to you. Since Drag Drop is one of the more complicated things you will do with TList, we include several sample applications with the installation kit. The basic technique for dragging and dropping within a TList is as follows:

1. Initiate dragging
You must recognize when to begin dragging within TList. This may be done by setting global variables in the mouse down event to identify the x/y location of the mouse, and checking it again in the mouse move event. When the mouse has moved a certain distance with a depressed left mouse button, initiate dragging by calling the BeforeDrag method followed by the Drag method.

2. Accepting a Drop
A DragDrop event will be triggered. At that time you can identify the DropTarget and determine whether to allow dropping. If dropping is allowed you will want to:

i. use the ItemBM property to get the bookmark for the target as the index may potentially change if you will be deleting source items from earlier in the tree.

ii. use one of the TList.Copy properties to copy source item(s) to a tree buffer.

iii. remove the original source item(s)

iv. using the bookmark of the target, get its new index and add the items(s) from the tree buffer before the target (using the insert property) or as a child of the target (using the add property).

Note By default TList updates the ListIndex and selections prior to the MouseDown event. If you set MultiSelect with the intention of to allow dragging of multiple items you should set the SmartDragDrop property to postpone this update of the change in selection and ListIndex.

How to Support OLE Drag Dropxe "OLE Drag Drop"

xe "How to" xe "Technique"

xe "New in Version 4!"

TList 4 supports OLE style Drag Drop as described in VB 5 documentation. But only the OLEDropMode property, OLEDragDrop, and OLEDragOver events are implemented. These provide full support for OLE drop target but do not allow initiating of OLE dragging. You can start OLE drag drop using properties of any Visual Basic 5.0 standard controls.

Note When dragging from Explorer, TList will pass a TListDataObject Object with a Files property describing the names of all files dropped. You can then retrieve these names and display them in TList.

How to Sort or Search a Treexe "Searching"

xe "Sorting"

xe "Technique"

xe "How to" xe "Technique"
TList supports both Searching and Sorting of the list.

Searching

Two methods provide searching capabilities: included two methods:

FindItem
- Searches based on an item’s visible text.

FindValue
- Searches based on item’s associated data.

Sorting

To sort the children of a given parent item, set the ItemSorted property of that item to either 1 (sorting items by displayed text) or 2 (sort items by their associated item...Value) data.

Note ItemSorted is an array property whose Index specifies the item whose children are to be sorted.

To sort all root items in the list, specify a parent index of -1.

TList1.ItemSorted(-1) = settings%

To sort a list by a named associated value (as set with the ItemValues) set the ItemSortingKey property:

TList1.ItemSortingKey(IndexOfTheParentItem%, 0) = "FirstName"

Sorting based on arbitrary associated values may be handled numerically or by Ascii character. This is determined by TList depending on what data is being sorted. If associated values were entered as numerical data then 2 comes beore 11, if entered as strings, then 11 comes before 2.

How to Access the Clipboardxe "How to" xe "Technique"

xe "Clipboard property"
TList supports copy and paste to the clipboard. You can even copy TList items between TList controls situated in distinct applications.

TList supports its own proprietary format for passing text and associated graphics between TList controls. TList also includes a text presentation of the tree for passing copied items to other applications:

TList1.Clipboard(-1) = 0

This code will copy contents of the control to the clipboard in both binary and text form. Text presentation can be pasted in any application like WinWord or WordPad.

Example:

'Move a selected item from one TList control into another
x% = TList.SelItemIndex(0) 'get index of first selected item
TList_Source.Clipboard(x%) = 0 ' copy item and its children
TList_Source.RemoveItem 19 ' remove item and its children
TList_Dest.Clipboard(5) = 4 'paste before item 5 in destination.

See the Clipboard and IsClipboardAvailable properties and CopyBuffer and PasteBuffer method descriptions for further information.

Note Items pasted from the clipboard do NOT have the same Bookmark as the source from which they are copied. While Bookmarks are Unique identifiers of the original TList item, the data stored in the clipboard is only a copy of the item and its associated data structure.

Note TList clipboard mechanism was designed to provide support for inter-application data exchange. If you want to move pieces of a TList tree inside one application we recommend you use tree buffer or File I/O functions and the Add or Insert TList properties instead of the Clipboard property. Use of the clipboard to create new copies of an item with a picture creates a distinct new picture with its own handle and system resource requirements. If you use the tree buffer and Add or Insert properties, TList creates only a new reference to an image, not a distinct new copy.

How to Save and Load Lists - File I/Oxe "Saving Trees"

xe "Loading Trees"

xe "Storing Trees"

xe "File I/O"

xe "How to"

xe "Technique"
TList allows the developer to very quickly and easily save or load a complete tree or branch of a tree, to or from a file. TIP: When working with huge tree's it is well worth saving the Tree to a TList data file and reading that file when initializing the application. This can be significantly faster than executing a large number of AddItem statements and associated settings of Fonts, Images, and item Data etc.

TList will also allow the developer to save several trees to the same file, as well as to save or load tree buffers to or from a file. You can even mix TList's data with any other data in the same file.

On loading, the tree may be added to the outline at any location. On Saving, TList will save the complete state of the tree together with the Expand/Collapse states.

Of particular importance, TList will optimize the storage of associated images such that an image used by multiple items in the outline is saved only once in the file. TList can save and restore images of any graphic format which are available from Visual Basic (bitmaps, metafiles and even icons).

Technique

1. Open a file for sequential save or load access. Note that the file should be opened as BINARY only.

2. Optional. Set the File property to Read or Write (this creates a TreePictureTable for optimized storage of repeated images). This step is needed only for saving multiple trees to one file. You need to use this property only if you save contents of SEVERAL TList controls, into one file or if you load trees from a file where SEVERAL TList controls have been stored.

3. Set one of the file load/save properties or call one of the file load/save buffer functions:

LoadAndAdd property - loads Tree data from a file, adding it as a

subordinate to the item pointed to by the index. (specifying an index of -1

loads to the root)

LoadAndInsert property - loads Tree data from a file, adding it as a

peer immediately before the item pointed to by the index.

Save property - saves an item (pointed to by its index) and its

subordinates to a file. Specifying an index of -1 will save:

- the entire contents of the control if the

 CurrentIndexMethod property is set to 0 or 1;

- the children of the current parent as specified by

 CurrentParent property if the CurrentIndexMethod

 property is set to 2.

SaveOne property - saves to a file an item (pointed to by its index)

without its subordinates. Specifying an index of -1 will save all

subordinates of the currentParent to the file (without their subordinates).

SaveSub property - saves the subordinates of an item (pointed to by

its index) to a file.

SaveBuffer method - saves a tree buffer to a file.

LoadBuffer method - loads tree data from a file to a tree buffer.

4. Repeat step 3 as needed to save or load multiple trees. The same file can be accessed for loading/saving to/from different instances of the TList control.

5. (Optional) Set the File property to Close - this writes the TreePictureTable to the file when saving TList data, or removes unnecessary data when loading TList data. This step is needed only if the File property was previously set to Read or Write to optimize storage of multiple trees in a single file.

6. Close the file.

Note Items inserted from a file do NOT have the same Bookmark as the source from which the file was created. While Bookmarks are unique identifiers of the original TList items, the data stored in the file is only a copy of the items and associated data structures.

How to Support In-place Editingxe "Editing"

xe "In-place Editing"

xe "How to"

xe "Technique"
TList supports in-place editing.

Technique

To initiate in-place editing of an item, set the ItemEditText property for the item of interest to TL_EDITTEXT_BEGIN (you can find this constant and other declarations in the TLIST4.BAS file). This triggers the RequestEditing event.

To cancel or complete editing set the ItemEditText property to TL_EDITTEXT_CANCEL or TL_EDITTEXT_END triggering the AfterEditing event.

End-user keyboard activity may be trapped within the EditKeyDown, EditKeyPress, and EditKeyUp events. These events are triggered instead of the standard Key... events while editing is active.

Editing will be canceled (triggering the AfterEditing event) on any of the following occurrences:

- user clicks on the another window or another item of the TList control;

- one of the properties that change the tree structure were set;

- user resizes control;

- user scrolls the control.

Note ItemEditText is only supported for visible items (item's who's parents are expanded and not permanently hidden with the ItemAlwaysHidden property).

Virtual Items may be edited, but the edited string will be stored in a virtual item only as long as this item exists in memory. Once the item is removed from memory by TList, the data will be lost. It may be reasonable therefore to save that data in the original data source during the AfterEditing event.

When editing selected items, TList's default behavior is to draw a border around the item and set colors as if the rectangle were a standard textbox. Thus Foreground/Background colors for the item being edited may change during the editing operation - colors will be restored upon completion of editing.

For further information, see descriptions of the ItemEditText property, and functions: RequestEditing, AfterEditing, EditingKeyDown, EditingKeyUp, and EditingKeyPress.

Editing Grid Cells - TList as a Container xe "Container"

xe "Child Controls"
TList can now accept Child controls. This allows simulation of editing of a cell content with and arbitrary control. One can use TList properties to get coordinates of the active cell in the control, position a child control using these coordinates, get data from the cell, set child control's properties, retrieve the modified data after editing and reset the cell's properties.

See sample project 15 for details on use.

How to Use Bookmarks xe "Bookmarks"

xe "ItemBM"

xe "How to" xe "Technique"
TList supports bookmarking of items.

An ItemBookmark, as contained in the ItemBM array property, is a long integer pointing to an item. The bookmark associated with an item will not change even if the item's index changes as a result of adding items higher in the list or changing the CurrentIndexMethod. The Add and Insert properties have also been extended to support working with Bookmarks as they already had worked with tree buffers.

Note Bookmarks are independent of the actual instance of a control and so may be useful in copying items between two distinct TList controls using Add and Insert properties.

Note A bookmark becomes invalid as soon as the item to which it refers is deleted. When a property is set to an invalid bookmark an error, "Invalid bookmark", is generated. Also, bookmark information is NOT stored when items are saved to a file, copied to the clipboard or copied to a tree buffer.

For further information, refer to descriptions of the ItemBM, Add, CurrentItemBM, ItemParentBM properties and the IsValidBM and IndexByBM methods.

How to Assign Categories - TList Mark Support xe "Mark Array"

xe "Marks"

xe "MarkPicture property"

xe "MarkTag property"

xe "How to" xe "Technique"

xe "Categories"
TList provides support for defining categories of items - for instance: Editable items, Group Managers, Out of Stock Parts.

Each Item has an ItemMark property defining the category (0 to 255) to which it belongs. Each Category/Mark has an associated image and string tag specified by elements of the MarkPicture and MarkTag array properties.

[image: image7.wmf]TList Items

Marks

Mark Picture

MarkTag

Mark Tag

To display the MarkPictures set the ViewStyleEx property to 2 or 3. The MarkPictures will be shown on the far left of the control for each item belonging to a Mark Category. Updating the ItemMark will update the display to show the appropriate image for that item based on its new category. Updating a MarkPicture will update the display to show the new image for all items in the associated category.

Note Item Marks can be employed to hide or display whole categories of items. Setting MarkedItemsAlwaysHidden(markindex) will hide all items having that mark index assigned to their ItemMark property (assuming ShowHiddenItems is False). This can be used to display different components of a large tree to different audiences.

Just as the ItemValues.Value properties are useful for storing item specific data for each item, the ItemMark is useful to assign data from a category to individual TList items. Also changing the data in the MarkTag and MarkPicture arrays is much easier and faster than changing the Image property or ItemValues.Value property for each associated element of the TList control.

Example:

Sub TList_Click()

'Get some text from Mark Array

' based on which item is clicked

Item_Clicked% = TList.ListIndex

Tagnumber% = TList1.ItemMark(Item_Clicked%)

GetText$ = TList1.MarkTag(TagNumber)

End Sub

For further information refer to the descriptions of the ItemMark, MarkPicture, MarkTag, MarkHeight, MarkWidth, MarkedItemsAlwaysHidden, and ViewStyleEx properties and MarkClick and MarkDblClick events.

How to Control the Display of Plus/Minus Picturesxe "How to"

xe "Technique"
The appearance of plus/minus pictures next to items is determined by a combination of the ViewStyleEx property, the ItemPMPicType array property, whether the item has any children, and whether it is expanded. This is summarized in the following table:

ItemPMPicType

ViewStyleEx
Item has Children
Item is collapsed
Image is displayed

 0 (default)
other than

1 or 2

None

 0 (default)
= 1 or 2
False

None

 0 (default)
= 1 or 2
True
True
Minus (-)

 0 (default)
= 1 or 2
True
False
Plus (+)

 1

Plus (+)

 2

Minus (-)

 3

None

The ViewStyleEx setting determines whether to show plus/minus pictures (depending on expand/collapse state of the item) for those items which have subordinate children. Setting ViewStyleEx to a value other than 1 or 2 indicates that no plus/minus image should be shown. Setting ViewStyleEx to either 1 or 2 indicates that the display of a plus/minus image should be determined based on the expand collapse state of items with children. No plus/minus image is displayed for items without children.

This overall behavior of the tree may be overridden by the ItemPMPicType property array settings for each individual item. For example:

'a minus picture will be displayed next to the 25th item

TList1.ItemPMPicType(25) = 2

For further information refer to the description of the ViewStyleEx and ItemPMPicType properties.

How to Upgrade an Old TList 3/Pro OCX Project to Use TList OCX xe "Technique"

xe "How to"

xe "Upgrading TList projects"
To make the conversion from TList 3 to TList 4 as simple as possible, the TList 4 installation kit includes a conversion utility. This can be accessed from the Start Menu group.

1. First make a backup of your original project

2. Next run the conversion utility and specify the name and location of the project being converted. The converter will replace all instances of the TList 3/Pro OCX on your forms with TList 4.

3. Open your project and replace the TLO30P.BAS file with TList4.BAS

4. The only code you should need to change is where you have made reference to an obsoleted property: in particular the Titles property is no longer supported; use TList grid items and column titles instead. Other obsolete properties include NoIntegralHeight, CoerceIndex and BackwardCompatible.

How to Upgrade an Old VBX Based Project to Use TList OCX in Place of the VBXxe "Technique"

xe "How to"

xe "Upgrading TList projects"
The following procedure may be used to upgrade your old project:

1. Load your old Visual Basic 3.0 project into Visual Basic 4.0 or 5.0 environment. You will be asked whether to convert TLIST.VBX or not. After successful upgrade the TList VBX will be substituted with the OCX version of TList.

2. Next, replace the old TList constants and function declarations file TL30.BAS or TLIST.TXT file, with the OCX version TLIST4.BAS file. Be sure that you have replaced this file, otherwise you may have some problems.

3. If you use TList as Drag Drop source in your project you need to do as follows:

· Call the OnDragOver method in the first line of your DragOver event:

Private Sub TList1_DragOver(Source As Control, _

X As Single, Y As Single, State As Integer)

TList1.OnDragOver X, Y, State

. . .
End Sub

· Call the OnDragDrop method in the first line of your DragDrop event:

Private Sub TList1_DragDrop(Source As Control, _

X As Single, Y As Single)

TList1.OnDragDrop X, Y

. . .
End Sub

· Call the BeforeDrag method before the call to Drag method, which initiates the Drag Drop:
TList1.BeforeDrag

TList1.Drag 1

In order to increase the number of items which can be held by TList, we changed the data type of TList indexes to Long values. For this reason, parameters of some properties, events and methods have been changed. Below is the list of changes which you should repeat in your project:

Old declaration
New declaration (parameters referencing item indexes are now LONG values)

Sub TList1_Expand(I As Integer)
Sub TList1_Expand(ByVal I As Long)

Sub TList1_Collapse(I As Integer)
Sub TList1_Collapse(ByVal I As Long)

Sub TList1_PlusMinusClick(I As Integer)
Sub TList1_PlusMinusClick(
[image: image8.wmf] ByVal I As Long)

Sub TList1_PlusMinusDblClick(I As Integer)
Sub TList1_PlusMinusDblClick(
[image: image9.wmf] ByVal I As Long)

Sub TList1_AfterEditing(
[image: image10.wmf] ItemIndex As Integer,
[image: image11.wmf] EditedText As String,
[image: image12.wmf] CancelledBy As Integer)
Sub TList1_AfterEditing(
[image: image13.wmf] ByVal ItemIndex As Long,
[image: image14.wmf] EditedText As String,
[image: image15.wmf] ByVal CancelledBy As Integer)

Sub TList1_ RequestEditing (
[image: image16.wmf] Cancel As Integer,
[image: image17.wmf] ItemIndex As Integer,
[image: image18.wmf] TextToEdit As String,
[image: image19.wmf] Options As Integer)
Sub TList1_ RequestEditing (
[image: image20.wmf] Cancel As Integer,
[image: image21.wmf] ByVal ItemIndex As Long,
[image: image22.wmf] TextToEdit As String,
[image: image23.wmf] Options As Integer)

Sub TList1_EditingKeyDown (
[image: image24.wmf] ItemIndex As Integer,
[image: image25.wmf] KeyCode As Integer, Shift As Integer)
Sub TList1_EditingKeyDown (
[image: image26.wmf] ByVal ItemIndex As Long,
[image: image27.wmf] KeyCode As Integer, Shift As Integer)

Sub TList1_EditingKeyPress(
[image: image28.wmf] ItemIndex As Integer,
[image: image29.wmf] KeyAscii As Integer)
Sub TList1_EditingKeyPress(
[image: image30.wmf] ByVal ItemIndex As Long,
[image: image31.wmf]KeyAscii As Integer)

Sub TList1_EditingKeyUp (
[image: image32.wmf] ItemIndex As Integer,
[image: image33.wmf] KeyCode As Integer, Shift As Integer)
Sub TList1_EditingKeyUp (
[image: image34.wmf] ByVal ItemIndex As Long,
[image: image35.wmf] KeyCode As Integer, Shift As Integer)

Sub TList1_MarkClick (I As Integer)
Sub TList1_MarkClick (ByVal I As Long)

Sub TList1_MarkDblClick (I As Integer)
Sub TList1_MarkDblClick (ByVal I As Long)

How To Detect the Version Number Of TList xe "Version"

xe "Technique"

xe "How to"

xe "New in Version 4!"

To determine which version of TList you are using:

· At design-time - use the About property which shows a dialog with the current version and date stamp.

· At run-time - use the Version property, which returns a Long with minor and major versions of the control.

How to Trap Right Mouse Clicksxe "Version"

xe "Technique"

xe "Right-Mouse Menu"

xe "Menu"

xe "How to"

xe "New in Version 4!"
To simplify right-mouse menu implementation an ItemClick event has been added.

New Internet Interfaces xe "New in Version 4!"

xe "Technique"

xe "Internet" xe "Web Support"
TList 4 introduces new methods, which allow you to navigate to any document on the Web: WebAutoNavigate, WebGoBack, WebGoForward. These methods work regardless of the container TList is loaded in. For example, if TList is placed on a Visual Basic form and the WebNavigate method is executed, the default Web browser installed on the computer will be started and the specified Web document will be located and shown to the user. (Currently only Internet Explorer v 3 and above are supported).

You can make TList navigate through the Web automatically when the user double clicks on a list item displayed in the control. TList uses the ItemURL and TListCellDef.Url properties to specify the URL for a hop. WebTargetFrame, WebURLBase, and WebAutoNavigate properties control operation of this mode. These properties are saved as part of TLT data files, which can then be referenced on a Web page or loaded into an application using the SaveData method.

You can use VBScript <Object> tag attributes to resize TList to fit its container on an HTML page.

How to Navigate a Web Site with TListxe "New in Version 4!"

xe "How to"

xe "Technique"

xe "Internet" xe "Web Support"
Your site is becoming too complex? You don’t know how to paste together tons of pages to make them look organized? Would you like to make your Web Site content easily manageable and transparent to the user?

The easiest way to do that is to follow a proven Outline / Viewer approach. By using Frames in your Web site and placing the TList outline control into one frame on the left side and your actual content on the right, your users will be able to understand your organization at a glance and jump to the desired location with a single click.

Using TList you can easily create such pages. Also you don’t have to insert references to all pages of your Web Site into the outline, just select the ones you think are reasonable to expose.

Use the following examples to modify your site:

· Look at our Web Site built exactly with that technique at http:\\www.Bennet‑Tec.Com. (Select the Internet Explorer View.)
· Try our Samples for Internet Explorer, which are in the TList program group. Sources are available in the TList Installation Directory\Samples directory.

· If you have a Microsoft Control Pad application use it to insert a TList control into your HTM document. If you don’t, you can insert it manually, just paste the following lines in your HTML file:

<OBJECT

ID="TList1" WIDTH=100% HEIGHT=100%

CLASSID="CLSID:9D998140-B884-11CE-8D47-444553540000"

CODEBASE="ftp://ftp.btis.com/pub/activex/TList4.cab#Version=4,0,17,0"

DATA="http://{your server address}/FileGeneratedWithTDesigner.TLT"

>

</OBJECT>

CODEBASE refers to the site where the TList4.CAB file can be found. The Bennet-Tec download area always has the very latest update for the ActiveX control. Make sure you let us know about your Web site so we can reach you if this location should ever change.

DATA refers to a file with TList control content. No programming is required to build the data file. This file is generated by the TDesigner application and must be accessible by your Web Site users; that is, you must put it in a subdirectory of the WWWRoot directory.

· Save your .HTM document.

· Start the TDesigner application and generate a .TLT file with desired TList content.

· Put .HTM and .TLT files on your Web server and test the whole thing.

· Test your Web site before exposing it to other users.

String Supportxe "Strings"

xe "Special Characters"
Most TList string oriented properties accept any ASCII values except for ASC(0) which is usually treated as a termination character. The only properties which accept ASC(0) as a valid character within a string are ItemTag and ItemValues.

Backward Compatibility

TList Data Files

Files previously created with TList 3/Pro CANNOT be read with TList4.OCX. To convert files created with TList 3/Pro use TFConv.EXE which comes with the TList 4 package. The Visual Basic source code for this project is also available and can be found in the TList4\TFileCVT directory along with TListCVT.OCX which is used to read old files and which you can freely distribute with your applications.

 Properties Which Can Be Set at Run Time Now

There are a number of properties which can be modified at in run-time now:

· MultiSelect property

· DisableNoScroll property

· Scrollbars property

Obsolete Unsupported Properties

· NoIntegralHeight property – no longer supported

· BackwardCompatible property – no longer supported

· TitlesXXX, ShowTitles – no longer supported (use grid column titles instead)

· ItemIntValue, ItemLngValue, ItemStrValue, ItemPicValue, ItemSngValue, ItemType - actually these are still supported but are obsolete and may be discontinued in the future. It is strongly suggested that users make use of the more efficient ItemTag and ItemValues properties.

· CoerceIndex - again this is not really discontinued, but it has been found to be confusing to TList users and is obsolete. We strongly suggest that the TranslateIndex method be used instead.

C H A P T E R 3:

Using the TDesigner Application

Introduction

TDesigner was developed as a tool to facilitate setting of TList properties and populating TList with list items at design time. Using TDesigner, a complete Tree can be built, formatted, and saved in a data file for later use, without writing a single line of code. Loading the pre-built list in an application is considerably faster than building a list at run-time. The data file can also be passed to TList on a Web site allowing the design of a Web page using TList without need for any programming.

TDesigner is a 32-bit application, TDES32.EXE, and can be run either on Windows 95 or Windows NT platform. Running TDesinger requires the following files: TLIST4.OCX, MSVCRT.DLL, MFC42.DLL, MSVCRT40.DLL, MFC40.DLL, COMCAT.DLL, COMDLG32.DLL, TABCTL32.OCX, THREED32.OCX, VB40032.DLL.
TDesigner is licensed by Bennet-Tec Information Systems and MAY NOT be shared among individuals or distributed without specific permission by Bennet-Tec.

TDesigner has 2 modes of functioning: stand-alone mode, when it is running as a regular application, and design-time mode, when this application is called to edit properties of a TList control placed on a form of either Visual Basic, Visual C, Delphi, or other environment supporting ActiveX Controls.

Stand-alone mode, TDesigner can be used to create, view, modify and save TList data files (.TLT files). This includes settings of all item text, grids, associated hidden data, formatting, images, view styles and other aspects of the look and feel of a hierarchic list.

Any .TLT file produced by TDesigner can be later loaded into any TList 4 control at design or run time via LoadData method. Also, files created by an application using the SaveData TList method can be loaded in TDesigner for viewing and editing.

Design-time mode, TDesigner replaces the Property window formerly shown in response to the Property command from control’s right mouse menu. In this mode, TDesigner directly sets the properties and characteristics of a TList control placed on a form in the development environment. It is not necessary to create .TLT files when using the control in this way, but TLT files can be loaded at this time to pull in default settings.

TDesigner Layout
There are five main windows in TDesigner: Tree, Event Viewer, Properties, Grid Cell Properties and Item Properties.

· In the Tree window users may view and edit the contents of a TList control. There user can add or remove any item or edit its properties. Use the Window\Tree menu command to display this window.

· In the Event Viewer window users can see a log of all TList events that have occurred. Use the View\Event Viewer menu command to display this window.

· In the Properties window users may edit property settings for the whole control, such as: background color, default font etc. Use the [image: image36.png] toolbar button or Window\Properties menu command to display this window.

· In the Item Properties window users may edit settings of each list item. Use the [image: image37.png] toolbar button or Window\Item Properties menu command to display this window.

· In the Grid Cell Properties window users may edit settings of each cell of each grid. Use the [image: image38.png] toolbar button or Window\Grid Cell Properties menu command to display this window.

The picture below shows TDesigner with the Tree, Properties and ItemProperties windows open.

[image: image39.png]
Window Arrangement

For convenient positioning of Tree, Event viewer, Properties, Grid Cell Properties, or Item Properties windows, use the [image: image40.png] toolbar command or Window\Arrange menu command to change the size and position of these windows.

Special Design Time Mode buttons

Three additional buttons, OK, Apply and Cancel, are presented at the bottom of the main window of TDesigner when it is used as a property access tool for TList within a design time software development environment (such as Visual Basic). When TDesigner is called in this mode, it appears as is shown below:

[image: image41.png]
These extra buttons shown at the bottom of the main window of the TDesigner application determine how TDesigner updates information in the TList control whose settings are being modified.

Upon Clicking the OK button, TDesigner updates the information in the control and shuts down.

Upon Clicking the Apply button, TDesigner updates the information in the control and continues running.

Upon Clicking the Cancel button, TDesigner cancels any changes which might have been made since the apply button was last clicked or since the TDesigner application was involked, and shuts down.

Displaying Hidden Items

Use the [image: image42.png] toolbar button to display items which are not normally shown. Pressing this button sets the ShowHiddenItems property to True.

Using the Tree Window

The Tree window displays and edits TList contents. In this window, the user can add and remove any item.

Operations

All operations which are listed below can be applied to the currently selected item.

Toolbar button
Menu Command
Operation

[image: image43.png]
Edit\Insert Item Before
Insert item before selected one

[image: image44.png]
Edit\Insert Item After
Insert item after selected one

[image: image45.png]
Edit\Insert As Subordinate
Insert item as subordinate one

[image: image46.png]
Edit\Delete
Remove selected item

Using the Tree Event Viewer Window

The Tree Event Viewer window logs all the TList events which might be fired as a result of user actions (clicking, moving the mouse, etc).. This window may be useful to learn when and in what order TList events occur.

Using the Properties Window

This window allows modification of almost all properties affecting the overall look and behavior of the TList control.

Property pages (tabs) are used to organize the large number of TList properties which may be set:

· The Web page collects all Internet-oriented settings.

· The ToolTips page has all settings required to control display of ToolTips.

· The Colors page collects properties specifying various colors.

· The Pictures page collects properties specifying pictures used in the control.

· The Font page collects properties specifying the default font used in the control.

· The Tree Lines page collects properties controlling painting of Tree Lines.

· The Drag/Drop page collects properties controlling drag/drop operations.

· The Selection page collects properties controlling how TList selects/deselects items.

· The Expanding page collects properties controlling how TList expands/collapses items and keeps expanded state information in an item.

· The Text page collects properties controlling how TList displays text.

· The Marks page collects properties controlling how TList displays marks.

· The Miscellaneous page collects all the other properties.

· The LevelDefs page collects LevelDefs settings.

· The Item Cell Defaults page collects item cell background, border and alignment properties.

· The Background page collects properties controlling how the TList background is displayed.

· The Grid page collects properties of the Tree Grid object.

· The Scrollbars page collects properties controlling scrollbar appearance.

Using the Item Properties Window

This window shows properties of the item currently selected in the Tree window.

Property pages (tabs) are used to help organize and access the list item properties which may be set:

· The Web page contains a URL which, if specified, can be used to point to a destination for a hyperlink jump.

· The Text page specifies the text shown in the item.

· The Colors page specifies the colors with which the item is drawn.

· The Font page specifies the text font.

· The Pictures page specifies the pictures drawn in the item.

· The Mark page specifies the mark picture associated with the item.

· The Sorting page specifies the sorting method used for children of the item.

· The Values page specifies additional data associated with the item.

· The Border page specifies border drawn around the item.

· The Alignment page specifies how item text and picture are aligned.

· The Virtual page specifies whether the item has virtual children.

· The Visibility page specifies whether the item is always hidden.

· The Tag page specifies the tag value associated with the item.

· The Grid page specifies item grid parameters for the item.

Using Grid Cell Properties Window

This window shows properties of the grid cell currently selected in the Tree window.

Property pages (tabs) are used to help organize and access the list of grid cell properties which may be set:

· The Value page specifies the value shown in the grid cell.

· The Pictures page specifies the pictures drawn in the grid cell.

· The Colors page specifies the colors with which the grid cell is drawn.

· The Font page specifies the text font.

· The Border page specifies the border style and color of the grid cell.

· The Alignment page specifies the text, picture and text / picture alignment settings of the grid cell.

· The Tag page specifies the tag value associated with the grid cell.

Specifying TDesigner Defaults

When TDesigner starts it automatically loads the DEFAULT.TLT file which is in the TDesigner subdirectory of your TList installation directory. You can modify that file so that it sets most of TList properties to defaults you prefer. This works like AUTOLOAD.VBP file in Visual Basic.

Hints for Web Site Designers

2-Frame Scheme

Placing the TList control into one frame on the left side and your actual content on the right is the most common way of using TList on a Web page.

Follow the steps below to create a .TLT data file which sets up TList as a table of contents to your Web site in 2-frame mode without requiring a line of code:

· create the tree you would like to be shown in TList.

· select Web property page from the Properties dialog.

[image: image47.png]
· Check Enable Web AutoNavigation checkbox (use WebAutoNavigate property to access this functionality at run time).

· Enter the name of the right frame in the Target Frame Name text box (use the WebTargetFrame property to access this functionality at run time).

· You can specify the URL of the Web server where files are located. This is not necessary. If specified, TList can use this as a Base URL allowing it to work with relative URLs, for example:

main.htm, or /Company/Success Story.htm
(use WebUrlBase property to access this functionality at run time).

· In the Tree Window select an item for which you would like to specify a URL for the hyperlink jump.

· select Web property page from the Item Properties dialog.

[image: image48.png]
· Enter the name of the HTML page to refer to. This is the page whose content will be shown in the right frame of the web site. (use the ItemURL property to specify a URL at run time).

· repeat 3 steps above for each item which must have a URL.

· EDIT the sample TLDEMO.HTM file in your "TList4\Samples\Sample 22. The Simplest HTML Page" directory, replacing the specified .TLT file identified in the DATA = section with a reference to your own .TLT file.

· save the file and try it in Internet Explorer.

How to Minimize the Size of Your .TLT File

The size of the TList data file is critical if you want to minimize the download time for TList Data. TList data files (.TLT) will be big only if you use many different pictures in the tree.

TList optimizes data storage, saving only one copy of each picture regardless of the number of items associated with it. The only thing you can do here is to save the resulting file under 16-color or 256-color resolution, this significantly decreases the size of the file. (The color resolution of the images is determined by the color resolution setting of the PC when the data file is saved).

Setting up ToolTips

Use the Tool Tips Page from the Properties Window to change settings for tool tips.

[image: image49.png]
Check the Enable Tool Tips checkbox to turn on displaying of ToolTips (use ToolTipsMode property to do this at run time). The other controls handle colors of the tool tip box (use ToolTipsViewStyle, ToolTipsBackColor, and ToolTipsForeColor properties to do this at run time).

Selecting Colors

Use the Colors Page from the Properties Window to change settings for the whole TList:

[image: image50.png]
Use BackColor, ForeColor, SelBackColor, SelForeColor properties to control colors at run time.

Use the Colors Page from the Item Properties Window to change the colors for currently selected item in the Tree Window item:

[image: image51.png]
Use ItemBackColor, ItemForeColor, ItemCell(ItemIndex&).BackColor, ItemCell(ItemIndex&).ForeColor, ItemCell(ItemIndex&).SelBackColor and ItemCell(ItemIndex&).SelForeColor properties to control colors at run time.

Use the Colors Page from the Grid Cell Properties Window to change the colors for the currently selected in the Tree Window grid cell.

Use BackColor, ForeColor, SelBackColor, SelForeColor properties of Grid Cell’s CellDef object to control colors at run time.

In response to the Change Color button the following dialog appears:

[image: image52.png]
All system colors and 16 most frequently used colors (corresponding to the QBColor function in Visual Basic) are shown in this dialog. Select the one you need and choose OK.

To select a color which is not on the list, make use of the More button.

Setting up Pictures

Use the Pictures Page from the Properties Window to set default pictures for the whole TList:

[image: image53.png]
Check the Display Picture checkbox to turn on displaying of pictures (use ViewStyle property to do this at run time).

Check the Display + / - Picture checkbox to turn on displaying of plus / minus pictures (use ViewStyleEx property to do this at run time).

Check the Pictures are of the same size checkbox to display all the pictures stretched according with height and width specified in textboxes Height and Width (use ImageStretch, ItemImageDefWidth, ItemImageDefHeight properties to do this at run time).

Use PictureRoot, PictureInverted, PictureOpen, PictureClosed, PictureLeaf, Image, InvImage, PicturePlus and PictureMinus properties to control pictures at run time.

Use the Pictures Page from the Item Properties Window to change the picture for the currently selected item in the Tree Window item:

[image: image54.png]
Use the Pictures Page from the Grid Cell Properties Window to change the picture for the currently selected item in the Tree Window grid cell:

In response to any Change Picture button the following dialog appears:

[image: image55.png]
All pictures which are currently in use by TList are shown in this dialog. Select the picture you need and choose OK.

To add an additional picture to this list, use the Browse button.

Modifying Tree Line Settings

Use the Tree Lines Page from the Properties Window to set Tree Lines style and color:

[image: image56.png]
Check the Display Tree Lines checkbox to turn on displaying of tree lines (use ViewStyle property to do this at run time).

Check the Tree lines alignment looks exactly as that in Window Explorer checkbox to display tree lines similar Window Explorer (use ExplorerCompatible property to do this at run time).

The Tree lines color panel displays tree lines color currently selected. In response to the Change Color button the Change Color dialog appears. Select the color you want and choose OK (use TreeLinesColor property to do this at run time).

Select the style you need in the Tree Lines Style combobox (use TreeLinesStyle property to do this at run time).

Use ViewStyleEx, TreeLinesColor, TreeLinesStyle, and ExplorerCompatible properties to control these settings at run time.

Specifying Drag Drop Settings

Use the Drag Drop Page from the Properties Window to control drag/drop settings:

[image: image57.png]
Select the drag drop settings you want in the How to scroll during Drag Drop operations and How items in the control will be highlighted when another control drags over it comboboxes (use AutoScrDuringDragDrop and DragHighlight properties to change these settings at run time.

Controlling Selection

Use the Selection Page from the Properties Window to change the way TList displays selected items:

[image: image58.png]
Select the multiple selection type you want (use MultiSelect property to do this at run time).

Specify the desired style of for displaying selected items using the How to display selected items combobox (use InvStyle property to do this at run time).

The Display border of selected item inverted checkbox controls how the border border of selected items is displayed (use InvBorderStyle property to do this at run time).

Check the Draw focus rectangle around selected item checkbox to display the focus rectangle around selected item (use DrawFocusRect property to do this at run time).

Controlling Expanding/Collapsing

Use the Expanding Page from the Properties Window to change the way TList expands and collapses items:

[image: image59.png]
Select the Automatic response to mouse input type you want (use AutoExpand property to do this at run time).

Check the expanding settings you need (use ShowChildren, ExpandChildren and ExpandNewItem properties to do this at run time).

Controlling Text Display

Use the Text Page from the Properties Window to specify how TList displays item text:

[image: image60.png]
Check the Display Text checkbox to turn on displaying of item text (use ViewStyle property to do this at run time).

Specify the desired picture location for items which have multiline text using the Where to display picture in the item which has multiple lines text combobox (use the PicInMultiLine property to do this at run time).

Check the Text of new added item is multiple lines text checkbox to indicate that items will word wrap by default (use DefMultiLine property to do this at run time).

Specify width settings of mutliple line text items using the textboxes (use WidthOfText and WidthOfTextMin properties to do this at run time).

To set the text for each item, use the Text Page from the Item Properties Window:

[image: image61.png]
Check the Multiple Line Text checkbox to specify the item text as multiline (use ItemMultiLine property to do this at run time).

Input text for the item into Text textbox (use the List property to change this setting at run time).

To set the text for each grid cell, use the Value Page from the Grid Cell Properties Window:

[image: image62.png]
Select the desired value type for the grid cell using Data Type combobox.

Note You can use only String data type for the 1st column cells.

Specify attributes for the grid cell in Attribute textbox.

Select one of predefined format strings or specify your own format string for the grid cell using the Format combobox.

Check the Multiple Line Text checkbox to specify grid cell text as multiline.

Use the Value and ValueName properties of the GridCell's Value and CellDef objects, to change these settings at run time.

Controlling Fonts

Use Font Page from Properties Window to change font settings for the entire TList:

Use FontBold, FontItalic, FontStrikethru, FontUnderline, FontName, FontSize properties to change these settings at run time.

Use the Font Page from the Item Properties Window to change the font for the currently selected item in the Tree Window item:

Use ItemFontBold, ItemFontItalic, ItemFontStrike, ItemFontUnder, ItemFontName and ItemFontSize properties to change these settings at run time.

Use the Font Page from the Grid Cell Properties Window to change the font for the currently selected grid cell in the Tree Window item:

Use the Font property of GridCell’s CellDef object to change this setting at run time.

In response to the Change Font button the standard Font dialog appears. Select the font you want and click OK button.

Controlling Marks

Use the Marks Page from the Properties Window to specify how TList displays marks and what pictures these marks use:

[image: image63.png]
Select the mark you wish to define in the mark list.
Specify a picture for this mark using Change Picture button (use MarkPicture property to do this at run time).

Specify the tag for this mark using Tag textbox (use MarkTag property to do this at run time).

Check Marked Items Always Hidden checkbox to indicate that all the items having this mark should be hidden (use MarkedItemsAlwaysHidden property to do this at run time).

Specify width and height of mark picture in Mark width and Mark height textboxes to stretch the picture to these sizes (use MarkWidth, MarkHeight properties to do this at run time).

Use the Mark Page from the Item Properties Window to associate an item with a mark:

[image: image64.png]
Select the mark you need to specify for the item using Index of assigned mark combobox. Index 0 means no mark associated with the item.

Use ItemMark properties to change these settings at run time.

Associating Additional Data with an Item

Use the Values Page from the Item Properties Window to associate additional data with an item:

[image: image65.png]
You can specify a new Value for the currently selected in the Tree Window item using Add button.

Specify the attribute (value name) of the added Value in Attribute textbox.

Select the data type you want to store in the Value using Data Type combobox. When you select Picture data type, you can select a picture using Change Picture dialog, otherwise you can specify a Value data in the Data textbox.

You can remove a Value from item’s Values collection using Remove button.

Use ItemValues object collection for accessing a desired Value object at run time.

Use ValueName, Value, ItemIndex properties of a Value object to change these settings at run time.

Specifying Sorting Method

Use the Sorting Page from the Item Properties Window to specify the sorting method to be applied for children of an item:

[image: image66.png]
Use ItemSorted property to change these settings at run time.

Controlling Miscellaneous Settings

Use the Miscellaneous Page from the Properties Window to specify what mouse pointer is displayed , what keystrokes TList processes and other TList settings:

[image: image67.png]
Check TList processes all keystrokes which Window Explorer does checkbox to force TList process keystrokes in the same way as Window Explorer.

Select the type of mouse cursor to display inside the TList using The mouse pointer displayed when over the control .

The spacing between Tab locations, The left offset of TList elements and The horizontal indentation between items textboxes allow further specification of TList's appearance.

Use ExplorerCompatible, MousePointer, ShiftStep, XOffset, TabStopDistance properties to change these settings at run time.

Controlling Item Cell Default Settings

Use the Item Cell Defaults Page from the Properties Window to specify default item cell background and border color, border style and alignments.

[image: image68.png]
Select default cell border color and cell background color from Change Color dialog using Change Color buttons (use DefItemCellBorderColor and DefItemCellBackColor properties to do this at run time).

Select cell border style using Default Border Style combobox (use DefItemCellBorderStyle property to do this at run time).

Select cell alignment using Default Alignment, Default Text Alignment and Default Picture Alignment comboboxes (use DefItemCellAlignment, DefItemCellTextAlignment and DefItemCellPictureAlignment properties to change these settings at run time).

Setting up Background

Use the Background Page from the Properties Window to specify background picture and background gradient settings.

[image: image69.png]
Select background picture using Change Picture button (use BackPicture property to do this at run time).

Check Background Transparent checkbox to specify a transparent background (use TransparentBackground property to do this at run time).

Select background picture alignment using Alignment Style for Background Picture combobox (use BackPictureAlignment property to do this at run time)

Select style for gradient background using Gradient Style combobox (use GradientStyle property to do this at run time)

Select gradient background start and end colors from Change Color dialog using Change Color buttons (use GradientColorFrom and GradientColorTo properties to change these settings at run time).

Specifying Scrollbar Appearance

Use the Scrollbars Page from the Properties Window to specify whether to display scrollbars in TList.

Select which scrollbars (horizontal, vertical or both) should be displayed using How to display scrollbars combobox (use ScrollBars property to do this at run time)

Check Always show scrollbars checkbox to always show scrollbars (use DisableNoScroll property to do this at run time).

Setting up Item And Grid Cell Borders

Use the Border Page from the Item Properties Window to specify the border for the currently selected item in the Tree Window item.

Select item border color from Change Color dialog using the Change Color button (use ItemCell(ItemIndex&).BorderColor property to do this at run time).

Select item border style using Border Style combobox (use ItemCell(ItemIndex&).BorderStyle property to do this at run time).

Use the Border Page from the Grid Cell Properties Window to specify the border for the currently selected item in the Tree Window grid cell.

Select the grid cell border color from Change Color dialog using the Change Color button (use Cells(Row&,Col&).CellDef.BorderColor property to do this at run time).

Select the grid cell border style using the Border Style combobox (use Cells(Row&,Col&).CellDef.BorderStyle property to do this at run time).

Setting up Item And Grid Cell Alignment

Use the Alignment Page from the Item Properties Window to specify alignment for the currently selected item in the Tree Window.

Select item cell alignment using Alignment, Text Alignment and Picture Alignment comboboxes (use ItemCell(ItemIndex&).Alignment, ItemCell(ItemIndex&).TextAlignment and ItemCell(ItemIndex&).PictureAlignment properties to change these settings at run time).

Use the Alignment Page from the Grid Cell Properties Window to specify alignment for the currently selected grid cell in the Tree Window.

Select grid cell alignment using Alignment, Text Alignment and Picture Alignment comboboxes (use Cells(ItemIndex&).CellDef.Alignment, Cells(ItemIndex&).CellDef.TextAlignment and Cells(ItemIndex&).CellDef.PictureAlignment properties to change these settings at run time).

Specifying Virtual Items

Use the Virtual Page from the Item Properties Window to specify whether the currently selected item in the Tree Window item has virtual children.

Check the Virtual ON /OFF checkbox to declare that the item has virtual children items and to specify the number of these virtual items in Virtual Items Count textbox (use ItemVirtual and ItemVirtualCount properties to change these settings at run time).

Setting up Item Visibility

Use the Visibility Page from the Item Properties Window to specify whether the currently selected item in the Tree Window item is always hidden when ShowHiddenItems button on main toolbar is unchecked (i.e. ShowHiddenItems property is set to False).

Check Item Always Hidden checkbox to make the currently selected in the Tree Window item always invisible.

Use ItemAlwaysHidden and ShowHiddenItems properties to change these settings at run time.

Setting up Item And Grid Cell Tag

Use the Tag Page from the Item Properties Window to specify a tag for the currently selected item in the Tree Window item.

Use the Tag Page from the Grid Cell Properties Window to specify a tag for the currently selected grid cell in the Tree Window.

Use ItemTag property of TList and Tag property of GridCell’s CellDef object to change this setting at run time.

Setting up LevelDefs

Use the LevelDefs Page from the Properties Window to specify LevelDef default properties for each tree level.

Use PictureOpen, PictureClosed, PictureLeaf and Indentation properties of a desired LevelDef object to change these settings at run time.

Specifying a Tree Grid

Use the Grid Page from the Properties Window to specify the grid for the whole tree.

Use TList.Grid object’s properties to change these settings at run time.

Specifying Item Grids

Use the Grid Page from the Item Properties Window to specify the grid for the currently selected item in the Tree Window.

Use TList.ItemGrid(ItemIndex&) object’s properties to change these settings at run time.

Properties You Cannot Set with TDesigner

ItemXXXValues properties (ItemIntValue, etc) are obsolete; use ItemTag instead.

The PictureType property is not available since it is obsolete.

C H A P T E R 4:

Properties, Events, Methods, Functions

All aspects of a TList control are controlled by setting properties, calling to functions or methods, or responding to events. Some properties are normally set at design time. Others can be set at design time or at run time. ALL TList control properties, events, methods, and functions associated with TList are identified below. xe "Properties"
TList Control

Propertiesxe "Properties"
Property
Description

About
Shows the 'About' box with copyright information at design-time.

ActiveGrid
Returns a reference to a Grid object whose cell was clicked last.

Add
Adds item(s) from a tree buffer to the end of the subordinate item(s) list of the item.

Align
Determines where on a form and in what size the list box can appear.

Appearance
Returns or sets the paint style of TList on an MDIForm or Form object at run time.

AutoExpand
Specifies the default reaction of TList on mouse clicks and double clicks.

AutoScrDuringDragDrop
Determines whether to scroll TList during drag-drop operations.

BackColor
Specifies background color displayed in each item.

BackPicture
Specifies Background picture for the control.

BackPictureAlignment
Specifies alignment for the background picture.

BorderStyle
Specifies border style of TList control.

BottomIndex
Returns the last visible item in the list.

Caption
Specifies the string that will be shown in the caption.

ClearItem
Removes all subordinate items from an item.

Clipboard
Copies tree item(s) to the Windows clipboard or pastes them from the clipboard.

ColDelimiter
Specifies a delimiter character used in AddItem and AddRow methods.

ConvertTabsToCols
Determines whether AddItem method automatically creates columns.

CopyItem
Copies an item with its subordinate items to the temporary buffer.

CopyItemSub
Copies an item's subordinate items to the temporary buffer called tree buffer.

CopyOne
Copies an item without its subordinate items to the temporary buffer called tree buffer.

CopySelected
Copies selected items with their subordinate items to the temporary buffer called tree buffer.

CurrentIndexMethod
Specifies the way in which items in the list are enumerated.

CurrentParent
Specifies the Parent whose children are enumerated in the list when using CurrentIndexMethod = TLSys_Level (=2).

CurrentItemBM
Specifies the bookmark of the CurrentItem, i.e.: the Parent whose children are enumerated in the list when using CurrentIndexMethod = TLSys_Level. (=2)

DefItemCellAlignment
Specifies the default item cell alignment of the picture and the text.

DefItemCellBackColor
Specifies the default item cell background color.

DefItemCellBorderColor
Specifies the default item cell border color.

DefItemCellBorderStyle
Specifies the default item cell border style.

DefItemCellPictureAlignment
Specifies the default item cell picture alignment.

DefItemCellTextAlignment
Specifies the default item cell text alignment.

DefMultiLine
Determines the default setting for the ItemMultiLine property

DisableNoScroll
Determines whether to show disabled vertical and horizontal scroll bars for the control when the list is not large enough to require scroll bars.

DragHighlight
Determines whether to highlight items as they are being dragged over.

DragIcon
Determines the icon to be displayed as a pointer in drag-and-drop operations.

DragMode
Determines manual or automatic dragging mode for a drag-and-drop operations.

DrawFocusRect
Specifies whether to draw a focus rectangle.

DropTarget
Identifies the item that is being dragged over.

Enabled
Determines whether the control is able to be acted upon.

Environment
Specifies the development environment in which TList is being used.

Expand
Specifies whether an item is expanded.

ExpandChildren
Specifies the way in which the TList keeps information about each item’s expand/collapse status.

ExpandEx
Expands/collapses all items

ExpandNewItem
Specifies the default setting of expand/collapse status for each newly-added item.

ExplorerCompatible
Defines Windows Explorer Outline compatibility.

File
Manages the tree picture table when saving to a file.

FixedSize
Determines whether all items have the same height.

Font
Returns a default font object

FontBold
Determines whether text should default to Bold.

FontItalic
Determines whether text should default to italic.

FontName
Determines the name of the default font.

FontSize
Determines the size of the default font.

FontStrikeThru
Determines whether text should default to FontStrikeThru.

FontUnderline
Determines whether the default text style is Underlined.

ForeColor
Determines the default foreground color for each item.

FullPath
Returns the path to an item.

GradientColorFrom
Specifies what color will be used to paint a gradient on the background.

GradientColorTo
Specifies what color will be used to paint a gradient on the background.

GradientStyle
Specifies the way a gradient will be drawn on the background.

Grid
Returns the Tree grid object.

HasGrid
Determines whether TList has Tree Grid.

HasSubItems
Indicates whether an item has subordinate items.

Height
Specifies the height of the TList control.

HelpContextID
Specifies the context number of the Help topic associated with the control.

Hwnd
Returns a window handle for the control.

Image
Determines the picture to be displayed with an item.

ImageStretch
Determines the stretch mode with which pictures are displayed.

Index
Identifies the control in a control array.

InvBorderStyle
Determines whether a cell changes its border when selected.

Insert
Inserts item(s) from the temporary buffer before the specified item.

Indent
Specifies the hierarchic indentation level of an item.

InsertItem
Inserts an item before another item at the same level

InvImage
Specifies the image to be displayed for selected items.

InvStyle
Specifies how selected items are displayed.

IsClipboardAvailable
Determines whether the Clipboard currently holds information recognized by TList.

IsItemVisible
Determines TList item visibility

ItemAlwaysHidden
Specifies whether an item is hidden regardless its parent visibility and expanded state.

ItemBackColor
The background color associated with an item.

ItemBM
Returns a Bookmark for an item.

ItemCell
Returns a reference to a TListCellDef object.

An ItemCell is the portion of a item containing it's text and optional additional picture.

ItemEditText
Initiates or terminates edit mode for an item.

ItemFontBold
Determines whether a specific item’s text is Bold.

ItemFontItalic
Determines whether a specific item’s text is Italic.

ItemFontName
The font associated with a specified item.

ItemFontSize
The size of the font for the specified item.

ItemFontStrike
Determines whether a specific item’s text is FontStrikeThru.

ItemFontUnder
Determines whether a specific item’s text is Underlined.

ItemForeColor
The color of text associated with an item.

ItemGrid
Returns a grid object for the specified item. Read-only.

ItemHasGrid
Determines whether an item has a grid.

ItemHeight
Returns or sets the height of an item.

ItemImageDefHeight
Specifies the height of pictures displayed with an item.

ItemImageDefWidth
Specifies the width of pictures displayed with an item.

Item...Value
Specifies additional data stored with item.

ItemMark
Specifies the index of a mark that is associated with an item.

ItemMultiLine
Specifies whether an item can display multiple lines of text.

ItemNextSibling
Returns the index of the next item at the same indentation level and with the same parent.

ItemParent
Returns the index of the parent of an item.

ItemParentBM
Returns bookmark of an item’s parent.

ItemPMPicType
Specifies whether to display a plus/minus picture for an item which doesn’t have any children.

ItemPrevSibling
Returns the index of the previous item at the same indentation level and with the same parent

ItemSorted
Specifies the sorting method applied to an item’s children.

ItemTag
Specifies a string tag associated with the specified item.

ItemValues
Holds array of assocated data values for each item.

ItemVirtualParent
Specifies whether children of an item are virtual.

ItemVirtualCount
Specifies the number of virtual children for an item.

ItemURL
Specifies the URL for an item. This URL is used when WebAutoNavigate property is enabled.

LevelDefs
Returns TListLevelDef object associated with a specified tree level.

Left
Determines the horizontal placement of TList within its container.

List
Specifies text to be displayed with items.

ListCount
Returns the number of indexed items.

ListCountEx
Returns the number of item’s children.

ListIndex
Specifies the item that currently has the focus.

LoadAndAdd
Loads item(s) from a file.

LoadAndInsert
Loads item(s) from a file.

MarkHeight
Specifies the height of a mark displayed next to an item.

MarkPicture
Specifies a picture for each mark.

MarkedItemsAlwaysHidden
Specifies visibility for all items whose ItemMark property is identical to mark index.

MarkTag
Specifies a tag for each mark.

MarkWidth
Specifies the width of a mark displayed next to an item.

MousePointer
Determines the mouse pointer displayed when over the control.

MSOutlineAdd
Determines the way that the AddItem method works.

MultiSelect
Specifies whether a user can make multiple selections.

Name
Specifies the name that must be used in code to refer to the list box.

NewIndex
Returns the index of the item which was used in the last operation.

NoPictureRoot
Determines how pictures next to root level items are displayed.

Parent
Returns the form in which the control is located.

PathSeparator
Sets and returns the item delimiter string used when accessing the FullPath property.

PicInMultiLine
Specifies positioning of a picture when displayed next to word wrapped items.

PictureClosed
Specifies the default closed picture for an item.

PictureInverted
Specifies the default inverted picture for an item.

PictureLeaf
Specifies the default leaf picture for an item.

PictureMark
Specifies the default mark picture for an item.

PictureMinus
Specifies the default minus picture for an item.

PictureOpen
Specifies the default open picture for an item.

PicturePalette
Determines the palette to be used to display all pictures.

PicturePlus
Specifies the default plus picture for an item.

PictureRoot
Specifies the default root picture for an item.

PictureType
Determines how default pictures are used.

Redraw
Controls repainting of the control.

Save
Saves item(s) to a file.

SaveOne
Saves item(s) to a file.

SaveSub
Saves item(s) to a file.

Scrollbars
Determines how scrollbars are displayed.

ScrollHorz
Scrolls the contents of TList horizontally.

SelBackColor
Specifies the background color to be displayed for selected items.

Selected
Determines whether an item is selected.

SelectEx
Selects a group of items.

SelForeColor
Specifies the foreground color to be displayed for selected items.

SelItemCount
Returns the number of selected items.

SelItemIndex
Returns the indexes of selected items.

Shift
Specifies an item's hierarchic indentation.

ShiftStep
Specifies an item's horizontal indentation in terms of the container’s scale.

ShowCaption
Determines the visibility of the caption.

ShowChildren
Determines whether expanded items will roll up to show as many subordinate items as possible.

ShowHiddenItems
Determines whether "always hidden items" are shown regardless of ItemAlwaysHidden and MarkedItemsAlwaysHidden properties settings.

SmartDragDrop
Determines when TList updates the Selected array.

TabIndex
Specifies the position within the tab sequence of controls on a form.

TabStop
Determines whether the control's focus can be reached by tabbing from other controls.

TabStopDistance
Specifies the spacing between Tab locations

Tag
Specifies a string associated with a TList control.

Text
Specifies the text of the selected item.

ToolTipsBackColor
Specifies the background color of the Tool Tip box.

ToolTipsForeColor
Specifies the text color of the Tool Tip box.

ToolTipsMode
Specifies whether Tool Tips are shown while user is moving the mouse over an item.

ToolTipsViewStyle
Specifies which set of colors is used to paint Tool Tips.

Top
The distance between the top edge of the list box and the top edge of its container.

TopIndex
Sets and returns the item that appears in the topmost position in the list box.

TransparentBackground
Determines whether to show TList with a transparent Background.

TransparentBitmap
Specifies whether bitmaps are dispaled transparent.

TransparentBitmapColor
Determines a transparent color for bitmaps.

TreeLinesColor
Determines the color of tree lines.

TreeLinesStyle
Determines the style of tree lines.

TriggerEvents
Controls what events to generate.

Version
Returns the current version of the control.

ViewStyle
Determines the way an item will be displayed.

ViewStyleEx
Determines the way an item will be displayed.

Visible
Determines whether the control is visible or hidden.

WebAutoNavigate
Determines whether TList navigates through the Web automatically.

WebTargetFrame
Specifies a name of the frame in which to display the loaded Web document.

WebURLBase
Specifies the base for URL addresses stored in TList’s items.

Width
The width of the control.

WidthOfText
Specifies the width of text for items which can display multiple lines of text.

WidthOfTextMin
Specifies the minimum width of multi line text.

Xoffset
Sets the left offset of TList items.

Eventsxe "Events"
Event
Description

AfterEditing
Occurs after item text editing.

Click
Occurs when the user selects an item in a list box.

Collapse
Occurs when an item is collapsed.

DblClick
Occurs when the user double-clicks.

DragDrop
Occurs when a drag-and-drop operation is complete.

DragOver
Occurs when a drag-and-drop operation is in progress.

EditingKeyDown
Occurs when the user presses a key while in text editing mode.

EditingKeyPress
Occurs when the user presses a key while in text editing mode.

EditingKeyUp
Occurs when the user releases a key while in text editing mode.

Expand
Occurs when an item is expanded.

GotFocus
Occurs when the control receives the focus.

GridCellClick
Occurs when the user selects a cell in a grid by clicking the mouse button.

GridCellDblClick
Occurs when the user double-clicks a cell in a grid.

ItemClick
Occurs when the user selects an item in a list box by clicking the mouse button.

ItemDblClick
Occurs when the user double-clicks a cell item in a grid.

ItemQueryData
Occurs when the TList needs a virtual item data.

Hscroll
Occurs when the user scrolls the control horizontally.

KeyDown
Occurs when the user presses a key while the control has the focus.

KeyPress
Occurs when the user presses a key, after the KeyDown event.

KeyUp
Occurs when the user releases a key while an object has the focus.

LostFocus
Occurs when the control loses focus.

MarkClick
Occurs when the mark picture associated with an item is clicked.

MarkDblClick
Occurs when the mark picture associated with an item is double-clicked.

MouseDown
Occurs when the user presses a mouse button over the control.

MouseMove
Occurs when the user moves the mouse over the control.

MouseUp
Occurs when the user releases a mouse button over the control.

OLEDragDrop
Occurs when an OLE object is dropped into the control.

OLEDragOver
Occurs when an OLE object is dragged over the control.

PictureClick
Occurs when the picture associated with an item is clicked.

PictureDblClick
Occurs when the picture associated with an item is double-clicked.

PlusMinusClick
Occurs when the plus/minus picture associated with an item is clicked.

PlusMinusDblClick
Occurs when the plus/minus picture associated with an item is double-clicked.

Vscroll
Occurs when the user scrolls the control vertically.

RequestEditing
Occurs after the ItemEditText property has been set, but before editing begins.

Methodsxe "Methods"
Method
Description

AddItem
Adds an item to the list.

AddItem2
Simultaneously adds item and sets item formatting.

AddItem2Ex
Simultaneously adds item and sets item formatting.

BeforeDrag
Prepares TList for Drag Drop.

Clear
Removes all items from a TList.

CopyBuffer
Copies a tree buffer to the Windows clipboard.

Drag
Begins, ends, or cancels dragging controls.

FindItem
Searches for an item(s) by its item text.

FindValue
Searches for an item(s) by its associated data (Item...Value).

FreeBuffer
Releases a temporary buffer.

GetItemByXY
Returns the index of an item at a given X/Y coordinate.

GetItemRect
Returns coordinates of the item specified by an index.

HitTest
Determines what object is under the cursor.

IndexByBM
Converts the bookmark of an item into a valid index.

IsValidBM
Checks the validity of a bookmark.

IsValidBuffer
Checks validity of a temporary buffer.

LoadBuffer
Loads a tree buffer from a file.

LoadData
Loads items and properties settings from a .TLT data file. This file can be prepared by TDesigner application or programmatically via SaveData TList method.

Move
Moves a TList control.

OnDragDrop
Prepares TList to accept DragDrop events.

OnDragOver
Prepares TList to accept DragOver events.

PasteBuffer
Copies information from the Windows clipboard into a tree buffer.

Refresh
Forces an immediate repaint or update of the control.

RefreshItems
Forces TList to generate ItemQueryData for the specified virtual items.

RemoveItem
Removes an item.

SaveBuffer
Saves a tree buffer to a file.

SaveData
Saves TList items and property settings in specified .TLT data file.

SetFocus
Sets the focus to a TList control.

TranslateIndex
Translates an index value from one indexing method to another.

UpdateBackground
Instructs TList to repaint its background (use when elements behind a Transparent TList are updated).

WebGoBack
Navigates to the previous item in the history list.

WebGoForward
Navigates to the following item in the history list.

WebNavigate
Navigates to any document in Web by URL.

ZOrder
Places the control at the front or back of the z-order within its graphical level.

Functionsxe "Functions"
* Note that in the OCX editions, certain functions are implemented in the associated BAS modules provided for Visual Basic users and are not part of the control itself. In this case the OCX has a corresponding method which is called by the BAS module function. The BAS module function is provided solely to aid in conversion from VBX syntax.

Function
Description

TListCopyBuffer
Copies a tree buffer to the Windows clipboard.

TListFindItem
Searches for an item(s) by its item text.

TListFindValue
Searches for an item(s) by its associated data.

TListFreeBuffer
Frees the memory associated with a tree buffer.

TListGetItemByXY
Returns the index of the item at a given X/Y coordinate.

TListGetItemRect
Returns the coordinates of the item specified by an index.

TListIndexByBM
Converts the bookmark of an item into a valid index.

TListIsClipboardFormatAvailable
Checks whether there is valid information for TList in the clipboard.

TListIsValidBM
Checks the validity of a bookmark.

TListIsValidBuffer
Checks the validity of a tree buffer.

TListLoadBuffer
Loads a tree buffer from a file.

TListPasteBuffer
Copies information from the Windows clipboard into a tree buffer.

TListSaveBuffer
Saves a tree buffer to a file.

TListTranslateIndex
Translates an index value from one indexing method to another.

TListCellDef Object

This object is used to specify graphic settings for Items, column captions, row headers etc. It also controls common graphic elements such as background color, foreground color etc.

Examples of CellDef objects include:

TListColDef.CellDef

TListGrid.GridCellDef

TListGrid.ColTitleCellDef

TListGrid.RowTitleCellDef

TListGridCell.CellDef

TListLevelDef.CellDef
Thus one can write:

TList1.LevelDefs(1).CellDef.BackColor = QBColor(1)

or

Dim X as TList1.CellDef

Set X = TList1.ItemCell(1)

Propertiesxe "Properties"
Property
Description

Alignment
Specifies how picture and text are aligned in a cell.

BackColor
Specifies the background color for a cell.

BorderColor
Specifies the border color for a cell.

BorderStyle
Specifies the border type for a cell.

Font
Specifies text font for a cell. Font objects have Name, Underline, Italic… properties

ForeColor
Specifies text color for a cell.

Format
Specifies how non-string data are converted into strings.

MultiLine
Specifies whether text is wrapped.

Picture
Specifies a picture to be drawn in a cell.

PictureAlignment
Specifies how a picture is aligned in a cell.

PictureSelected
Specifies a picture to be drawn in a cell when it is selected.

SelBackColor
Specifies the background color in a selected cell.

SelForeColor
Specifies text color for a selected cell.

Tag
Tag for a cell.

Text
Specifies the string which is displayed in a cell. Default property.

TextAlignment
Specifies how text is aligned in a cell.

Url
Specifies the URL which can be used if the WebAutoNavigate property is enabled.

TListColDef Objectxe "TListColDef object"
This object is used to specify graphic settings for columns.

Propertiesxe "Properties"
Property
Description

ValueName
Returns an attribute.

CellDef
Returns a TListCellDef object. Default.

Grid
Returns a reference to the Grid object which owns this ColDef.

Index
Index in the ColDefs Collection.

Visible
Specifies whether the corresponding column is visible on the screen or not.

Methods

Property
Description

MoveTo
Changes column’s position.

TListColDefs Object Collection

The ColDefs collection is a standard collection object that holds a series of ColDef objects. A ColDef object contains formatting information for a column.

Propertiesxe "Properties"
Property
Description

Count
Returns the number of objects in a collection.

Item
Id is an ValueName name or an ordinal number of the value in the Values collection. Default, Read-only

TListDataObject Object

This object is a container for data being transferred from a source to a TList. The data is stored in the format defined by the method using this object.

Propertiesxe "Properties"
Property
Description

Files
Returns a list of all filenames used by a TListDataObject.

Methods

Property
Description

GetData
Returns data from the TListDataObject in a specified format.

GetFormat
Checks whether a TListDataObject has data in a required format.

TListDataObjectFiles Object

The TListDataObjectFiles Object is a collection whose elements represent a list of all filenames used by a TListDataObject object (such as the names of files that a user drags to or from the Windows File Explorer.).
Propertiesxe "Properties"
Property
Description

Count
Returns the number of objects in a collection.

Item
Returns a specific member of a collection object by position.

TListGrid Object

Propertiesxe "Properties"
Property
Description

AllowResizing
Returns or sets a value that determines whether the user is allowed to resize rows and columns.

AutoFillRowTitles
Determines what default text will be shown in row titles.

AutoFillColTitles
Determines what default text will be shown in column titles.

BackColorBkg
Determines the background color of the control in areas not filled by a Grid.

Cells
Returns a TListGridCell object for the specified cell.

Col
Row
Returns or sets the coordinates of the active cell in a grid.

ColDefs
Returns a TListColDefs object collection, which has a number of TListColDef objects storing column formatting.

Cols
Rows
Returns or sets the total number of columns or rows in a TList.

ColWidth
Returns or sets the width of a column.

GridCellDef
Returns a TListCellDef object, which specifies default property settings for each cell in a grid.

ColTitleCellDef
Returns a TListCellDef object, which specifies default property settings for each column header in a grid.

RowTitleCellDef
Returns a TListCellDef object, which specifies default property settings for each row header in a grid. These are default settings for all Cells(XX, 0) cells.

GridLinesColor
Specifies the color in which grid lines are drawn.

GridLinesStyle
Returns or sets a value that determines grid line type.

HasCell
Determines whether a specified cell exists.

MouseCol
MouseRow
Returns the current mouse position in row and column coordinates.

ParentItemIndex
ParentItemIndex is –1 if a grid is a Tree Grid, otherwise this grid is an item grid and ParentItemIndex returns index of the item which owns the grid.

RowHeight
Returns or sets the height of the specified row.

ShowColTitles
Determines whether column titles are visible.

ShowRowTitles
Determines whether row titles are visible.

TreeGrid
True if this is Tree Grid and False otherwise.

Visible
True if Grid is visible, False otherwise.

Methods

Property
Description

AddRow
Adds a row to a TList control.

RemoveRow
Removes a row from a TList control.

ItemIndexToRow
Converts the index of an item into corresponding Grid row index.

TListGridCell Object

This object defines formatting for a cell of a grid.

Propertiesxe "Properties"
Property
Description

CellDef
Returns TListCellDef object, which specifies graphic attributes for the cell.

Grid
Returns the TListGrid object which owns a specified cell.

Row
Returns the row index of a cell.

Col
Returns the column index of a cell.

Value
Returns a reference to TListValue object, which stores data shown in the cell. Default.

Top, Left
Determines the position of the cell in TList (in twips).

Height, Width
Determines the size of the cell (in twips).

TListLevelDef Object

This object is used to keep settings for a group of items. Currently, it is used only with Levels array property, which returns references to TListLevelDef objects.

Propertiesxe "Properties"
Property
Description

CellDef
Returns a TListCellDef object, which specifies default graphic attributes for all items of the specified level. Default.

Indentation
Returns the indentation level.

PictureClosed
Specifies a picture for collapsed items.

PictureLeaf
Specifies a picture for items which do not have children.

PictureOpen
Specifies a picture for expanded items.

TListLevelDefs Object Collection

The TListLevelDefs collection is a standard collection object that holds a series of TListLevelDefs objects. A LevelDef object contains formatting information for a particular level of the tree.

Propertiesxe "Properties"
Property
Description

Count
Returns the number of objects in a collection.

Item
Id is an ordinal number of the LevelDef object in the LevelDefs collection. Default, Read-only

TListValue Objectxe "TListValue object"
This object is used to store data for an item.

Propertiesxe "Properties"
Property
Description

Value
Stores data themselves.

ValueName
Returns corresponding attribute.

ItemIndex
Returns the index of the item which owns this value.

TListValues Object Collection

The Values collection is a standard collection object that holds a series of Value objects. A Value object stores additional data which might be associated with an item.

Propertiesxe "Properties"
Property
Description

Count
Returns the number of objects in a collection.

Item
Id is an ordinal number of the value in the Values collection.

C H A P T E R 5:

Properties, Events, Methods, Functions Reference

About Propertyxe "About property"
Description

At design time you can double-click this property in the property window to popup the About box which contains copyright information, a date stamp and the version of the control. The About property is not available at runtime.

See Also

Version property

ActiveGrid Propertyxe "ActiveGrid property"

xe "TListGrid object"
Description

Returns a reference to a TListGrid object whose cell was clicked.

Read-only at run time.
Syntax

TList1.ActiveGrid

Example

MsgBox "The active Grid has : " _

& Str$(TList1.ActiveGrid.Rows) _& " Rows and " _

& Str$(TList1.ActiveGrid.Cols) & " Columns"
Add Propertyxe "Add property"

xe "Adding items"
Description

Adds items referenced by a bookmark or stored in a tree buffer as subordinates of the item specified by an index.

Not available at design time and write-only at run time.

Syntax

[form.]TList.Add(index&) = tree_buffer&
or
[form.]TList.Add(index&) = bookmark&
Remarks

All characteristics of a bookmarked item are maintained when it is added. Any children of the bookmarked item are also added and their parent/child relationships are maintained.

Use the FreeBuffer method to free memory after you are done with the tree buffer.

Setting the Add property updates a visible control unless the Redraw property is set to False.

Use an index of (-1) to copy into an empty TList. If TList is not empty and the CurrentIndexMethod property is set to 0 or 1, then an index of -1 adds all items from tree buffer to the end of the list. If TList is not empty and the CurrentIndexMethod is set to 2, then an index of -1 adds all items from tree buffer to the end of the list of subordinates’ of the current parent as specified by CurrentParent property.

Data Type

Long

AddItem Methodxe "AddItem method"

xe "ConvertTabsToCols property"

xe "ColDelimiter property"

xe "MSOutlineAdd property"

xe "CurrentIndexMethod property"

xe "Adding items"
Description

Adds a new item to the TList control at run time.

The AddItem method can be used to add items as new children of an existing item or as peers of an existing item. This behavior is determined by the setting of the MSOutlineAdd property.

Case: MSOutlineAdd = True: TList implements the AddItem method in the same manner as the MSOutline control included with Visual Basic:

· if an index% parameter is specified with the AddItem method, TList inserts the new item at that position. The new item index is therefore index%, and the index of all items later in the list are incremented by 1.
The hierarchic indendation level of the new item depends on whether an item previously existed at the specified index. If the item is inserted before another item (the item at position index% before the add), the new item is inserted into the list using the existing item's indentation level (ie: as a peer). However, if the new item is added as the last item in the list (or the last subordinate of the CurrentParent if CurrentIndexMethod = 2), it will be inserted with the indentation level of 0 (or at the same level as the CurrentParent if CurrentIndexMethod=2).

- If index% is not specified in the AddItem method, the currently selected item determines where the new item is added. For example, if the ListIndex property is set to 2, the new item is added to the end of the subordinate items for the item whose ListIndex value is 2. In the case where ListIndex is set to -1 (no item selected), the item is added to the end of the list with an indentation level of 0.

Case: MSOutLineAdd = False (default), TList implements the AddItem method as in earlier versions of TList:

 - if an index% parameter is specified in the AddItem method, TList will interpret the second parameter in the AddItem method as the index of a parent to which the new item should be added as a subordinate.

- If no index% parameter is specified TList adds the new item to the end of the list (as defined by the CurrentIndexMethod property).

The AddItem method may also be used to add collimated data to a Tree. Set the ConvertTabsToCols property to True (default) and use the character specified in the ColDelimiter property to delimit columns when calling the AddItem method. When adding column data, AddItem works as follows (we assume that there are ColDelimiter characters in the input string, otherwise ConvertTabsToCols has no effect on the AddItem method):

· if the TList.HasGrid property is set to True (Tree Grid exists), AddItem will add columns or data only to the Tree Grid.

· if the TList.HasGrid property is set to False (Tree Grid doesn’t exist), and AddItem is called to add an item with indentation zero – a Tree Grid is created and the required number of columns are added.

· if the TList.HasGrid property is set to False (Tree Grid doesn’t exist), and AddItem is called to add an item with indentation bigger than 0 – Item Grid is created and the required number of columns are added.

Syntax

[form.]TList.AddItem item [,index&]

Example

Both of the following statements add an item to the list. In each case the text shown is "Item1". All other properties of this item will have the default settings.

TList1.AddItem "Item1"

TList1.AddItem "Item1", 5

In the first case, Item1 is added either to the end of the list if MSOutLineAdd = False or as a child of the item specified by the ListIndex property if MSOutLineAdd = True.

The second statement adds an item as a child of the item referred to by index 5 if MSOutLineAdd = False, or immediately after the item referred to by index 5 if MSOutLineAdd = True.

The next example adds two items with four columns of data to a list, creating the columns if they do not already exist.

TList1.ConvertTabsToCols = True

TList1.ColDelimiter = Asc("^")

TList1.AddItem "Fred^Jones^SomeStreet^New York"

TList1.AddItem "Sarah^Lenore^Another Ave^Florida"

Remarks

Improved performance may be obtained by use of the Redraw property, the FastItemAdd method, or TList File I/O to save and load complete trees in a single step.

Calls to this method update the control, unless the Redraw property is set to False.

Newly added items will not necessarily be visible depending on whether their parent is in an expanded state.

Note The CurrentIndexMethod property is used to interpret the indexing scheme.

See Also

InsertItem, ConvertTabsToCols, ColDelimiter properties
AddItem2 and AddItem2Ex Methodsxe "Adding items"

xe "AddItem2 Method"

xe "AddItem2Ex method"
Description

These two method may be used to create and add a new item to the end of the tree and simultanously set certain formatting attributes.

Not available at design time.

Syntax

 [form.]TListAddItem2 (

[image: image70.wmf]ByVal Shift As Integer,

[image: image71.wmf]ByVal Text As String,

[image: image72.wmf]ByVal Options As Long) As Integer

 [form.]TList. AddItem2Ex (

[image: image73.wmf]ByVal Shift As Integer,

[image: image74.wmf]ByVal Text As String,

[image: image75.wmf]ByVal Options As Long

[image: image76.wmf]ByVal FontName As String,

[image: image77.wmf]ByVal FontSize As Integer,

[image: image78.wmf]ByVal BackColor As Long,

[image: image79.wmf]ByVal ForeColor As Long,
) As Integer

Parameters

The function parameters are:

Constant
Description

TltTree
Name of the TList control.

Shift
Indentation for the new added item.

Text
Text for the new item.

Options
This parameter determines whether FontName, FontSize, BackColor, or ForeColor parameters are used. It also determines some additional settings for the new item. See Options parameter settings description below.

FontName
Name of the font used with the new item. This parameter is used if the Options parameter has the TLFAST_FONTNAME flag set.

FontSize
Size of the font used with the new item. This parameter is used if the Options parameter has the TLFAST_FONTSIZE flag set.

BackColor
Background color for the new iitem. This parameter is used if the Options parameter has the TLFAST_BACKCOLOR flag set.

ForeColor
Text color for the new item. This parameter is used if the Options parameter has the TLFAST_FORECOLOR flag set.

Flags used with Options parameter are:

Constant
Value
Description

TLFAST_BACKCOLOR
&H1
If this flag set, the BackColor parameter has valid data for new item’s background color. Otherwise the BackColor parameter is not used.

TLFAST_FORECOLOR
&H2
If this flag set, the ForeColor parameter has valid data for new item’s text color. Otherwise the ForeColor parameter is not used.

TLFAST_FONTNAME
&H4
If this flag set, the FontName parameter has valid data for new item’s font name. Otherwise FontName parameter is not used.

TLFAST_FONTSIZE
&H8
If this flag set, the FontSize parameter has valid data for new item’s font size. Otherwise the FontSize parameter is not used.

TLFAST_FONTITALIC
&H10
If this flag set, the new item’s font will have its Italic style set regardless of the FontItalic property.

TLFAST_FONTBOLD
&H20
If this flag set, the new item’s font will have its Bold style set regardless of the FontBold property.

TLFAST_FONTUNDER
&H40
If this flag set, the new item’s font will have its Underline style set regardless of the FontUnder property.

TLFAST_FONTSTRIKE
&H80
If this flag set, the new item’s font will have its StrikeThrough style set regardless of the FontStrike property.

TLFAST_NOTFONTITALIC
&H100
If this flag set, the new item’s font will NOT have its Italic style set regardless of the FontItalic property.

TLFAST_NOTFONTBOLD
&H200
If this flag set, the new item’s font will NOT have Bold style set regardless of the FontBold property.

TLFAST_NOTFONTUNDER
&H400
If this flag set, the new item’s font will NOT have its Underline style set regardless of the FontUnder property.

TLFAST_NOTFONTSTRIKE
&H800
If this flag set, the new item’s font will NOT have its StrikeThrough style set regardless of the FontStrike property.

TLFAST_EXPANDED
&H1000
If this flag set, the new item’s children will be expanded by default.

TLFAST_NOTEXPANDED
&H2000
If this flag set, the new item’s children will be collapsed by default.

Returns

These functions return 0 if successful and an error code otherwise.

AddRow Methodxe "AddRow method"

xe "TListGrid object"

xe "Grid"

xe "Adding items"
Applies To

TListGrid Object

Description

Adds a row to a Grid object.
Syntax

TListGridObject.AddRow (item As String [, ByVal GridRowNum As Variant])

Remarks

The AddRow method syntax has these parts:

Part
Description

Item
Required. A string expression displayed in the newly added row. To add multiple strings (for multiple columns in the row), use the delimiter specified by ColDelimiter property.

GridRowNum
Optional. A Long representing the position within the control where the new row is placed. For the first row, GridRowNum = 0. If GridRowNum is omitted, the new row is added at the end of the list at the same indentation level.

Example
This example uses the AddRow method to add 100 items to a Grid. To try this example, paste the code into the Declarations section of a form with a TList control named TList1, and then press F5 and click on the form.

Private Sub Form_Click ()

'Declare variables.

Dim Entry As String

Dim i As Integer

'add 100 items to your TList.

TList1.Grid.Cols = 2 ' Two cols per row.

For i = 1 To 100 ' 100 entries.

' Create entry, use tab as column delimiter

Entry = "Row Number " & Chr(9) & i

TList1.Grid.AddRow Entry ' Add entry.

Next i

'Remove every other entry

For i = 1 To 50

TList1.Grid.RemoveRow i

Next I

'Clear all items.

End Sub

See Also

ColDelimiter property
AfterEditing Event

Description

The AfterEditing event is triggered when the ItemEditText property is set to TL_EDITTEXT_END or when editing is canceled by the user by clicking on another control, scrolling the control, etc.

Syntax

Sub TList1_AfterEditing([Index As Integer,] ByVal ItemIndex As Long,

[image: image80.wmf]EditedText As String, ByVal CancelledBy As Integer)
Parameters

ItemIndex
- the index of the item being edited;

EditedText
- Upon entry to the event, this parameter is set to the edited text,

 Upon exit, this parameter will replace the text specified by List

 property for ItemIndex item;

CancelledBy
- set to 0 if editing was canceled by setting of one of the

 properties, set to 1 if editing was canceled by user.

Example

The following sample code illustrates how to discard any editing changes:

Sub TList1_AfterEditing(ItemIndex As Integer, EditedText As String, _

CancelledBy As Integer)

Dim ShouldDiscard As Boolean

...

' place some code here to decide if you wish

' to discard changes - set ShouldDiscard

...

' return to original

if ShouldDiscard Then EditedText = TList1.List(ItemIndex)

End Sub

Remarks

Setting the ItemEditText to TL_EDITTEXT_CANCEL does not trigger this event.

Align Propertyxe "Align property"
Description

Returns or sets a value that determines whether a list box can appear in any size anywhere on a form, or whether it appears at the top or bottom of the form automatically sized to fit the form's width.

Syntax

[form.]TList1.Align [= enum%]

Settings

The Align property settings are:

Setting
Description

0
(Default) None - size and location can be set at design time or in code.

1
Top - list box is at the top of the form and its width is equal to the form's ScaleWidth property setting.

2
Bottom - list box is at the bottom of the form and its width is equal to the form's ScaleWidth property setting.

For more information, see the description of the Align property in the Microsoft Visual Basic On-Line Help.
Data Type

Integer

AllowResizing Propertyxe "AllowResizing property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

Returns or sets a value that determines whether the user should be allowed to resize rows and columns in the TList control.

Syntax

TListGridObject.AllowResizing [= enum%]

TList.Grid. AllowResizing [= enum%]
TList.ItemGrid(ItemIndex). AllowResizing [= enum%]
Settings

The AllowResizing property settings are:

Constants
Setting
Description

TLRESIZING_NONE
0
None. The user can't resize.

TLRESIZING_COLS
1
(Default) Columns. The user can resize columns.

TLRESIZING_ROWS
2
Rows. The user can resize rows using the mouse. Note, this version supports only row-zero resizing.

TLRESIZING_BOTH
3
Both. The user can resize columns and rows using the mouse.

Remarks

To resize rows or columns, the mouse must be over the fixed area of the TList control, and close to a border between rows and columns. The mouse pointer will change into an appropriate sizing pointer and the user can drag the row or column to change the row height or column width.

Example

The following code enables resizing for both rows and columns:

Sub Form1_Load ()

TList1.Grid.AllowResizing = TLRESIZING_BOTH

End Sub

Data Type

Integer

Appearance Propertyxe "Appearance property"
Description

Returns or sets the paint style of TList on an MDIForm or Form object at run time. Read-only at run time.
Syntax

TList1.Appearance
Settings

The Appearance property settings are:

Setting
Description

0
Flat. Paints TList without visual effects.

1
(Default) 3D. Paints TList with three-dimensional effects.

Remarks

If set to 1 at design time, the Appearance property draws controls with three-dimensional effects.
Data Type

Integer

AutoExpand Propertyxe "Expanding and Collapsing"

xe "AutoExpand property"

xe "PlusMinus pictures"
Description

The setting of the AutoExpand property determines how TList reacts to a click on the plus minus pictures or a double click on an item’s text.

Syntax

[form.]TList.AutoExpand [= enum%]

Settings

The AutoExpand property settings are:

Setting
Description

0
None

1
(Default) Click on plus/minus or double click on item expands/collapses TList item.

2
Click on plus/minus on item expands/collapses TList item.

3
Double click on item's expands/collapses TList item.

Data Type

Integer

AutoFillColTitles and AutoFillRowTitles Properties xe "Grid"

xe "TListGrid object"

xe "AutoFillColTitles property"

xe "AutoFillRowTitles property"
Applies To

TListGrid object

Description

The setting of the AutoFill… properties determines what default text will be shown in Grid column titles (AutoFillColTitles property) and row titles (AutoFillRowTitles property).

Syntax

[form.]TList.Grid.AutoFillColTitles [= enum%]

 [form.]TList.Grid.AutoFillRowTitles [= enum%]

Settings

The AutoFillColTitles and AutoFillRowTitles properties settings are:

Setting
Description

0
None.

1
Numbers. (Default for AutoFillRowTitles). TList will automatically number rows or columns starting with 1, 2, 3. .

2
Characters. (Default for AutoFillColTitles). TList will automatically label rows or columns alphabetically(A, B, C … AA, AB, etc.) (The English alphabet is used regardless of Windows language settings).

Data Type

Integer

AutoScrDuringDragDrop Property

Description

The setting of AutoScrDuringDragDrop determines whether TList will automatically scroll the outline during Drag Drop operations.

Syntax

[form.]TList.AutoScrDuringDragDrop[= enum%]
Settings

The AutoScrDuringDragDrop property settings are:

Setting
Description

0
(Default) None - no scrolling occurs during drag-drop.

1
Horizontal - scrolling occurs only in horizontal direction.

2
Vertical - scrolling occurs only in vertical direction.

3
Both - scrolling occurs only in both directions.

Data Type

Integer

BackColor and DefItemCellBackColor Propertyxe "BackColor property"

xe "TListCellDef object"

xe "DefItemCellBackColor property"
Applies To

TList control

TListCellDef object

Description

TLists’s BackColor property determines the default color displayed in background of an item.

TListCellDef’s property determines the default color displayed in background of a cell.

DefItemCellBackColor determines the default color displayed in the background of an item cell.

Syntax

[form.]TList.DefItemCellBackColor[= color&]

[form.]TList.BackColor[= color&]

[form.]TList.ItemCell(ItemIndex&).CellDef.BackColor[= color&]

[form.]TList.Grid.GridCellDef. BackColor[= color&]

[form.]TList.Grid.Cells(Row&, Col&). BackColor[= color&]

[form.]TList.Grid.RowTitleCellDef. BackColor[= color&]

[form.]TList.Grid.ColTitleCellDef. BackColor[= color&]

Remarks

Setting of this property updates the control display unless the Redraw property is set to False.

If applied to a LevelDef object Item, the property refers to the default Background Color of cells at the specified hierarchic level (see Visual Elements chapter).

Example

TList1.DefItemCellBackColor = RGB(127, 0, 127)

TList1.DefItemCellBackColor = QBColor(2)

TList1.BackColor = RGB(127, 0, 127)

TList1.BackColor = QBColor(2)

Data Type

Long

BackColorBkg Propertyxe "BackColorBkg property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

BackColorBkg property determines the background color of the control area not occupied with Tree Grid. This property works for TreeGrid objects only.

Syntax

 [form.]TList.Grid.BackColorBkg[= color&]

Remarks

Setting of this property updates the control display unless the Redraw property is set to False.

Example

TList1.BackColorBkg = RGB(127, 0, 127)

Data Type

Long

BackPicture and BackPictureAlignment Propertiesxe "BackPicture property"

xe "BackPictureAlignment property"
Description

The BackPicture property determines what graphic will be displayed on TList’s background. The BackPictureAlignment property specifies how the picture will be displayed.

Syntax

[form.]TList.BackPicture [= Picture Object]

[form.]TList.BackPictureAlignment [= Enum%]

Settings

The BackPictureAlignment property settings are:

Constant
Settings
Description

TLBACKPICTUREALIGNMENT_LEFT_TOP
0
Image is left/top aligned.

TLBACKPICTUREALIGNMENT_LEFT_MIDDLE
1
Image is left/middle aligned.

TLBACKPICTUREALIGNMENT_LEFT_BOTTOM
2
Image is left/bottom aligned.

TLBACKPICTUREALIGNMENT_RIGHT_TOP
3
Image is right/top aligned.

TLBACKPICTUREALIGNMENT_RIGHT_MIDDLE
4
Image is right/middle aligned.

TLBACKPICTUREALIGNMENT_RIGHT_BOTTOM
5
Image is right/bottom aligned.

TLBACKPICTUREALIGNMENT_CENTER_TOP
6
Image is center/top aligned.

TLBACKPICTUREALIGNMENT_CENTER_MIDDLE
7
Image is center/middle aligned.

TLBACKPICTUREALIGNMENT_CENTER_BOTTOM
8
Image is center/bottom aligned.

TLBACKPICTUREALIGNMENT_STRETCH
9
Image is stretched to fit image area.

TLBACKPICTUREALIGNMENT_TILE
10
Image is tiled in the image area.

BackwardCompatible Property xe "PictureClick event"

xe "Click event"

xe "Backward Compatibility property"
Description

This property is no longer supported. It had been added in TList 3 to temporarily provide backward compatibility with earlier versions. To simulate the effect, simply call the click event of TList within the PictureClick event.

BeforeDrag Method xe "BeforeDrag method"
Description

This property was added in TList to provide the Drag Drop functionality of earlier versions of TList. Call this method before initiating Dragging of TList elements. .

Syntax

[form.]TList1.BeforeDrag

Example

TList1.BeforeDrag

TList1.Drag 1

BorderColor and DefItemCellBorderColor Propertiesxe "DefItemCellBorderColor property"

xe "BorderColor property"

xe "TListCellDef object"
Applies To

TList control

TListCellDef object

Description

Determines the default border color displayed around an item cell.

Syntax

[form.]TList.ItemCell(ItemIndex&).CellDef.BorderColor[= color&] - sets border color for a specific cell.

[form.]TList.Grid.GridCellDef.BorderColor[= color&] - sets default border color for cells in a grid

[form.]TList.Grid.Cells(Row&, Col&).BorderColor[= color&] - sets border color for a specific cell in a grid.

[form.]TList.Grid.RowTitleCellDef.BorderColor[= color&] - sets default border color for cells in the first column of a grid

[form.]TList.Grid.ColTitleCellDef.BorderColor[= color&] - sets default border color for cells in the first row of a grid.

[form.]TList.DefItemCellBorderColor[= color&] - sets default border color for cells in a row not in a grid.

Remarks

Setting of these properties updates the control display unless the Redraw property is set to False.

Example

TList1.DefItemCellBorderColor = RGB(127, 0, 127)

TList1.DefItemCellBorderColor = QBColor(2)

Data Type

Long

BorderStyle and DefItemCellBorderStyle Properties xe "BorderStyle property" xe "DefItemCellBorderStyle property"

xe "TListCellDef object"
Applies To

TList control

TListCellDef object

Description

TLists’s BorderStyle property determines the border style of a TList box.

TListCellDef’s BorderStyle property determines what borders will be drawn around an Item cell.

DefItemCellBorderStyle determines the default border style which will be used for an Item cell.

Syntax

[form.]TList.BorderStyle [= enum%]

[form.]TList.DefItemBorderStyle = [enum%]

[form.]TList.ItemCell(ItemIndex&).CellDef.BorderStyle[= enum%]

[form.]TList.Grid.GridCellDef. BorderStyle [= enum%]

[form.]TList.Grid.Cells(Row&, Col&).BorderStyle [= enum%]

[form.]TList.Grid.RowTitleCellDef. BorderStyle [= enum%]

[form.]TList.Grid.ColTitleCellDef. BorderStyle [= enum%]

Remarks

The TList’s BorderStyle property settings are:

Setting
Description

0
No border

1
Fixed single border

For more information, see the description of the BorderStyle property in Microsoft Visual Basic On-Line Help.

The DefItemCellBorderStyle and CellDef.BorderStyle properties settings are:

Constant
Setting
Description

TLBORD_NONE
0
(Default) No border.

TLBORD_SINGLE
1
Single one-pixel border.

TLBORD_DOUBLE
2
2-pixel border.

TLBORD_INSET
3
3-D inset border.

TLBORD_OUTSET
4
3-D outset border.

Data Type

Integer

BottomIndex Property xe "BottomIndex property"
Description

The BottomIndex property returns the index of the last item displayed within the control window. Read only at run-time, not available at design time.

Syntax

[form.]TList1.BottomIndex
Data Type

Long

Caption Propertyxe "Caption property"
Description

TList’s caption is shown at the top of the control. The visibility and form of the caption is controlled by the ShowCaption property.

Syntax

[form.]TList1.Caption[=str$]
Data Type

String

CellDef Propertyxe "CellDef property"

xe "TListLevelDef object"

xe "TListGridCell object"

xe "TListColDef object"
Applies To

TListLevelDef object

TListGridCell object

TListColDef object

Description

Returns a reference to a TListCellDef object. This object is used to collect all properties which determine how the object will be displayed.

TListGridCell’s CellDef property is used to specify how data will be displayed in this grid cell.

TListColCell’s CellDef property is used to specify default settings for all cells of a given column.

TListLevelDef’s CellDef property is used to specify default settings for all items of a given indentation level.

Syntax

[form.]TList1.LevelDefs(IndentationLevel&).CellDef
[form.]TList1. Grid.ColDefs(ColDef&).CellDef
[form.]TList1.ItemGrid(ItemIndex&).ColDefs(ColDef&).CellDef
[form.]TList1.ItemValues(ItemIndex&, ValueName$).CellDef
[form.]TList1.Grid.Cells(Row&, Col&).CellDef
Remarks

To discard all attributes which might be specified in a TListCellDef object, set the CellDef property to Nothing:

Set TList1.Grid.ColDefs(3).CellDef = Nothing

Example

TList1.Grid.ColDefs(3).CellDef.BackColor = _

RGB(127, 127, 127)

TList1.Grid.Cells(3, 2).CellDef.Font.Size = 9.3

Cells Propertyxe "Cells property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description
Returns TListGridCell object for the specified cell.

Not available at design time.

Syntax
Grid.Cells(Row&, Col&) [=TListGridCell]
TListGridObject.Cells(Row&, Col&) [=TListGridCell]
[form.]TList.Grid.Cells(Row&, Col&) [=TListGridCell]
[form.]TList.ItemGrid(ItemIndex).Cells(Row&, Col&) [=TListGridCell]
Remarks
To set a title for 5th column, use the following code:

TList1.Grid.Cells(0, 5) = "5th Column Title""

To set a title for 5th row, use the following code:

TList1.Grid.Cells(5, 0) = "5th Row Title""

Col and Row Propertiesxe "Col property"

xe "Row property"

xe "TListGrid object"

xe "TListGridCell object"
Applies To

TListGrid object

TListGridCell object

Description
The Row and Col properties of a TListGrid object return the coordinates of the current cell in a Grid.

The Row and Col properties of a TListGridCell return the coordinates of the current cell in a Grid.
Read-only. Not available at design time.

Syntax
C& = TListGridObject.Col
R& = TListGridObject.Row
C& = TListGridCellObject.Col
R& = TListGridCelObject.Row
C& = [form.]TList.Grid.Cells(Row&, Col&).Col
R& = [form.]TList.Grid. Cells(Row&, Col&).Row
C& = [form.]TList.ItemGrid(ItemIndex).Cells(Row&, Col&).Col
R& = [form.]TList.ItemGrid(ItemIndex). Cells(Row&, Col&).Row
Remarks
Use these properties to Identify which row or column contains the current cell. Columns and rows are numbered from zero, beginning at the top for rows and at the left for columns.

To determine what Grid object has the focus use TList’s ActiveGrid property.

ColDelimiter Propertyxe "ColDelimiter property"

xe "Grid"
Description

Specifies a character, which will be used as a delimiter by the AddRow and AddItem methods to distinguish data for different cells entered as a single string.

TList1.ColDelimiter = 9 ' Use Tab as delimiter

’ This will create a 2 column Tree Grid

TList1.AddItem "Data1"& Chr(9) & "Data2"

Syntax

[form.]TList1.ColDelimiter [= character_code%]

Remarks

The character_code is a number that identifies a character. The tabulation character (9) is the default setting for this property.

Data Type

Integer

See Also

ConvertTabsToCols and TabStopDistance properties

ColTitleCellDef Propertyxe "ColTitleCellDef property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

Returns a reference to a TListCellDef object. This object collects all properties which determine the default formatting for grid column titles. This property doesn’t affect formatting of either other grid cells or row titles.

Syntax

[form.]TList1.Grid.ColTitleCellDef
[form.]TList1.ItemGrid(ItemIndex&).ColTitleCellDef
Example

TList1.Grid.ColTitleCellDef.BackColor = RGB(127, 127, 127)

ColTitlesHeight Propertyxe "ColTitlesHeight property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

Returns or sets the height of the grid row containing column titles expressed in twips.
Not available at design time.

Syntax

TListGridObject.ColTitlesHeight [= number&]
[form.]TList.Grid.ColTitlesHeight [= number&]
[form.]TList.ItemGrid(ItemIndex&).ColTitlesHeight [= number&]

Data Type

Single

ConvertTabsToCols Propertyxe "ConvertTabsToCols property"

xe "ColDelimiter property"

xe "AddItem method"

xe "Grid"
Description

Determines whether the AddItem method automatically creates columns if there is a ColDelimiter character in an input string.

Syntax

[form.]TList.ConvertTabsToCols [= {True/False}]
Data Type

Integer

See Also

ColDelimiter, TabStopDistance, and AddItem properties

Count Propertyxe "Count property"

xe "TListValues object"

xe "TListLevelDefs object"

xe "TListColDefs object"
Applies To

TListValues Object

TListLevelDefs Object

TListColDefs Object

Description

Returns the number of items in an object collection. For example, for TListColDefs object collection this property returns the number of TListColDef objects stored in this collection. Read-only.

Syntax

[form.]TList1.LevelDefs.Count
[form.]TList1.Grid.ColDefs.Count
[form.]TList1.ItemGrid(ItemIndex&).ColDefs.Count
[form.]TList1.ItemValues(ItemIndex&).Count
Data Type

Long

Clear Methodxe "Clear method"
Description

Clears the contents of a list.

The entire list is cleared if CurrentIndexMethod is set to 0 or 1.

Only the children of the current parent (as specified by the CurrentParent property), are cleared if CurrentIndexMethod is set to 2.

Syntax

[form.]TList1.Clear
Remarks

Calls to this method update the control unless the Redraw property is set to False.

ClearItem Propertyxe "ClearItem property"
Description

Removes all subordinate items from an item specified by its index.

Not available at design time and write-only at run time.

Syntax

[form.]TList1.ClearItem = index&
Remarks

Setting this property updates the control unless the Redraw property is set to False.

Data Type

Long

Click Eventxe "Click event"
Description

This event occurs when the user selects an item in TList control, either by pressing the arrow keys or by clicking the mouse button.

Syntax

Sub TList_Click([Index As Integer])

Remarks

For more information, see the description of the Click event in the Microsoft Visual Basic On-Line Help.

See Also

RightClick event

Clipboard Property xe "Clipboard"

xe "Clipboard property"
Description

Setting the Clipboard property will copy or paste items to or from the Windows clipboard.

Index specifies the source or destination item upon which the actions will be done.

TList’s own format allows exchange of data, including any associated graphics and item data as well as the text, between TList controls via the clipboard. Such data is passed only between TList controls. TList also copies a text presentation of the copied tree. This can be passed to other applications.

Not available at design-time, write-only at run-time.

Syntax

[form.]TList1.Clipboard(index&)=enum%

Settings

The Clipboard property settings are:

Setting
Description

0
Copy Item and children.

1
Copy item without its children.

2
Copy only children of the item.

3
Paste items from clipboard to the end of the list of the specified item’s children

4
Paste items from clipboard before the specified item at the same indentation level.

Remarks

if Index is set to a value of -1:

· If the CurrentIndexMethod property is set to 0 or 1, all items with an Indent property of 0 will be copied to the clipboard;

· If the CurrentIndexMethod property is set to 2 then all subordinates of the current item will be copied to the clipboard without their children.

Note Tree Grid is not copied to the clipboard.

Data Type

Integer

CoerceIndex Propertyxe "CoerceIndex property"

xe "CurrentIndexMethod property"
Description

The CoerceIndex property accesses an index value in an internal buffer, converting that index as needed for a given indexing scheme.

Setting this property writes the index value to the buffer, Reading the property retrieves an index value.

Not available at design time.

This property is preserved for the sake of backwards compatibility with older editions of TList. The TranslateIndexmethod should be used for translating between index methods.
See Also

The CurrentIndexMethod property, and TranslateIndex method

Collapse Eventxe "Collapse event"
Description

The Collapse event is generated whenever an item is collapsed, which means the item's subordinate items are not shown.

Syntax

Sub TList_Collapse([Index As Integer,] I As Long)

Remarks

This event passes I, the index of the item in the list that was collapsed.

CopyBuffer Methodxe "tree buffer"

xe "Clipboard"

xe "CopyBuffer method"

xe "TListCopyBuffer function"
Description

The CopyBuffer method copies a TList tree buffer to the clipboard.

The return value is zero if the method is successful. Otherwise, the return value is an error code.

Not available at design time.

You can use any TList control to copy any tree buffer.

Syntax

 [form.]TList1.CopyBuffer (ByVal hTreeBuffer&) As Integer
Example

Dummy& = TList1.CopyBuffer(hTreeBuffer&)

CopyItem Propertyxe "CopyItem property"

xe "tree buffer"
Description

Upon reading this property, TList creates a tree buffer containing a copy of the specified item and its subordinate items. A long integer pointing to that tree buffer is returned.

Not available at design time and read-only at run time.

Syntax

[form.]TList.CopyItem(index&)

Remarks

Use FreeBuffer method to free memory when you are done with the tree buffer.

Use an Index of -1 to copy the entire tree.

Note The Tree Grid cannot be copied to a tree buffer.

Example

Dim tree_buffer&

tree_buffer& = TList1.CopyItem(index%)

...

TList1.FreeBuffer(tree_buffer&)

Data Type

Long

CopyItemSub Propertyxe "CopyItemSub property"

xe "tree buffer"
Description

Upon reading this property, TList creates a tree buffer containing a copy of all subordinates of the specified item. A long integer pointing to that tree buffer is returned.

Not available at design time and read-only at run time.

Syntax

[form.]TList.CopyItemSub(index&)

Example

Dim tree_buffer&

tree_buffer& = TList1.CopyItemSub(index&)

...

TList1.FreeBuffer(tree_buffer&)

Remarks

If Index is set to a value of -1, Then

· If current index method is set to 0 or 1, all root items (items with Indent = 0) will be copied to the tree buffer.

· If current index method is set to 2, all subordinates of the current parent will be copied to the tree buffer without their children.

Use FreeBuffer method to free memory when you are done with the tree buffer.

If there are no subordinate items in the source item, then a Nothing to copy trappable error is generated.

Data Type

Long

CopyOne Property xe "CopyOne property" xe "tree buffer"
Description

Upon reading this property, TList creates a tree buffer containing a copy of the specified item, not including any subordinates. A long integer pointing to that tree buffer is returned.

Not available at design time, read-only at run time.

Syntax

[form.]TList.CopyOne(Index&)

Remarks

Use the FreeBuffer method to free memory when you are done with the tree buffer.
Data Type

Long

CopySelected Propertyxe "CopySelected property"

xe "tree buffer"
Description

Upon reading this property, TList creates a tree buffer containing a copies of selected items. A long integer pointing to that tree buffer is returned.

Not available at design time and read-only at run time.

Syntax

[form.]TList.CopySelected
Remarks

Use FreeBuffer method to free memory when you are done with the tree buffer.

If there are no selected items in a list, then a Nothing to copy trappable error is generated.

The hierarchic shift is NOT preserved when copying selected items to a tree buffer

Example

Dim tree_buffer&

treebuffer& = TList1.CopySelected ' copy selected items to tree buffer

TList2.Add(-1) = treeBuffer& ' add them to another TList control

TList2.FreeBuffer(treebuffer&) ' free the tree buffer memory

Data Type

Long

CurrentIndexMethod Propertyxe "CurrentIndexMethod property"
Description

Specifies the method by which items in the list are enumerated. Setting this property determines how an index, used with other properties, is interpreted.

There are three possible methods to enumerate items in the list:

1. Disregarding each item's visibility, we enumerate all items in the list.. We can then number each item by according to its position in the list (distance from the top), starting with zero.

2. Enumerate sequentially ONLY VISIBLE items.

3. Access Items using path in a manner analogous to the MS-DOS file structure, with an index enumerating only immediately subordinate items.

For a detailed description of these methods refer to the introductory notes regarding selecting an Indexing scheme.

To convert an index from one method to another, you can use the TranslateIndex method.

Syntax

[form.]TList.CurrentIndexMethod[=enum_expr%]

Settings

Settings for the CurrentIndexMethod property are:

Constant
Setting
Description

TLSYS_ENUM
0
(Default). Specifies enumeration includes all items in a list.

TLSYS_VIS
1
Specifies enumeration includes all visible items in a list.

TLSYS_LEVEL
2
Specifies enumeration includes all children of the current parent.

Remarks

Note that changes in the CurrentIndexMethod property may result in changes to the ListCount and ListCountEx properties.

Data Type

Integer

CurrentItem Propertyxe "CurrentItem property"

xe "CurrentIndexMethod property"
Description

This property is obsolete even though it is still functional, but it might not be supported in future versions of TList. Please use CurrentParent property instead. The CurrentParent property provides exactly the same functionality as CurrentItem did in past editions of TList.

CurrentParent Propertyxe "CurrentItem property"

xe "CurrentParent property"

xe "CurrentIndexMethod property"
Description

Specifies the current parent. The current parent is the parent whose children are enumerated in the list when using CurrentIndexMethod TLSYS_LEVEL (when CurrentIndexMethod property is set to 2).

Not available at design time.

Syntax

[form.]TList.CurrentParent[= Variant]

Settings

The CurrentParent property settings are:

Setting
Description

"\"
(Default)Makes the current parent the root

"."
Identifies a current parent.

"Item2"
Make "Item2" the current parent.

".."
Go one level up.

"#12"
Make item with index 12 the current parent.

long
The index of an item which becomes the current parent.

Remarks

Use the PathSeparator property to create a delimiter between the components of the CurrentParent property.

Note that the CurrentParent property is only of use when the CurrentIndexMethod = TLSys_Level (2).

CurrentParent does NOT refer to the currently selected item (which is specified by ListIndex). In fact CurrentParent is always the parent of the item referenced by the ListIndex property.

Any action changing the ListIndex value may change the value of CurrentParent.

Properties of the CurrentParent may be set by using the special index value "-2:

TList1.CurrentIndexMethod = 2

TList1.List(-2) = "New Current Parent Text"

Example

TLis1.CurrentParent = "..\Item23\Item27"

TLis1.CurrentParent = ".\..\..\..\Item23\Item27"

TLis1.CurrentParent = "Item23\Item27"

TLis1.CurrentParent = "\Item23\Item27"

TLis1.CurrentParent = "\Item23\Item27\#23\#0\#12"

TLis1.CurrentParent = 25

Data Type

Variant

CurrentItemBM Property xe "Bookmarks"

xe "CurrentItemBM property"
Description

The CurrentItemBM property may be used to create or move to a bookmark. Reading CurrentItemBM returns the bookmark of the current parent. Setting CurrentItemBM changes the current parent (not the selected item) to the item specified by a bookmark value. If you set this property to zero (0&) the root will be the current parent.

Not available at design time.

Syntax

[form.]TList.CurrentItemBM [= bookmark&]
Data Type

Long

See Also

The CurrentParent property

DefItemCellAlignment and Alignment Propertiesxe "DefItemCellAlignment property"

xe "Alignment property"
Applies To

DefItemCellAlignment applies to TList Control.

Alignment applies to TListCellDef object

Description

Each TList grid cell may contain both text and an image.
The Alignment property determines the alignment between text and picture in a cell. The DefItemCellAlignment determines the default alignment of all items in the grid.

Syntax

[form.]TList1.Grid.Cells(R, C).CellDef.Alignment = [enum%]

[form.]TList1.DefItemCellAlignment = [enum%]

Settings

The Alignment and DefItemCellAlignment properties settings are:

Setting
Value
Description

-1
(Default for CellDef.Alignment property)

Use default settings.

This setting is not valid for DefItemCellAlignment property.

TLALIGNMENT_PICTURE_LEFT_OF_TEXT
0
(Default for DefItemCellAlignment property)

Picture is aligned to the left of the object's text.

TLALIGNMENT_PICTURE_RIGHT_OF_TEXT
1
Picture is aligned to the right of the object's text.

TLALIGNMENT_PICTURE_ABOVE_TEXT
2
Picture is aligned above the object's text.

TLALIGNMENT_PICTURE_BELOW_TEXT
3
Picture is aligned below the object's text.

Remarks

Setting of Alignment and DefItemCellAlignment properties updates control, unless the Redraw property is set to False.

DefItemCellPictureAlignment and PictureAlignment Properties xe "DefItemCellAlignment property"

xe "Alignment property"
Applies To

DefItemCellPictureAlignment applies to TList Control.

PictureAlignment applies to TListCellDef object

Description

DefItemCellPictureAlignment specifies the default picture alignment for all items of a control.

PictureAlignment property specifies how the picture will be displayed in a cell.

Syntax

[form.]TList1.Grid.Cells(R, C).CellDef.PictureAlignment = [Enum%]

[form.]TList1.DefItemCellPictureAlignment = [Enum%]

Settings

The DefItemCellPictureAlignment and PictureAlignment property settings are:

Setting
Value
Description

-1
(Default for PictureAlignment property)

Use default settings. This setting is not valid for DefItemCellPictureAlignment property.

TLPICTUREALIGNMENT_NOT_VISIBLE
0
Picture is not displayed.

TLPICTUREALIGNMENT_LEFT_TOP
1
(Default for DefItemCellPictureAlignment property) Image is left/top aligned.

TLPICTUREALIGNMENT_LEFT_MIDDLE
2
Image is left/middle aligned.

TLPICTUREALIGNMENT_LEFT_BOTTOM
3
Image is left/bottom aligned.

TLPICTUREALIGNMENT_CENTER_TOP
4
Image is center/top aligned.

TLPICTUREALIGNMENT_CENTER_MIDDLE
5
Image is center/middle aligned.

TLPICTUREALIGNMENT_CENTER_BOTTOM
6
Image is center/bottom aligned.

TLPICTUREALIGNMENT_RIGHT_TOP
7
Image is right/top aligned.

TLPICTUREALIGNMENT_RIGHT_MIDDLE
8
Image is right/middle aligned.

TLPICTUREALIGNMENT_RIGHT_BOTTOM
9
Image is right/bottom aligned.

TLPICTUREALIGNMENT_STRETCH
10
Image is stretched to fit image area.

DefItemCellTextAlignment and TextAlignment Properties xe "DefItemCellTextAlignment property"

xe "TextAlignment property"

xe "TListCellDef property"
Applies To

DefItemCellTextAlignment applies to TList Control.

TextAlignment applies to TListCellDef object

Description

DefItemCellTextAlignment specifies the default text alignment for all items of a control.

TextAlignment specifies the text alignment for a cell.

Syntax

[form.]TList1.Grid.Cells(R, C).CellDef.TextAlignment = [enum%]

[form.]TList1.DefItemCellTextAlignment = [enum%]

Settings

The DefItemCellTextAlignment and TextAlignment properties settings are:

Setting
Value
Description

-1
(Default for TextAlignment property).

This setting is not valid for DefTextAlignment property.

TLTEXTALIGNMENT_NOT_VISIBLE
0
Text is not displayed.

TLTEXTALIGNMENT_LEFT_TOP
1
Text is left/top aligned.

TLTEXTALIGNMENT_LEFT_MIDDLE
2
Text is left/middle aligned.

TLTEXTALIGNMENT_LEFT_BOTTOM
3
Text is left/bottom aligned.

TLTEXTALIGNMENT_CENTER_TOP
4
Text is center/top aligned.

TLTEXTALIGNMENT_CENTER_MIDDLE
5
Text is center/middle aligned.

TLTEXTALIGNMENT_CENTER_BOTTOM
6
Text is center/bottom aligned.

TLTEXTALIGNMENT_RIGHT_TOP
7
Text is right/top aligned.

TLTEXTALIGNMENT_RIGHT_MIDDLE
8
Text is right/middle aligned.

TLTEXTALIGNMENT_RIGHT_BOTTOM
9
Text is right/bottom aligned.

DblClick Eventxe "DblClick event"
Description

This event occurs when the user double-clicks an item in a TList control.

Syntax

Sub TList_DblClick([Index As Integer])

Remarks

For more information, see the description of the DblClick event in the Microsoft Visual Basic On-Line Help.

DefMultiLine Property xe "DefMultiLine property"
Description

Determines whether TList defaults to wordwrapping long text items, or keeping text on a single line.

Syntax

[form.]TList.DefMultiLine[=boolean %]

Settings

The DefMultiLine property settings are:

Setting
Description

False
(Default) TList’s default behavior is to ignore carriage returns and restrict data to a single line.

True
TList will default to wordwrapping long lines of text.

Remarks

This property may be overridden for individual items by setting of the ItemMultiLine property to True.

Data Type

Boolean

DisableNoScroll Propertyxe "DisableNoScroll property"
Description

By default, scrollbars are not shown unless required. Setting this property to True shows the disabled scrollbars, otherwise the scroll bars are hidden. Read only at run-time.

Syntax

[form.]TList.DisableNoScroll
Settings

The DisableNoScroll property settings are:

Setting
Description

True
Show disabled scroll bars.

False
(Default) Don't show disabled scroll bars.

Remarks

The Scrollbars property is used to enable horizontal and/or vertical scrollbars. The DisableNoScroll simply determines how to handle the enabled scrollbar when there is nothing to scroll.

Data Type

Boolean

Drag Methodxe "Drag method"
Description

Begins, ends, or cancels dragging TList controls.

Syntax

[form.]TList.Drag [,action%]

Remarks

For more information, see the description of the Drag method in the Microsoft Visual Basic On-Line Help.

You should call BeforeDrag method before starting the Drag Drop operations:

TList1.BeforeDrag

TList1.Drag 1

DragDrop, DragOver Eventsxe "DragDrop event"

xe "DragOver event"
Description

See the Visual Basic™ Language Reference or Help for documentation on these events.

Syntax

Sub TList_DragDrop([Index As Integer,] Source As Control,

[image: image81.wmf]X As Single, Y As Single)
Sub TList_DragOver([Index As Integer,] Source As Control,

[image: image82.wmf]X As Single, Y As Single, State As Integer)
Remarks

Use the DropTarget property to get the index of the item which is currently under the mouse cursor. See Drag Drop for more details.

You MUST call OnDragDrop method as the first line in the DragDrop event and OnDragOver method as the first line in the OnDragOver event for any application involving an OCX edition of TList in Drag Drop:

Private Sub TList1_DragOver(Source As Control, _

X As Single, Y As Single, State As Integer)

TList1.OnDragOver X, Y, State

. . .
End Sub

Private Sub TList1_DragDrop(Source As Control, _

X As Single, Y As Single)

TList1.OnDragDrop X, Y

. . .
End Sub

DragHighlight Propertyxe "DragHighlight property"

xe "Drag Drop"
Description

Determines whether and how items in the control will be highlighted when another control drags over it.

Syntax

[form.]TList.DragHighlight[= enum%]

Settings

The DragHighlight property settings are:

Setting
Description

-1 (True)
(Default) Items will be highlighted/ Inverted

0
Items won't be highlighted

1
Same as -1

2
Rectangle will be drawn around item.

Data Type

Integer

DragIcon Propertyxe "DragIcon property"

xe "Drag Drop"
Description

Determines the icon to be displayed as the pointer in a drag-and-drop operation.

Syntax

[form.]TList.DragIcon [= icon]

Remarks

The DragIcon property settings are:

Setting
Description

(none)
(Default) An arrow pointer inside a rectangle.

Icon
A custom mouse pointer. You specify the icon by loading it using the Properties window at design time. You can also use the LoadPicture function at run time. The file you load must have the .ICO file-name extension and format.

For more information, see the description of the DragIcon property in the Microsoft Visual Basic On-Line Help.
Data Type

Variant

DragMode Propertyxe "DragMode property"

xe "Drag Drop"
Description

Specifies use of either manual or automatic dragging mode for a drag-and-drop operations.

Syntax

[form.]TList.DragMode [= enum%]

Remarks

The DragMode property settings are:

Setting
Description

0
(Default) Manual; requires using the Drag method to initiate dragging on the source control.

1
Automatic; clicking the source control automatically initiates dragging.

For more information, see the description of the DragMode property in the Microsoft Visual Basic On-Line Help.
Data Type

Integer

DrawFocusRect Propertyxe "DrawFocusRect property"

xe "Focus"
Description

Specifies whether to draw focus rectangle around the item pointed to by the ListIndex property (the item with the current focus).

Syntax

[form.]TList.DrawFocusRect [= bool%]

Remarks

The DrawFocusRect property settings are:

Setting
Description

True
(Default) Focus is drawn around selected item.

False
Focus is not drawn around selected item.

Data Type

Boolean

DropTarget Propertyxe "DropTarget property"

xe "Drag Drop"
Description

This property returns the index of the item under the mouse cursor during drag-and-drop operation, and returns -1 otherwise.

Not available at design time, read-only at run time.

Syntax

[form.]TList.DropTarget
Data Type

Long

EditingKeyDown Eventxe "Editing"

xe "EditingKeyDown event"

xe "In-place Editing"
Description

This event is triggered as a result of a KeyDown during Editing.

Syntax

Sub TList1_EditingKeyDown ([Index As Integer,] ItemIndex As Long,

[image: image83.wmf]KeyCode As Integer, Shift As Integer)
Remarks

KeyCode and Shift parameters are as for the standard KeyDown event. ItemIndex refers to the item being edited.

EditingKeyPress Event xe "EditingKeyPress event"

xe "Editing"

xe "In-place Editing"
Description

This event is triggered as a result of a KeyPress during Editing.

Syntax

Sub TList1_EditingKeyPress([Index As Integer,] ItemIndex As Long,

[image: image84.wmf]KeyAscii As Integer)
Remarks

The KeyAscii parameter is as for the standard KeyPress event. ItemIndex refers to the item being edited.

EditingKeyUp Event xe "EditingKeyUp event"

xe "Editing"

xe "In-place Editing"
Description

This event is triggered as a result of a KeyUp during Editing.

Syntax

Sub TList1_EditingKeyUp ([Index As Integer,] ItemIndex As Long,

[image: image85.wmf]KeyCode As Integer, Shift As Integer)
Remarks

KeyCode and Shift parameters are as for the standard KeyUp event. ItemIndex refers to the item being edited.

Enabled Propertyxe "Enabled property"
Description

Determines whether the control is able to be acted upon.

Syntax

[form.]TList.Enabled [= boolean%]

Remarks

The Enabled property settings are:

Setting
Description

True
(Default) Allows the TList to respond to events.

False
Prevents the TList from responding to events.

For more information, see the description of the Enabled property in the Microsoft Visual Basic On-Line Help.
Data Type

Boolean

Environment Property xe "Environment Property"

xe "Compatibility"

xe "Languages"
Description

Due to differences in how different environments support OCX's, TList uses enumerated property Environment.

Syntax

[form.]TList.Environment[=enum%]

Settings

The Environment should be set to 0 or 1 depending on the development environment:

Setting
Description

0
(Default) VB, VC++, Delphi

1
FoxPro

Data Type

Integer

Expand Eventxe "Expand event"
Description

This event is generated whenever an item is expanded, which means the item's subordinate items become visible.

Syntax

Sub TList_Expand([Index As Integer,] ByVal J As Long)

Remarks

This event passes J, the index of the item in the list that was expanded.

Note that TList’s response to end-user click and double click events may or may not automatically expand or collapse the list depending on the setting of the AutoExpand property.

Expand Propertyxe "Expand property"

xe "Expanding and Collapsing"
Description

Specifies whether an item is expanded (subordinate items visible). Setting the property to True will expand the outline (showing immediate children of the item) setting to False will collapse the outline at that point.

Note that upon expanding an item whose parent is collapsed, the following actions are taken:

- the parent is expanded;

- item is expanded.

Not available at design time, read/write at run-time.

Syntax

[form.]TList.Expand(index&)[= {True|False}]

Settings

The Expand property settings are:

Setting
Description

True
(Default)The item has expanded (visible) subordinate items.

False
The item's subordinate items, if any, are collapsed(hidden)

Remarks

TList saves the collapsed/expanded state with an item when passing items via the clipboard, saving them to a file, or copying to or from a tree buffer.

To expand all subordinates (not just immediate children), use the ExpandEx property.

Setting of Expand property visibly updates the control unless the Redraw property is set to False.

Note that changing the Expand property may change the value of the ListCount property depending on the value of the CurrentIndexMethod property. For instance, with CurrentIndexMethod set to 1, setting Expand to True may increase the value of ListCount as children become visible.

This property is affected by the setting of the ExpandChildren property.

Example

This presumes AutoExpand is set to 0 or 2:

Sub TList_DblClick ()

' Expand or Collapse the tree in the Double Click event

I% = TList.ListIndex ' identify the clicked item

TList.Expand(I%) = Not TList.Expand(I%)

End Sub

Data Type

Boolean

See Also

ExpandChildren property

ExpandChildren Property xe "Expanding and Collapsing"

xe "ExpandChildren property"
Description

This property allows TList to recall the expand/collapse state of a branch even after higher elements are collapsed.

If ExpandChildren = True, expanding a parent will return the expand/collapse state of the subordinate branches to their state before the parent was last collapsed.

Syntax

[form.]TList.ExpandChildren [= bool%]
Default

False

Data Type

Boolean

ExpandEx Property xe "Expanding and Collapsing"

xe "ExpandEx property"
Description

Setting the ExpandEx property expands all subordinate elements of an item specified by its index. If the index is set to -1, it expands the entire list (as defined by the CurrentIndexMethod property).

This property returns expand/collapse state of the item just as does the Expand property, but the Expand property always returns False for invisible items.

Not available at design time.

Syntax

[form.]TList.ExpandEx(index&) [= bool%]
Data Type

Boolean

ExpandNewItem Property xe "Expanding and Collapsing"

xe "ExpandNewItem property"

xe "Adding items"
Description

The ExpandNewItem property determines the initial state of newly added items.

Syntax

[form.]TList.ExpandNewItem(index&) [= bool%]
Remarks

If ExpandNewItem is True then the following results in a fully expanded list:

Sub Form_Load()

TList.AddItem "Fred"

TList.AddItem "Fred’s Daughter", 0

TList.AddItem "Fred’s Grandson", 1

End Sub

If ExpandNewItem is False then only Fred will be shown.

Default

False

Data Type

Boolean

ExplorerCompatible Property xe "ExplorerCompatible property"
Description

Makes TList look like Windows Explorer Outline.

Syntax

[form.]TList.ExplorerCompatible [= enum%]
Settings

The ExplorerCompatible property settings are:

Setting
Description

0 - None
(Default) Preserves TList’s appearance as in earlier editions of TList.

1 - Keystrokes
TList processes all keystrokes which Window Explorer does.

2 - Tree Lines appearance
TList Tree Lines and their alignment look exactly as in Window Explorer.

3 - Keystrokes and Tree Lines appearance
Turns on both 1 and 2 options.

Data Type

Integer

FastAddItem and FastAddItemEx Methodsxe "FastAddItem method"

xe "FastAddItemEx method"

xe "Adding items"
Description

Obsolete see AddItem2 and AddItem2Ex functions description.

File Property xe "Saving Trees"

xe "Loading Trees"

xe "Storing Trees"

xe "File I/O"

xe "File property"

xe "TreePictureTable"
Description

The File property manages a TreePictureTable in which references to repeated images in a tree are held when saving the tree or tree buffer to a file. The purpose of the TreePictureTable is to optimize resource utilization when saving trees with many repeated images.

Write only at run-time, not available at design time.

Syntax

[form.]TList.File(FileHandle%) = enum%
Settings

The File property settings are:

Setting
Description

0
Load TreePictureTable.

1
Create TreePictureTable

2
Write TreePictureTable

Remarks

Set the File property to 0 or 1 after opening a file from VB and before the first function call to read from or write to that file. Set the File property to 2 immediately before closing the file from VB.

Example

Dim FreeHandle%

FreeHandle% = FreeFile

' Open file for output.

Open "e:\MyTListFile.tlt" For Binary Access Write As FreeHandle%

TList1.File(FreeHandle%) = 1 ' use 0 for input

TList1.Save(Index1) = FreeHandle%

TList1.Save(Index2) = FreeHandle%

TList2.Save(Index22) = FreeHandle%

TList2.Save(Index32) = FreeHandle%

TList1.File(FreeHandle%) = 2

Close FreeHandle% ' Close file.

Data Type

Integer

Files Propertyxe "File property"

xe "TListDataObject object"

xe "TListDataObjectFiles object"

xe "OLE Drag Drop"

xe "Drag Drop"
Applies To

TListDataObject object

Description

Returns a collection of filenames used by the vbCFFiles (15) format which in turn contains a list of all filenames used by a TListDataObject; for example, the names of files that a user drags to or from the Windows File Explorer.

Not available at design time. Read-only

Syntax

TListDataObject.Files(Index)

Remarks

The Files collection is filled with filenames only when the TListDataObject contains data of type vbCFFiles. The TListDataObject object can contain several different types of data.

Data Type

Object

Find … Methodsxe "Searching"

xe "FindValue method"

xe "FindItem method"

xe "TListFindItem function"

xe "TListFindValue function"
Description

These two functions may be used to search for a given item.

The FindItem method searches for an item based on the text (list property) of that item. The FindValue method searches for an item based on its associated data (ItemValues property).

Not available at design time.

Syntax

[form.]TList.FindItem (

[image: image86.wmf]ByVal FindWhat As String,

[image: image87.wmf]ByVal nFlags As Integer,

[image: image88.wmf]ByVal nFromIndex As Long,

[image: image89.wmf]ByVal nToIndex As Long) As Long

form.]TList.FindValue (

[image: image90.wmf]FindWhat As Variant,

[image: image91.wmf]ByVal nFlags As Integer,

[image: image92.wmf]ByVal nFromIndex As Long,

[image: image93.wmf]ByVal nToIndex As Long,

[image: image94.wmf] ByVal ValueName As Variant) As Long
Parameters

Parameter
Description

tltTree
Name of the TList control.

FindWhat
String or Variant data being sought.

nFlags
How to search the item, This parameter is composed as the sum of bit flags - see description in the following table.

nFromIndex
Specifies the first item in the range.

nToIndex
Specifies the last item in the range.

VaueName
Optional. If present specifies the valuename of the data to be earchedwhich values will be sought.

The nFlags parameter flags:

Constant
Value
Description

TL_FI_DONTUSECASE
&H1
if set, search is not case-sensitive.

TL_FI_RELAXED
&H2
if set, valid item may include FindWhat as a substring of the item’s text; otherwise the match must be exact.

TL_FI_BACKDIR
H100
if set, TList searches backwards from the end of the range.

TL_FI_SELONLY
&H200
if set, TList searches only among selected items.

TL_FI_STARTSWITH
&H400
if set TList searches items whose text starts with the FindWhat.

Returns

Index of the first found item or -1 if item wasn't found.

FixedSize Propertyxe "FixedSize property"
Description

This property determines whether all items in the control have the same height or not. When it is True, then all items have the same height. Otherwise, the height of the item is defined by the values of ItemImageDefHeight and ItemImageDefWidth properties and by the real size of the item's picture, and height of the item's font.

Read only at run time.

Syntax

[form.]TList.FixedSize[= bool%]

Data Type

Boolean

Font Propertyxe "Font property"

xe "Fonts"

xe "TListCellDef object"
Applies To

TList Control

TListCellDef object

Description

Returns a Font object.

Syntax

[form.]TList.Font
[form.]TList.Grid.GridCellDef.Font
[form.]TList.Grid.Cells(Row&,Col&).CellDef.Font
Remarks

Use the Font property of an object to identify a specific Font object whose properties you want to use. For example, the following code changes the Bold property setting of a Font object identified by the Font property of a grid cell:

TList1.Grid.Cells(20,20).CellDef.Font.Bold = True

For more information, see the description of the Font property in the Microsoft Visual Basic Language Reference.
See Also

ItemFontName, ItemFontSize, FontName, FontSize, ItemFontBold, ItemFontItalic, ItemFontStrike, and ItemFontUnder properties

FontBold, FontItalic, FontStrikethru, FontUnderline Propertiesxe "Font... properties"

xe "Fonts"
Description

Determine default font styles in the following formats: FontBold, FontItalic, FontStrikethru, and FontUnderline.

Syntax

[form.]TList.FontBold [= boolean%]

[form.]TList.FontItalic [= boolean%]

[form.]TList.FontStrikethru [= boolean%]

[form.]TList.FontUnderline [= boolean%]

Settings

The properties settings are:

Setting
Description

True
Turns on the specified formatting style.

False
Turns off the specified formatting style.

Remarks

Setting of these properties updates the control unless the Redraw property is set to False.

For more information, see the description of the FontBold, FontItalic, FontStrikeThru, FontUnderline properties in the Microsoft Visual Basic Language Reference.
Data Type

Boolean

See Also

ItemFontName, ItemFontSize, FontName, FontSize, ItemFontBold, ItemFontItalic, ItemFontStrike, and ItemFontUnder properties

FontName Propertyxe "FontName property"

xe "Fonts"
Description

Determines the default font name.

Syntax

[form.]TList.FontName [= string_expression$]

Remarks

Setting of FontName property updates the control unless the Redraw property is set to False.

For more information, see the description of the FontName property in the Microsoft Visual Basic On-Line Help.
Data Type

String

See Also

ItemFontSize, ItemFontName, FontSize, FontBold, FontItalic, FontStrikethru, FontUnderline, ItemFontBold, ItemFontItalic, ItemFontStrike, and ItemFontUnder properties

FontSize Propertyxe "FontSize property"

xe "Fonts"
Description

Determines default font size.

Syntax

[form.]TList.FontSize [= numeric_expression%]

Remarks

Setting of FontSize property updates the control, unless the Redraw property is set to False.

For more information, see the description of the FontName property in the Microsoft Visual Basic Language Reference.
Data Type

Integer

See Also

FontName, ItemFontName, ItemFontSize, FontBold, FontItalic, FontStrikethru, FontUnderline, ItemFontBold, ItemFontItalic, ItemFontStrike, and ItemFontUnder properties

ForeColor Propertyxe "ForeColor property"

xe "Colors"

xe "TListCellDef object"
Applies To

TList control

TListCellDef object

Description

TLists’s ForeColor property determines the default color in which text of an item is displayed.

TListCellDef ForeColor property determines the default color in which text of a cell is displayed.

Syntax

[form.]TList.ForeColor[= color&]

[form.]TList.ItemCell(ItemIndex&).CellDef.ForeColor [= color&]

[form.]TList.Grid.GridCellDef.ForeColor [= color&]

[form.]TList.Grid.Cells(Row&, Col&).ForeColor [= color&]

[form.]TList.Grid.RowTitleCellDef.ForeColor [= color&]

[form.]TList.Grid.ColTitleCellDef. ForeColor [= color&]

Remarks

Setting of this property updates the control display unless the Redraw property is set to False.

For more information, see the description of the ForeColor property in the Microsoft Visual Basic Language Reference.
Example

TList1.ForeColor = RGB(127, 0, 127)

TList1.ForeColor = QBColor(2)

Data Type

Long

See Also

BackColor property
Format Propertyxe "Format property"

xe "TListCellDef object"
Applies To

TListCellDef Object

Description

The format property modifies the displayed content of a cell holding a numeric value.

Data Type

String

Syntax

[form.]TList1.Grid.Cells(Row&, Col&).CellDef.Format [= str$]
[form.]TList1.ItemGrid(ItemIndex&).Cells(Row&, Col&).CellDef.Format [= str$]
Settings

The format property is set with a string expression made up of one to four elements, seperated by semicolons, indicating how to display the contents of a cell holding a numeric value, depending on whether the value is Positive, Negative, Zero or Null (not set).

TList1.Grid.ColDefs(Column).CellDefs.format = _

"PlusFormat; MinusFormat; ZeroFormat; NullFormat"

(In actual practice PlusFormat, MinusFormat, ZeroFormat and NullFormat would most likely be replaced by more interesting/useful string expressions.)

If one of the parameters is not specified, the format specified by the first parameter is used.

TList cells containing non-numeric values will not be affected by the Format property.

You can use the same named format expressions defined by Visual Basic's Format$ function. In general each element of the format string expression may contain any desired text and/or a reference to one of several predefined named numeric formats (such as "Currency" or "Fixed"). :

FormatString = "user’s_text1*Named Format*user’s_text2"
Where Named Format refers to one of several standard predefined formats such as "Currency" or "Fixed" etc. (see table below). Such references must be surrounded by asterixes "*". Here the numeric data value actually assigned to the TList cell will be formatted and displayed according to the named format and surrounded by the strings "user's text 1" and "user's text 2" If no *Named Format* is specified only "user’s text" will be shown. Thus if the value was 1000, and the first component of the format string were "Price = $*Currency* - a bargain" the displayed cell would show "Price = $1,000.00 - a bargain".

The following table shows a number of named formats available to the user:{QUOTE the table below is meant}
Data Type
Named Format
Description

Number
(Default) Empty string

OR

"Generic"
General format. Displays as entered.

Number
"Currency"
Display number with thousand separator, if appropriate; display two digits to the right of the decimal separator. Note that output is based on system locale settings.

Number
"Fixed"
Display at least one digit to the left and two digits to the right of the decimal separator.

Number
"Standard"
Display number with thousands separator, at least one digit to the left and two digits to the right of the decimal separator.

Number
"Percent"
Display number multiplied by 100 with a percent sign (%) appended to the right; always display two digits to the right of the decimal separator.

Number
"Scientific"
Use standard scientific notation.

Number
"Yes/No"
Display No if number is 0; otherwise, display Yes.

Number
"True/False"
Display False if number is 0; otherwise, display True.

Number
"On/Off"
Display Off if number is 0; otherwise, display On.

Date/Time
"General Date"
Display a date and/or time. For real numbers, display a date and time (for example, 4/3/93 05:34 PM); if there is no fractional part, display only a date (for example, 4/3/93); if there is no integer part, display time only (for example, 05:34 PM). Date display is determined by your system settings.

Date/Time
"Long Date"
Display a date according to your system's long date format.

Date/Time
"Medium Date"
Display a date using the medium date format appropriate for the language version of Visual Basic.

Date/Time
"Short Date"
Display a date using your system's short date format.

Date/Time
"Long Time"
Display a time using your system's long time format: includes hours, minutes, seconds.

Date/Time
"Short Time"
Display a time using the 24-hour format (for example, 17:45).

Remarks

Samples of format propery usage:

Format = "NotNull;;;Null"

in this case with no negative or zero components to the format sting, "NotNull" will be displayed for all positive. Negative and zero values will be displayed in *Generic* format. While the text "Null" will be used for empty cells.

Format = "PlusFormat; MinusFormat; ZeroFormat; ZeroFormat"

in this case "PlusFormat" will be used for positive values, MinusFormat - for negative ones, ZeroFormat string - for both Zero and Null.

Since the asterix,"*", is a special character, to include an asterix in the display, use "/*" In the format string.

Example

The following code sets the Format to a Date/Time format for a TList’s ColumnDef object.

TList1.Grid.ColDefs(1).CellDef.Format = "*Short Date*"

The following code specifies to show the text, "Empty", for empty cells:

TList1.Grid.GridCellDef. Format = ";;;Empty"

Below is a sample how you can emulate "Yep/Nope" format:

TList1.Grid.ColDefs(1).CellDef.Format = "Yep;Yep;Nope;Nope"

This will show Yep in cells containing positive or negative values, and Nope for cells containing a value of zero, or no value at all (null).

The following code resets a Format String:

TList1.Grid.GridCellDef.Format = ""

FreeBuffer Methodxe "FreeBuffer method"

xe "tree buffer"

xe "Memory"

xe "TListFreeBuffer function"
Description

This method frees the tree buffer and the memory associated with it.

Not available at design time.

Syntax

[form.]TList1.FreeBuffer(ByVal hTreeBuffer As Long)
Remarks

This method should be called for each tree buffer after the tree buffer is no longer needed.

The parameter htree buffer is a variable of a Long type.

You can use any TList control to free any tree buffer.

FullPath Propertyxe "FullPath property"
Description

Returns the fully qualified name of an item. The fully qualified name is the concatenation of the item with its parent item, the parent item's parent item, and so on until the parent item at indentation level 0 is reached. The FullPath property is an array whose index values correspond to the items in the list.

Not available at design time and read-only at run time.

Syntax

[form.]TList.FullPath(index&)

Remarks

Use the PathSeparator property to create a delimiter between the components of the FullPath property. This is useful when the TList control contains file-system components such as directory names and file names.

Data Type

String

{QUOTE}GetData Methodxe "GetData method"

xe "TListDataObject object"
Applies To

TListDataObject Object

Description

Returns data from a TListDataObject object.
Syntax

TListDataObject.GetData (ByVal Format As Variant)

Remarks

The GetData method syntax has these parts:

Part
Description

Format
A constant or value that specifies the Clipboard data format, as described in Settings.

Settings

The settings for the Format are: {SAMPLE}
Constant
Value
Description

vbCFBitmap
2
Bitmap (.bmp files)

vbCFMetafile
3
Metafile (.wmf files)

vbCFDIB
8
Device-independent bitmap (.dib files)

vbCFFiles
15
Filenames of dropped files. They can be accessed via Files property.

vbCFText
1
ASCII Text.

{QUOTE}GetFormat Methodxe "GetFormat method"

xe "TListDataObject object"
Applies To

TListDataObject Object

Description

The method determines whether a TListDataObject object has data in a specified format.
Syntax

TListDataObject.GetFormat (ByVal Format As Variant)

Remarks

The GetFormat method syntax has these parts:

Part
Description

Format
A constant or value that specifies the Clipboard data format, as described in Settings.

Settings

The settings for the Format are: {SAMPLE}
Constant
Value
Description

vbCFBitmap
2
Bitmap (.bmp files)

vbCFMetafile
3
Metafile (.wmf files)

vbCFDIB
8
Device-independent bitmap (.dib files)

vbCFFiles
15
Filenames of dropped files. They can be accessed via Files property.

vbCFText
1
ASCII Text.

Data Type
Boolean
GetItemByXY Methodxe "Move event"

xe "Coordinates"

xe "GetItemByXY function"
Description

The GetItemByXY method returns the index of an item given a set of X/Y coordinates in pixels.

It can also be used during mouse events to determine whether an X/Y coordinate is over a picture.

Not available at design time.

Syntax

[form.]TList. GetItemByXY(

[image: image95.wmf]ByVal X As Integer, ByVal Y As Integer,

[image: image96.wmf]ByVal nType As Integer) As Long
Declarations

Global Const PTFIND_ITEM = 1

Global Const PTFIND_PIC = 2

Global Const PTFIND_TEXT = 4

Parameters

X, Y are the control's internal coordinates in pixels. The 0, 0 point is at the left, top corner of the control.

Returns

If point (X, Y) is within item's area and nType = PTFIND_ITEM, return value = index of item;

If point (X, Y) is within item's picture area and nType = PTFIND_PIC, return value = index of item.

If point (X, Y) is within item's text area and nType = PTFIND_TEXT, return value = index of item.

Otherwise, If no item is under specified coordinates the function returns -1.

Example

Sub TList1_MouseMove (Button As Integer, _

Shift As Integer, X As Single, Y As Single)

' Demonstrate GetItemByXY method

nX = X / Screen.TwipsPerPixelX

nY = Y / Screen.TwipsPerPixelY

nType = PTFind_Item 'or set to PTFind_Pic for picture only.

Item_Index = TList1.GetItemByXY(nX, nY, nType)

' the alternative variant is

’ Item_Index = TList1.GetItemByXY(nX, nY, nType)

Text1.Text = "The mouse is over index number: " _

& Str$(Item_Index)

End Sub

Sub TList1_MouseDown (Button As Integer, _

Shift As Integer, X As Single, Y As Single)

nX = X / Screen.TwipsPerPixelX

nY = Y / Screen.TwipsPerPixelY

nType = PTFind_Pic 'Find item for picture only.

Index& = TList1.GetItemByXY(nX, nY, nType)

' the alternative variant is

’ Item_Index& = TList1.GetItemByXY(nX, nY, nType)

Text1.Text = "MouseDown over picture: " & Str$(Index&)

End Sub

GetItemRect Methodxe "GetItemRect method"
Description

The GetItemRect method returns (as a parameter) a structure describing the rectangular region containing a specific item in the outline. The method returns 0 if the call was successful and an error code otherwise. All coordinates are measured in pixels.

Not available at design time.

Declarations

[form.]TList.GetItemRect(

[image: image97.wmf] ByVal nIndex As Long, ByVal nOpts As Integer,

[image: image98.wmf] pRect As RECT) As Integer
Parameters

tltTree
- TList control.

nIndex
- index of the item.

nOpts
- one of the following options:

Constant
Value
Description

TLGR_ITEM
&H1
The size & coordinates of the whole item will be returned.

TLGR_PLUSMINUS
&H2
The size & coordinates of the plus-minus picture of the item will be returned.

TLGR_MARK
&H4
The size & coordinates of the mark picture of the item will be returned.

TLGR_PICTURE
&H8
The size & coordinates of the picture of the item will be returned.

TLGR_TEXT
&H10
The size & coordinates of the text of the item will be returned.

In OCX version of TList this function was replaced with Visual Basic function with the same name. This function can be found in the TLIST4.BAS file.

Note that in the OCX edition, pRect.Left should be passed as a parameter instead of pRect. In this case pRect.Left acts as a pointer to the structure as a whole.

GotFocus Eventxe "GotFocus event"

xe "Focus"
Description

Occurs when the TList control receives the focus.

Syntax

Sub TList_GotFocus([Index As Integer])

Remarks

For more information, see the description of the GotFocus event in the Microsoft Visual Basic Language Reference.

GradientColorFrom, GradientColorTo, and GradientStyle Propertiesxe "GradientColorFrom property"

xe "GradientColorTo property"

xe "GradientStyle property"
Description

These properties allow TList to paint gradually changing colors on the TList background.

Syntax

[form.]TList.GradientColorFrom [= color&]

[form.]TList.GradientColorTo [= color&]

[form.]TList.GradientStyle [= enum%]

Settings

The GradientStyle settings are:

Setting
Value
Description

TLGRADIENT_NONE
0
Default. Doesn’t paint gradient background.

TLGRADIENT_LEFT_TO_RIGHT
1
Colors are gradually changing from the left to right.

TLGRADIENT_TOP_TO_BOTTOM
2
Colors are gradually changing from the top to the bottom.

TLGRADIENT_CENTER_HORZ
3
Colors are gradually changing from the center in horizontal direction.

TLGRADIENT_CENTER_VERT
4
Colors are gradually changing from the center in vertical direction.

Grid Propertyxe "Grid property"

xe "TListGridCell object"
Applies To

TList control

TListGridCell object

Description

Returns a reference to a Grid object.

Can be set only to Nothing value.
Syntax

[form.]TList1.Grid
[form.]TList1.ItemGrid(ItemIndex&)
Remarks

Grid property can be set only to the Visual Basic constant, Nothing. Otherwise it is a read-only property:

Examples

TList1.Grid.Cols = 3 ' This will create a grid with 3 cols

TList1.Grid = Nothing ' This will destroy the grid

Dim x as TListGrid ' Dim X as a TListGrid object

Set X = TList1.ItemGrid(3) ' this returns reference to an itemgrid

Data Type

Object

GridCellClick Eventxe "GridCellClick event"

xe "Grid"
Description

This event occurs when the user selects a cell in any Grid of a TList control by clicking the mouse button.

Syntax

Sub TList_GridCellClick([Index As Integer], ByVal GridCell As

[image: image99.wmf]TListGridCell, ByVal Button As Integer)

Remarks

This event passes GridCell, the reference to a TListGridCell object of the cell, which was clicked. Row and Col Grid object properties of the TListGrid object can be used to determine which cell was clicked. You can find out what Grid object this cell belongs to using GridCell.Grid property.

The Button parameter returns an integer identifying which button was pressed. This value is composed of the following bit fields: left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. {SAMPLE}
GridCellDblClick Eventxe "GridCellDblClick event"

xe "Grid"
Description

This event occurs when the user double clicks a cell in any Grid of TList control, either by pressing the arrow keys or by clicking the mouse button.

Syntax

Sub TList_GridCellDblClick([Index As Integer], ByVal GridCell As TListGridCell,

[image: image100.wmf]ByVal Button As Integer)

Remarks

This event passes GridCell, the reference to a TListGridCell object of the cell, which was double clicked. You can find out what Grid object this cell belongs to using GridCell.Grid property.

The Button parameter returns an integer identifying which button was pressed. This value is composed of the following bit fields: left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively.

GridCellDef Propertyxe "GridCellDef property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

This property returns a reference to a TListCellDef object. This object is used to collect all properties which determine how a grid cells will be displayed by default. This property doesn’t affect row titles or column titles defaults.

Syntax

[form.]TList1.Grid.GridCellDef
[form.]TList1.ItemGrid(ItemIndex&).GridCellDef
Example

TList1.Grid.GridCellDef.BackColor = RGB(127, 127, 127)

GridLinesColor Propertyxe "GridLinesColor property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

Returns or sets a value that determines what color should be used to draw grid lines.

Syntax

TListGridObject.GridLinesColor [= color&]
[form.]TList.Grid.GridLinesColor [=color&]
[form.]TList.ItemGrid(ItemIndex).GridLinesColor [=color&]
Remarks

GridLinesColor property is used only if GridLinesStyle property is set to 1 (Lines). Raised and inset grid lines are always drawn in black and white.
Setting of this property updates control, unless the Redraw property is set to False.

Data Type

Long

GridLinesStyle Propertyxe "GridLinesStyle property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

This property returns or sets a value that determines what type of lines should be drawn between cells.

Syntax

TListGridObject.GridLinesStyle [= enum%]
[form.]TList.Grid.GridLinesStyle [= enum%]
[form.]TList.ItemGrid(ItemIndex).GridLinesStyle [= enum%]
Settings

The GridLinesStyle property setting are:

Setting
Value
Description

TLGRIDLINES_NONE
0
No lines in-between cells.

TLGRIDLINES_HORIZONTAL
1
Only horizontal lines.

TLGRIDLINES_VERTICAL
2
Only vertical lines.

TLGRIDLINES_BOTH
3
Vertical and horizontal lines. Default.

Remarks

The color of the lines is determined by the GridLinesColor property.
Data Type

Integer

HasGrid Propertyxe "HasGrid property"
Description

This property determines whether TList Grid property is set to any TListGrid object.

Syntax

TList1.HasGrid [= Boolean%]
Remarks

This property is needed because you cannot just compare the return value of TList.Grid property to Null. If a grid does not exist and the Grid property is accessed, the Grid object is created automatically, so Grid property always returns a Grid object.

To remove a Tree grid you can set HasGrid to False. This has the same effect as setting of Grid property to Nothing.

Data Type

Object

HasSubItems Propertyxe "HasSubItems property"
Description

This property indicates whether an item has subordinate items. The HasSubItems property is an array whose index values correspond to the items in the list.

Not available at design time and Read-Only at run time.

Syntax

[form.]TList.HasSubItems(index&)

Remarks

If an item has subordinate items, the HasSubItems property will return True regardless of whether the subordinate items are visible. To determine whether a specific item is visible, use the IsItemVisible property.

Data Type

Boolean

Height Propertyxe "Height property"
Description

This property specifies the height of the TList control.

Syntax

[form.]TList.Height [= numeric_expr]

Remarks

For more information, see the description of the Height property in the Microsoft Visual Basic On-Line Help.
Data Type

Single

HelpContextID Propertyxe "HelpContextID property"
Description

Determines the context number of the Help topic associated with the TList control. Used to provide context-sensitive Help for your application.

Syntax

[form.]TList.HelpContextID [= numeric_expr]

Remarks

For more information, see the description of the HelpContextID property in the Microsoft Visual Basic On-Line Help.
Data Type

Long

HScroll and VScroll Events xe "Scrolling"

xe "HScroll event"

xe "VScroll event"
Description

These events are generated whenever the user scrolls TList in a horizontal or vertical direction. They are triggered before scrolling of the control.

Syntax

Sub TList1_HScroll ([Index As Integer,] bCancelDefault As Boolean,

[image: image101.wmf] ByVal ScrollCode As Integer, ByVal Pos As Long)
Sub TList1_VScroll ([Index As Integer,] bCancelDefault As Boolean,

[image: image102.wmf] ByVal ScrollCode As Integer, ByVal Pos As Long)
Parameters

bCancelDefault
- initialized as False upon entry to the event subroutine, setting the CancelDefault parameter to True before exiting the subroutine will prevent scrolling.

ScrollCode
- one of the constants declared in TLIST4.BAS file:

Constant
Value
Description

TL_SB_LINEUP
0
 Scroll one line up.

TL_SB_LINEDOWN
1
 Scroll one line down.

TL_SB_PAGEUP
2
 Scroll one page up.

TL_SB_PAGEDOWN
3
 Scroll one page down.

TL_SB_THUMBPOSITION
4
 Scroll to absolute position. The current position is specified by the Pos parameter.

TL_SB_THUMBTRACK
5
 Drag scroll box (thumb) to specified position. The current position is specified by the Pos parameter.

TL_SB_TOP
6
 Scroll to top.

TL_SB_BOTTOM
7
 Scroll to bottom.

TL_SB_ENDSCROLL
8
 End scroll.

Pos

- Specifies the current position of the scroll box if the ScrollCode parameter is TL_SB_THUMBPOSITION or TL_SB_THUMBTRACK; otherwise, the Pos parameter is not used.

Example

The following code captures a vertical scroll event and tells TList to ignore scrolling caused by dragging the scrollbar thumbnail until the user releases the scroll thumbnail. This is useful for instance to prevent generation of ItemQueryData events during scrolling of a list built with virtual items.

Sub TList1_VScroll(bCancelDefault As Boolean, _

ByVal ScrollCode As Integer, ByVal Pos As Long)

If ScrollCode = 5 Then CancelDefault = True

End Sub

HWnd Propertyxe "hWnd property"
Description

Specifies a window handle of the TList control. Not available at design time; read-only at run time.

Syntax

[form.]TList.hWnd
Remarks

For more information, see the description of the hWnd property in the Microsoft Visual Basic Language Reference.
Data Type

Integer

Image Propertyxe "Image property"

xe "Display"
Description

The Image property is an integer array indexed according to the current setting of the CurrentIndexMethod property. Each element of the array corresponds to an item in the TList control and reflects the graphic to be used for an individual non-selected item in the TList control.

If the Image property is not directly set by code, or is cleared as in setting to an empty picture, {such as by setting to LoadPicture("") } , it will be set automatically by the control to an appropriate graphic as defined for the control by the Picture.... properties (PictureClosed, PictureRoot, etc) depending on the state of the item (Closed, Open, Root, etc.) and the setting of the PictureType property.

Not available at design-time ; read/write at run time.

Syntax

[form.]TList.Image(index&)[= picture]

Settings

The Image property settings are:

Setting
Description

(none)
(Default) No picture.

(Bitmap, icon, metafile)
Specifies a graphic. At run time, you can set this property using the LoadPicture function on a bitmap, icon, or metafile.

Remarks

At run time, you can use Clipboard methods such as GetData, SetData, and GetFormat with the non-text Clipboard formats CF_BITMAP, CF_METAFILE, and CF_DIB, as defined in CONSTANT.TXT, a Visual Basic™ file that specifies system defaults.

Use this property to access the picture of TList items.

Setting of the Image property updates the control unless the Redraw property is set to False.

Each item having its own individually assigned picture, requires TList to allocate an additional 16 bytes as well as the size of the additional data itself.

At run time, the Image property can be set to any other object's DragIcon, Icon, Image, or Picture property, or you can assign it the graphic returned by the LoadPicture function. The Image(index) property can only be assigned directly.

When setting individual images for items in TList, remember that Visual Basic's LoadPicture function always returns a reference to a unique image even if loading the same image many times. It is MUCH faster and much more efficient to load the image just once and then reference it repeatedly.

For example:

'The following results in 10 distinct images taking up space

For I = 1 to 10

TList1.Image(I) = LoadPicture (SomePictureFile)

Next

The following results in the same list, but only one copy of the image is held in memory:

Picture1.Picture = LoadPicture(SomePictureFile)

For I = 1 to 10

TList1.Image(I) = Picture1.Picture

Next

Data Type

Object

ImageStretch Propertyxe "ImageStretch property"

xe "Display"
Description

This property determines whether the picture in an item will be automatically resized to fit the dimensions specified by the ItemImageDefHeight and ItemImageDefWidth properties.

Syntax

[form.]TList.ImageStretch [= bool%]
Settings

The ImageStretch property settings are:

Setting
Description

True
Picture will be stretched

False
(Default) Picture won't be stretched.

Remarks

Setting of ImageStretch property updates the control unless the Redraw property is set to False.

Pictures larger than 255 pixels in any dimension will be resized to this maximum limit regardless of the ImageStretch setting.

Data Type

Integer (Boolean)

Indent Property xe "Indent property"
Description

TList’s Indent property is equivalent to MSOutline’s Indent property with the exception that reducing the indentation of an item with a child will not generate an error as it does with MSOutline.

Item 0

Item 1

Item 2

Item 3

Item 4

Item 5

Now set TList.Indent(2) = 0, this would cause an error in MSOutline, TList instead moves the children of Item 2 with Item 2.

Item 0

Item 1

Item 2

Item 3 <<BAD CONDITION AVOIDED BY TLIST
Item 4

Item 5

The outline after call to TList.Indent(2) = 0:

Item 0

Item 1

Item 2

Item 3

Item 4

Item 5

Syntax

[form.]TList.Indent(index%)[= new_indent%]

Data Type

Array(Integer)

See Also

Shift property

Indentation Property xe "Indentation property"

xe "TListLevelDef object"
Applies To

TListLevelDef object

Description

The Indentation property is a long, which reflects an item's hierarchic indentation with which a given TListLevelDef object is linked.

Read-only.

Syntax

[form.]TList.LevelDefs(IndentationLeveL&).Indentation
Data Type

Long

Index Propertyxe "Index property"

xe "TListColDef object"
Applies To

TList control

TListColDef object

Description

TList control’s Index property identifies the control in a control array. Available only if the control is part of a control array; read-only at run time.

TListColDef object’s Index property identifies the object in a TListColDefs object collection. Read-only at run time.

Syntax

[form.]TList.Index

[form.]TList.Grid.ColDefs(ColDefIndex&).Index
Remarks

The index property of a TList control will only have a value if TList is a member of a control array.
For more information, see the description of the Index property in the Microsoft Visual Basic On-Line Help.
The TListColDef object’s Index property valid settings are in the range (0; 2,147,483,647):

Data Type

Integer

IndexByBM Methodxe "Bookmarks"

xe "IndexByBM method"

xe "TListIndexByBM function"
Description

The IndexByBM method returns the index for an item pointed to by its long integer item bookmark. The return value is -1 if error occurs.

Not available at design time.

Declarations

 [form.]TList.IndexByBM(ByVal hTreeBookmark&) As Long
Example

' remove an item that is no longer needed,

' by reference to its bookmark:

Ret_Code% = TList1.IndexByBM(hTreeBookmark&)

TList1.RemoveItem Ret_Code%

In the OCX version of TList this function was replaced with Visual Basic function with the same name. This function can be found in the TLIST4.BAS file.

See Also

ItemBM property and IsValidBM method

Insert Propertyxe "Insert property"

xe "Bookmarks"

xe "tree buffer"

xe "Adding items"
Description

This property copies items referenced by a bookmark or stored in a tree buffer, and adds them as peers immediately before the item whose index is specified.

Not available at design time and write-only at run time.

Syntax

[form.]TList.Insert(index&) = tree_buffer&
or

[form.]TList.Insert(index&) = Bookmark&
Remarks

Use the FreeBuffer method to free memory when you are done with the tree buffer.

Setting of the Insert property updates the control unless the Redraw property is set to False.

When copying from a Bookmark, all of the characteristics of the bookmarked item are retained. Any children of the bookmarked item are also copied and their parent/child relationships maintained.

Data Type

Long

InsertItem Propertyxe "InsertItem property"

xe "Adding items"
Description

This property inserts a new item before an item specified by its index. All items that are below this index will be shifted down (their indices will change accordingly). This property is a string array containing index values corresponding to the items in the list.

Not available at design time and write-only at run time.

Syntax

[form.]TList.InsertItem(index&) = string_expr$
Settings

The InsertItem property setting is a string of text displayed with the item. See the List property to access or change the text after an item has been added.

Remarks

Setting of InsertItem property updates the control unless the Redraw property is set to False.

Data Type

String

InvBorderStyle Propertyxe "InvBorderStyle property"

xe "Display"
Description

Specifies whether a cell border must be changed when the cell is selected.

Syntax

[form.]TList.InvBorderStyle[= enum%]
Remarks

The InvBorderStyle property settings are:
Setting
Description

TLINVBORDERSTYLE_NONE
Do not change the border when a cell is selected.

TLINVBORDERSTYLE_CHANGE
(Default) Change the border when a cell is selected. 3D style border is changed to the opposite (inset vs raised) and 2-D style border is drawn with a color as specified by SelForeColor property.

Data Type

Integer

InvImage Propertyxe "InvImage property"

xe "Display"
Description

The InvImage property defines the image to be displayed for selected items.

This is an integer array, indexed according to the current setting of the CurrentIndexMethod property. Each element of the array corresponds to an item in the TList control and reflects the graphic to be displayed when the specified item in the TList control is selected.

If the InvImage property is not directly set by code, or is cleared by setting to an empty picture (such as LoadPicture("")), the image displayed will be that defined by the PictureInverted property. If PictureInverted is also undefined or is cleared, the image will be taken from the Image property or the appropriate choice of PictureRoot, PictureLeaf, or PictureOpen.

Not available at design time; read/write at run time.

This property has NO effect unless there is an image also defined for the unselected state by either the Image, PictureRoot, PictureLeaf, or PictureOpen properties.

Syntax

[form.]TList.InvImage(index&)[= picture]

Settings

The InvImage property settings are:

Setting
Description

(none)
(Default) No picture

(Bitmap, icon, metafile)
Specifies a graphics. At run time, you can set this property using the LoadPicture function on a bitmap, icon, or metafile.

Remarks

At run time, you can use Clipboard methods such as GetData, SetData, and GetFormat with the non-text Clipboard formats CF_BITMAP, CF_METAFILE, and CF_DIB, as defined in CONSTANT.TXT, a Visual Basic file that specifies system defaults.

Setting of InvImage property updates the control unless the Redraw property is set to False.

Each item having its own individually assigned picture(s), requires TList to allocate an additional 16 bytes as well as the size of additional data itself.

At run time, the InvImage property can be set to any other object's DragIcon, Icon, Image, or Picture property, or you can assign it the graphic returned by the LoadPicture function. The InvImage property can only be assigned directly.

Data Type

Object

InvStyle Propertyxe "InvStyle property"

xe "Display"
Description

The InvStyle property determines how TList displays selected items.

Syntax

[form.]TList.InvStyle [= enum%]

Settings

The InvStyle property settings are:

Setting
Description

0
(Default)Text and Picture will be inverted when item is selected.

1
Picture will be inverted

2
Text will be inverted

3
The entire line is inverted.

4
The text portion of the selected item is inverted, and the inverted background rectangle color is extended to include the background of the picture.

5
The text portion of the selected item is inverted and the inverted background rectangle color is extended to the right most extent of the line.

Remarks

The view of the selected item is affected by the setting of ViewStyle property.

Setting of InvStyle property updates the control unless the Redraw property is set to False.

Data Type

Integer

IsClipboardAvailable Propertyxe "Clipboard"
Description

The IsClipBoardAvailable property returns a true/false value indicating whether there is TList data in the clipboard. Read only at run-time, not available at design time.

Syntax

[form.]TList.IsClipboardAvailable
Example

If compatible data is available, then paste it before the selected item

If TList_Dest.IsClipboardAvailable then

TList_Dest.Clipboard(TList.ListIndex) = 4

End If

Data Type

Boolean

IsItemVisible Propertyxe "IsItemVisible property"
Description

This property returns whether an item is currently visible, in other words, whether an item is either currently displayed within the control window or can be viewed by scrolling. The IsItemVisible property is an array whose index values correspond to the items in the list.

Not available at design time and read-only at run time.

Syntax

[form.]TList.IsItemVisible(index&)

Data Type

Boolean

IsValidBM Methodxe "IsValidBM method"

xe "Bookmarks"

xe "TListIsValidBM function"
Description

The IsValidBM method returns a value (True or False) indicating whether the specified item bookmark is valid.

Not available at design time.

Syntax

[form.]TList. IsValidBM(ByVal hTreeBookmark&) As Integer
Example

Ret_code = TList1.IsValidBM (hTreeBookmark&)

In the OCX version of TList this function was replaced with Visual Basic function with the same name. This function can be found in the TLIST4.BAS file.

See Also

ItemBM property and IndexByBM method

IsValidBuffer Methodxe "IsValidBuffer method"

xe "TListIsValidBuffer function"

xe "tree buffer"
Description

This method determines whether the passed tree buffer value is valid. Returns True or False.

Not available at design time.

Syntax

[form.]TList1.IsValidBuffer(ByVal hTreeBuffer As Long) As Integer
Remarks

The parameter hTreeBuffer is a variable of a Long type.

You can use any TList control to check any tree buffer.

ItemAlwaysHidden Propertyxe "ItemAlwaysHidden property"

xe "Hidden Items"
Description

This property Specifies specifies whether an item is displayed if all its parent items are expanded and the ShowHiddenItems property is False.

See Setting below for more detailed description.

Not available at design time.

Syntax

[form.]TList. ItemAlwaysHidden (index&)[=Integerbool%]

Settings

The ItemAlwaysHidden property settings are:

Setting
Description

False
(Default) Item is visible if all parent items of this item are expanded. This item subordinates are visible if the item is expanded.

True
Item is invisible regardless this item parents expanding state. This item subordinates are never visible too.

Remarks

If a ParentItem is always hidden, it'sits children can never be seen regardless of it'sits expand state or their ItemAlwaysHidden state.

Remarks

Boolean

ItemBackColor and ItemForeColor Propertiesxe "ItemBackColor property"

xe "ItemForeColor property"

xe "Colors"
Description

The ItemBackColor property determines the background color of an item.

The ItemForeColor property determines the foreground color used to display text in an item.

These properties are long arrays whose index values correspond to the items in the list. Not available at design time; read/write at run time.

Syntax

[form.]TList.ItemBackColor(index&)[= color&]

[form.]TList.ItemForeColor(index&)[= color&]

Remarks

The default settings are determined by BackColor and ForeColor properties.

Setting of these properties update the control unless the Redraw property is set to False.

An additional 16 bytes of memory are required for each item having its own assigned Fore or BackColor.

Data Type

Long(Array)

See Also

BackColor and ForeColor properties

ItemBM Property xe "Bookmarks"
Description

The ItemBM array contains LongInteger pointers to an item specified by its index. The bookmark associated with an item will not change even if the items index changes as a result of adding items earlier in the list or changing the CurrentIndexMethod. See also IndexByBM and IsValidBM methods. Not available at design time, read-only at run time.

Syntax

[form.]TList.ItemBM(Index&)

Data Type

Long(Array)

ItemCell Propertyxe "ItemCell property"
Description

This property returns a TListCellDef object, which provides control over item cell display.

Read-only, not available at design time.

Syntax

[form.]TList. ItemCell (index&)

Example

The code below shows how to set a background color for an item cell (shown in the figure below as the area surrounding the text "item 10") different from the item’s overall background color and default color (shown as white).

TList1.BackColor = RGB(255,255,255) ' White

TList1.ItemBackColor(10) = RGB(0,127,0) ' Green

TList1.ItemCell(10).BackColor = RGB(0,0,127) ' Blue

The result is:

[image: image103.wmf]Item 10

Item 11

Data Type

Object

ItemClick Eventxe "ItemClick event"

xe "Right Mouse Clicks"
Description

This event occurs when the user selects an item in TList control by clicking the mouse button.

Syntax

Sub TList_ItemClick([Index As Integer], ByVal ItemIndex As Long,

[image: image104.wmf]ByVal Button As Integer)

Remarks

This event passes ItemIndex, the index of the item in the list that was clicked.

The Button parameter returns an integer identifying which button was pressed. This value is composed of the following bit fields: left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. {SAMPLE}
ItemDblClick Eventxe "ItemDblClick event"

xe "Right Mouse Clicks"
Description

This event occurs when the user double clicks an item in TList control by clicking the mouse button.

Syntax

Sub TList_ItemDblClick([Index As Integer], ByVal ItemIndex As Long,

[image: image105.wmf]ByVal Button As Integer)

Remarks

This event passes ItemIndex, the index of the item in the list that was double clicked.

The Button parameter returns an integer identifying which button was pressed. This value is composed of the following bit fields: left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively.

ItemEditText Propertyxe "Editing"

xe "In-place Editing"

xe "ItemEditText property"
Description

Setting the ItemEditText property enables, concludes or cancels an in-place editing operation.

Upon setting this property to TL_EDITTEXT_BEGIN, the RequestEditing event will be triggered.

Upon setting this property to TL_EDITTEXT_END or TL_EDITTEXT_CANCEL, the AfterEditing event will be triggered.

Not available at design-time, write only at run-time.

Syntax

[form.]TList.ItemEditText(index&) = %enum
Settings

The ItemEditText property settings are:

Setting
Description

0
Cancel editing of the item text.

1
Conclude editing of the item text.

2
Start editing of the item text.

Data Type

Integer

See Also

RequestEditing, AfterEditing, EditingKeyDown, EditingKeyUp, and EditingKeyPress events and description of In-place Editing in the Using TList chapter

ItemFont… Propertiesxe "ItemFont... properties"

xe "ItemFontName property"

xe "ItemFontSize property"

xe "Fonts"
Description

When set, these properties take precedence over the standard font characteristic properties (FontBold, FontItalic, etc) in determining the font style for an item. Setting the properties to True or False sets font characteristic accordingly. ItemFontName may be set as a string to any installed font. ItemFontSize may be set to an integer value.

These properties are integer arrays whose indexed values correspond to the items in the list.

Not available at design time; read/write at run time.

Syntax

[form.]TList.ItemFontBold(index&)[= boolean%]
[form.]TList.ItemFontItalic(index&)[= boolean%]
[form.]TList.ItemFontStrike(index&)[= boolean%]
[form.]TList.ItemFontUnder(index&)[= boolean%]
[form.]TList.ItemFontName(index&)[= string_expression$]
[form.]TList.ItemFontSize(index&)[= numeric_expression$]

- each sets or returns the font appropriately.

Settings

The ItemFontBold, ItemFontItalic, ItemFontStrike, ItemFontUnder properties' settings are:

Setting
Description

True
Turns on formatting in that style.

False
Turns off formatting in that style.

Remarks

Setting of these properties update the control, unless the Redraw property is set to False.

An additional 16 bytes of memory are required for each item having its own assigned font.

The ItemFontSize property is measured in points (1/72 inches), with a maximum value of 2048 points.

Data Type

Boolean (Array) - for Bold, Italic, Strike, and Under

String (Array) - for Name

Integer (Array) - for Size

See Also

FontName, FontSize, FontBold, FontItalic, FontStrikethru, and FontUnderline properties

ItemGrid Propertyxe "ItemGrid property"

xe "Grid"
Description

Returns a TListGrid object, which provides an information about a Grid which the specified item owns.

Read-only, not available at design time.

Syntax

[form.]TList. ItemGrid (index&)

Example

The code below assigns an item grid to a Grid object

Dim Grid As TListGrid

Set Grid = TList1.ItemGrid(nParentIndex)

The code below creates an item grid with 3 columns and 2 rows:

TList1.ItemGrid(10).Cols = 3

TList1.ItemGrid(10).Rows = 2

Data Type

TListGrid Object

ItemIndex Propertyxe "ItemIndex property"

xe "TListValue object"
Applies To

TListValue Object

Description

Returns an index of the tree item to which this TListValue object is linked. Read-only

Syntax

[form.]TList1.ItemValues(ItemIndex&, ValueName&).ItemIndex

Data Type

Long

ItemIndexToRow Methodxe "ItemIndexToRow method"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid Object

Description

Converts the item index of an item into a corresponding Grid row index. If the item index doesn’t match any row of the grid, -1 is returned.

Syntax

TListGridObject.ItemIndexToRow(ByVal ItemIndex As Long) As Long

ItemHasGrid Propertyxe "ItemHasGrid property"

xe "Grid"
Description

Determines whether an item has a grid.

Not available at design time.

Syntax

[form.]TList. ItemHasGrid (index&) [=Bool%]

Remarks

This property is needed because you cannot just compare the return value of TList.ItemGrid(Index&) property to Null. If a grid doesn't exist and Grid property is accessed the Grid object is created automatically, so ItemGrid property always returns a Grid object.

To remove an item grid you can set ItemHasGrid to False. This has the same effect as setting of the ItemGrid property to Nothing.

Data Type

Boolean

ItemHeight Propertyxe "ItemHeight property"
Description

Returns or sets the height of a given item. Not available at design time.

Syntax

 [form.]TList.ItemHeight(ItemIndex&) [= number&]
Settings

The ItemHeight property settings are:

Setting
Description

-1
(Default) The item height will be calculated.

> -1
Specifies the height of an item

See Also

RowHeight property

ItemImageDefWidth and ItemImageDefHeight Propertyxe "ItemImageDefHeight property"

xe "ItemImageDefWidth property"
Description

These properties determine the width and height of item's picture when the ImageStretch property is set to True. Otherwise setting of these properties has no visual effect but the new values will be used next time the ImageStretch property is set to True.

Syntax

[form.]TList.ItemImageDefWidth [= setting&]

[form.]TList.ItemImageDefHeight[= setting&]

Remarks

These properties settings are:

Setting
Description

0
(Default) Picture in an item is displayed in its actual size.

> 0
The size of an item's picture is expressed in terms of the container's scale. By default measured in twips

Setting of these properties update the control unless the Redraw property is set to False.

Data Type

Long

ItemMark Property xe "Marks"

xe "ItemMark property"
Description

TList supports the assigning of a MARK to elements in the outline. There is an array of marks which can hold up to 255 members. Each Mark has an associated Tag and Picture. Setting the ItemMark property specifies the MarkTag and MarkPicture to be linked to that item.

Not available at design time.

Syntax

[form.]TList.ItemMark(ItemIndex&) [= MarkIndex&]
Example

Sub TList_Click()

'Get some text from Mark Array based on which item is clicked

Item_Clicked& = TList.ListIndex

TagNumber& = TList1.ItemMark(Item_Clicked&)

GetText$ = TList1.MarkTag(TagNumber&)

End Sub

Data Type

Long

ItemMultiLine Propertyxe "ItemMultiLine property"

xe "MultiLine property"
Description

This property specifies whether an item can accept and display multiple lines of text. This property is an array in which each item refers to the subordinate item. See Settings below for more detailed description.

Not available at design time.

Syntax

[form.]TList.ItemMultiLine(index&)[=Integer%]

Settings

The ItemMultiLine property settings are:

Setting
Description

0
(Default) The value of the DefMultiLine property determines whether to wordwrap the specified item.

1 (or -1)
TList allows multiple lines of text, and word wraps long lines of text according to the WidthOfText property setting.

2
TList ignores carriage returns and restricts data to a single line.

Remarks

Setting of ItemMultiLine property updates the control unless the Redraw property is set to False.

The TList control wraps text to a maximum line width specified by the WidthOfText property. If the WidthOfText property set to zero, the item will be word wrapped to fit within the client area of TList.

ItemParent Propertyxe "ItemParent property"
Description

This property returns an index of the parent of an item specified by its index.

Read-only, not available at design-time.

Syntax

[form.]TList.ItemParent (item&)

Example

' Get the index of the parent of currently selected item.

ParentIndex& = TList1.ItemParent(TList.ListIndex)

Data Type

Long

See Also

ItemPrevSibling, ItemNextSibling properties

ItemParentBM Propertyxe "ItemParentBM property"

xe "Bookmarks"
Description

This property returns a Bookmark for the parent of an item specified by its index.

Read-only, not available at design-time.

Syntax

[form.]TList.ItemParentBM(item&)

Example

' Get the index of the parent of currently selected item.

ParentIndex& = TList1.IndexByBM(TList.ItemParentBM(TList.ListIndex))

Data Type

Long

ItemPMPicType Property xe "PlusMinus pictures"

xe "ItemPMPicType property"
Description

This property determines whether TList forces the display of a plus or minus image next to an item. This property can be used to override the default TList behavior and, for example, show a plus or minus picture next to an item which doesn’t have any children.

Run-time only.

Syntax

[form.]TList.ItemPMPicType(item&) [= enum%]

Settings

The ItemPMPicType property settings are:

Setting
Description

0
(Default) TList will show the appropriate picture depending on the state of an item.

1
Always show plus picture regardless the number of children of an item.

2
Always show minus picture regardless the number of children of an item.

3
Do not show any picture.

Data Type

Integer

ItemPrevSibling and ItemNextSibling Propertiesxe "ItemPrevSibling property"

xe "ItemNextSibling property"
Description

The ItemNextSibling property always returns the next sibling of an item, i.e., the next child of the same parent. Likewise the ItemPrevSibling property will return the previous sibling of an item. A value of -4096 indicates an item has no previous or next sibling.

Read-only, not available at design-time.

Syntax

[form.]TList.ItemPrevSibling (item&)

[form.]TList.ItemNextSibling (item&)

Data Type

Long

See Also

ItemParent property

Items Propertyxe "Items property"

xe "TListValues object"

xe "TListLevelDefs object"

xe "TListColDefs object"
Applies To

TListValues Object

TListLevelDefs Object

TListColDefs Object

Description

This property returns an object specified by a given index. For example, for the TListColDefs object collection, this property returns a reference to a TListColDef object stored in this collection. Read-only.

Syntax

[form.]TList1.LevelDefs.Items(LevelDefItemIndex&)
[form.]TList1.Grid.ColDefs.Items(ColDefItemIndex&)
[form.]TList1.ItemGrid(ItemIndex&).ColDefs.Items(ColDefItemIndex&)
[form.]TList1.ItemValues(ItemIndex&).Items(ValueNameIndex)

This property is default for all these objects so we can rewrite these as follows:

[form.]TList1.LevelDefs (LevelDefItemIndex&)
[form.]TList1.Grid.ColDefs (ColDefItemIndex&)
[form.]TList1.ItemGrid(ItemIndex&).ColDefs (ColDefItemIndex&)
[form.]TList1.ItemValues(ItemIndex&, ValueNameIndex)

Data Type

Long

ItemQueryData Eventxe "ItemQueryData event"
Description

This event is triggered whenever TList needs to display or retrieve data from a virtual item. (for example when a parent having virtual children is expanded). It is also triggered when the RefreshItems method is called.

Syntax

Sub TList_ ItemQueryData([Index As Integer],

[image: image106.wmf]ByVal ItemIndex As Long,

[image: image107.wmf]ByVal SiblingIndex As Long)

Remarks

This event passes ItemIndex, the index of the item whose data is required.

SiblingIndex is the index of this item within parent's children list (only direct children are enumerated).

ItemIndex is the actual Index of the item within the Tree.

For example, if item13 has 6 virtual children, this event will be called 6 times when item 13 is expanded, the first time ItemIndex will be 14 and Siblingindex will be 0. The next time ItemIndex will be 15 (depending on whether item 14 itself has children) and SiblingIndex will be 1. Finally the event will be called with ItemIndex 19 and SiblingIndex 6.

Example

Sub TList1_ItemQueryData(ByVal ItemIndex As Long, _

ByVal SiblingIndex As Long)

TList1.List(ItemIndex) = "Virtual Kid " & SiblingIndex

TList1.ItemForeColor(ItemIndex) = RGB(127, 0, 0)

End Sub

ItemSorted Propertyxe "Sorting"

xe "ItemSorted property"
Description

The ItemSorted property allows you to specify a sorting method for each node in the list.

ItemSorted is an array property. The Index specifies the parent whose children are to be sorted.

Syntax

 [form.]TList.ItemSorted(IndexOfTheParentItem&)[= %settings]
Settings

The ItemSorted property settings are:

Setting
Description

0
(Default) No sorting for this node

1
Sort items by their visible text in ascending order.

2
Sort items by associated data value of the item in ascending order.

3
Sort items by their visible text in descending order.

4
Sort items by value of the item in descending order.

Remarks

Changing the sort method causes all children of the specified parent to be resorted according to the new method.

Specifying an index of -1, sorts the root level items (as defined by the CurrentIndexMethod property).

Sorting applies only to the children of the item specified. Subitems of those nodes are not sorted. To fully sort the entire list, set the ItemSorted property for all items, which have children.

When ItemSorted is set to 2 or 4, the ItemSortingKey property specifies the ValueName which is used as the key for the sort.

Note that Sorting is done only for immediate children of the specified item. To sort all items in the list you must set the ItemSorted property for any item which has children.

Data Type

Integer

See Also

ItemSortingKey property

ItemSortingKey Propertyxe "Sorting"

xe "ItemSortingKey property"
Description

The ItemSortingKey property specifies a ValueName as a key for the sorting method initiated by the ItemSorted property.

ItemSortingKey is an array property. The Index specifies the parent whose children are to be sorted.

Syntax

[form.]TList.ItemSortingKey(IndexOfTheParentItem&, Reserved%)[= ValueName$]
Remarks

Reserved% parameter must always be zero, it is reserved for the future use.
ItemSortingKey property settings are used only if ItemSorted is set to 2 or 4.

By default, ItemSortingKey property is a zero length string, which means that the tree is sorted by settings of ItemXXXValue properties.

See Also

ItemSortingKey property

Data Type

String

ItemTag Propertyxe "ItemTag property"

xe "User defined data"
Description

The ItemTag property accesses an associated hidden data element for each TList item.

Not available at design time.

Syntax

[form.]TList.ItemTag(index&)[=Variant]

Example

The sample below demonstrates how to set values for items:

For I = 1 to 10 ' Create 10 items

TList1.AddItem "Item" & I

' -2 can be used instead of TList1.NewIndex

TList1.ItemTag(-2) = Rnd(I)

Next I

Note that there is only one tag value per item but it can be of any type.

The code below sets and gets values of various types for 4 items:

TList1.ItemTag(0) = I%' Set Integer value

TList1.ItemTag(1) = L& ' Set Long value

TList1.ItemTag(2) = S! ' Set Single value

TList1.ItemTag(3) = L$ ' Set String value

Set TList1.ItemTag(4) = PictureBox.Picture ' Set Picture value

I% = TList1.ItemTag(0) ' Retrieve Integer value

L& = TList1.ItemTag(1) ' Retrieve Long value

S! = TList1.ItemTag(2) ' Retrieve Single value

L$ = TList1.ItemTag(3) ' Retrieve String value

Set PictureBox.Picture = TList1.ItemTag(4) ' Retrieve Picture value

Remarks

Using TList with the ItemTag property is an easy way to create an array of images, which can then be easily saved to a file.

If you need more than one piece of hidden data with an item use the ItemValues property, but if you only need a single additional value associated with each item, the ItemTag property is the simplest solution.

Note that there is a bug in Visual Basic 5.0; it is not possible to assign an object to an array property.

The following code will trigger an error in Visual Basic 5.0, but will execute properly in Visual Basic 4.0:

Dim rsTableContents As RecordSet

…

Set TList1.ItemTag(I) = rsTableContents

Below is a work-around of this bug:
Dim rsTableContents As RecordSet

…

Dim VarTmp

Set VarTmp = rsTableContents

TList1.ItemTag(I) = VarTmp

Data Type

Variant

Item...Value Propertiesxe "ItemType property"

xe "Item...Value properties"

xe "User defined data"
Description

The Item…Value and ItemType used in prior editions of TList still exist in TList 4, and point to another distinct hidden data element. But these properties are now considered to be obsolete and should not be used.

ItemValues and ItemHasValue Propertiesxe "ItemValue property"

xe "ItemHasValue property"

xe "Item...Value properties"

xe "User defined data"
Description

TList supports the storage of associated data with each element in the list. By default this associated data is not displayed, but it may be displayed in columns by setting of the ValueName property of the ColDef object. The associated data may be any Visual Basic data types. If more than one piece of data is associated with an item, use the ItemValues property, but if you have to keep only a single additional value, then use of the ItemTag property is the simplest solution.

When used with a single parameter, ItemValues property returns a TListValues object which is a collection of TListValue objects.

When used with 2 parameters, ItemValues property returns a TListValue object, which is a container for one piece of additional data.

The ItemHasValue property determines whether data with a given name exists. It also can be used to remove data specified by a name data.

Not available at design time.

Syntax

[form.]TList.ItemValues(ByVal Itemindex&)

[form.]TList.ItemValues(ByVal Itemindex&, ByVal ValueName As Variant)

 [form.]TList.ItemHasValue(ByVal Itemindex&, ByVal ValueName As Variant) [= bool%]

Example

Note You may read from this property without explicately referencing the Value property:

TList1.ItemValues(100, "LastName")

'Is equivalent to

TList1.ItemValues(100, "LastName").Value

But, you have to use the full form to assign a value:

TList1.ItemValues(100, "LastName").Value = "Fred"

To assign some associated data with item 100:

TList1.ItemValues(100, "LastName").Value = "Fred"

TList1.ItemValues(100, 5).Value = "Henry"

TList1.ItemValues(100, 6).Value = 59

To assign the value 666 to all associated data for item 100:

Dim TListValues1 As TListValues

'TList1.ItemValues(100) returns a TListValues object

TListValues1 = TList1.ItemValues(100)

Dim X As TListValue

For Each X In TListValues1

X = 666 ' Here you can use short form not X.Value.

Next

Rewritten in shorter form:

Dim X As TListValue

For Each X In TList1.ItemValues(100)

X = 666 ' Here you can use short form not X.Value.

Next

This code removes all associated data:

Dim X As TListValue

For Each X In TList1.ItemValues(100)

TList1.ItemHasValue(100, X.ValueName) = False

Next

Data Type

Object

ItemVirtualParent and ItemVirtualCount Propertiesxe "ItemVirtualParent property"

xe "ItemVirtualCount property"

xe "Virtual Items"
Description

TList supports virtual items and nested virtual items. Virtual items are items which are not always kept in memory. The necessary data is requested by TList as needed using the ItemQueryData event, and is removed from memory when no longer needed (for instance when the virtual item's parent item is collapsed).

The ItemVirtualParent property returns a True/False value indicating whether an item's children are Virtual.

The ItemVirtualCount property determines how many virtual children a given item has.

Not available at design time.

Syntax

[form.]TList.ItemVirtualParent(ByVal Itemindex&) [= bool%]
[form.]TList.ItemVirtualCount(ByVal Itemindex&) [= VirtualItemCount%]
Example

Below is a sample, which adds a thousand virtual subordinates for an item:

TList1.ItemVirtualCount(2)= 1000

Remarks

The ItemQueryData event is generated each time TList needs data to display a virtual item (as when a virtual item's parent is expanded).

If ItemVirtualCount property is set for an item which has ItemVirtualParent property set to False, the ItemVirtualParent property is automatically reset to True.

If ItemVirtualCount is set to a value less than the number of virtual children already in memory, excess children are removed from the list.

See Also

The ItemQueryData event

ItemUrl Propertyxe "ItemUrl property"

xe "URL"

xe "WWW"

xe "AutoNavigate object"
Description

TList’s Web Auto Navigation feature uses relative URLs stored in ItemUrl property to navigate to a web site when a user double-clicks on an item. See WebAutoNavigate property for details.

Not available at design time.

Syntax

[form.]TList.ItemUrl(ByVal Itemindex&) [= String$]
Example

Below is a sample which points to a very interesting web page:

TList1.ItemUrL(2)= "http://www.bennet-tec.com/common/whoarewe.htm"

Data Type

String

HitTest Methodxe "HitTest method"
Description

This method determines what graphical TList object is under the mouse cursor.

Syntax

[form.]TList.HitTest(

[image: image108.wmf]ByVal I As Single, ByVal Y As Single,

[image: image109.wmf]TargetObject As Variant) As Long
Settings

The HitTest method return value is one of the following:

Setting
Value
Description

TLHITTEST_ERROR
0
HitTest failed or hits empty space on the control. TargetObject is not set.

TLHITTEST_ITEM
1
HitTest hits an item. TargetObject gets long index of the item.

TLHITTEST_ITEMTEXT
2
HitTest hits item text. TargetObject gets long index of the item.

TLHITTEST_ITEMCELLPICTURE
3
HitTest hits an item cell picture. TargetObject gets long index of the item.

TLHITTEST_ITEMPICTURE
4
HitTest hits a picture. TargetObject gets long index of the item.

TLHITTEST_ITEMPMPICTURE
5
HitTest hits the plus minus picture. TargetObject gets long index of the item.

TLHITTEST_ITEMMARK
6
HitTest hits the mark picture. TargetObject gets long index of the item.

TLHITTEST_GRIDLINES
7
HitTest hits a grid line. TargetObject gets a reference to TListGridCell which owns the line.

TLHITTEST_GRIDCELL
8
HitTest hits a cell. TargetObject gets a reference to TListGridCell.

TLHITTEST_GRIDCELLPICTURE
9
HitTest hits a cell picture. TargetObject gets a reference to TListGridCell.

TLHITTEST_GRIDCELLTEXT
10
HitTest hits a cell text. TargetObject gets a reference to TListGridCell.

KeyDown and KeyUp Eventsxe "KeyUp event"

xe "KeyDown event"
Description

These events occur when the user presses (KeyDown) or releases (KeyUp) a key while a TList control has the focus. (To interpret ANSI characters, use the KeyPress event.)

Syntax

Sub TList_KeyDown([Index As Integer], KeyCode As Integer,

[image: image110.wmf]Shift As Integer)

Sub TList_KeyUp([Index As Integer], KeyCode As Integer,

[image: image111.wmf]Shift As Integer)

Remarks

Setting the KeyCode = 0 during the KeyDown event will prevent end user navigation through the tree using the cursor keys.

For more information, see the description of the KeyDown and KeyUp events in the Microsoft Visual Basic Language Reference.

KeyPress Eventxe "KeyPress event"
Description

This event occurs when the user presses and releases an ANSI key.

Syntax

Sub TList_KeyPress([Index As Integer], KeyAscii As Integer)

Remarks

For more information, see the description of the KeyPress event in the Microsoft Visual Basic Language Reference.

Left Propertyxe "Left property"
Description

Determines the distance between TList and the left edge of its container.

Syntax

[form.]TList.Left [= numeric_expr]

Remarks

For more information, see the description of the Left property in the Microsoft Visual Basic Language Reference.
Data Type

Single

LevelDefs Propertyxe "LevelDefs property"
Description

LevelDefs is an array property of TListLevelDef objects used to specify default settings for all items of a given hierarchic indentation level (0 to 255). Most font and color attibute properties may be applied to the LevelDefObject.

Syntax

[form.]TList.LevelDefs(Index As Short) [= TListLevelDef Object]

Settings

Returns an object of TListLevelDef type. The example below sets background color for all items with indentation 4 to green color:

TList1.LevelDefs(4).BackColor = QBColor(2)

List Propertyxe "List property"
Description

The List property is a string array. Each element of the array contains the text associated with and displayed for corresponding items in the TList control.

Note that this same text is also used in determining the FullPath property and in setting or reading the CurrentParent property.

Not available at design-time; read/write at run time.

Syntax

[form.]TList.List(index&)[= string_expression$]

Remarks

Setting the List property visibly updates the control unless the Redraw property is set to False.

Elements of the List are indexed as specified by the current setting of the CurrentIndexMethod property.

TList.Text is equivalent to TList.List(TList.ListIndex).

Data Type

String (Array)

ListCount Propertyxe "ListCount property"
Description

Depending on the method of indexing currently in use (see the CurrentIndexMethod property), the ListCount property specifies:

1. total number of items in a list, for first method of indexing.

2. total number of visible items in a list for second method of indexing. (Visible items are items whose parents are expanded and whose ItemAlwaysHidden property is set to False.

3. total number of items in the current parent for third method of indexing.

Not available at design time and read-only at run time.

Syntax

[form.]TList.ListCount
Data Type

Long

ListCountEx Property xe "ListCountEx property"
Description

ListCountEx returns the number subordinates of a given item.

Not available at design time, read-only at run time.

Syntax

[form.]TList.ListCountEx(index&)
Remarks

If Index is set to -1, the ListCountEx property returns the total number of items in the list (as defined by the CurrentIndexMethod property). In this case the result is the same as reading the ListCount property.

Data Type

Long

ListIndex Propertyxe "ListIndex property"
Description

The property determines the index of the currently selected item in the control.

With the MultiSelect property set to True, ListIndex sets or returns the index of the item having the focus rectangle.

Not available at design time, read-write at run-time.

Syntax

[form.]TList.ListIndex[= index&]

Settings

The ListIndex property settings are:

Setting
Description

-1
(Default) Indicates that no item is currently selected. Note - It is NOT possible to set ListIndex to this value, a value of -1 may only be read prior to any programmatic or end-user selection.

(0
A number indicating the index of the currently selected item.

Remarks

You can use this property to set the focus rectangle to the item at the specified index in a multiple-selection mode. The item may or may not be selected in this case.

Setting the ListIndex property resets the CurrentParent to point to the parent of the ListIndex item.

Setting of the ListIndex property updates the control, unless the Redraw property is set to False.

Data Type

Long

LoadAndAdd Property xe "Loading Trees"

xe "File I/O"

xe "LoadAndAdd property"
Description

This property loads Tree data from a file, adding it as a subordinate to the item pointed to by Index.

Write only at run-time, not available at design time.

Syntax

[form.]TList.LoadAndAdd(index&) = FileHandle%

Remarks

If you specify index of -1 the Tree data are added to the end of the list (as defined by the CurrentIndexMethod property).

Note Tree data from several TLists or tree buffers may be stored in a single file. The data is stored sequentially.

Example

Dim FreeHandle%

FreeHandle% = FreeFile

' Open file for input.

Open "e:\MyTListFile.tlt" For Binary Access Read As FreeHandle%

TList1.LoadAndAdd(-1) = FreeHandle%

Close FreeHandle% ' Close file.

LoadAndInsert Property xe "Loading Trees"

xe "File I/O"

xe "LoadAndInsert property"

xe "Adding items"
Description

The property loads Tree data from a file, adding it as a peer immediately before the item pointed to by the specified Index.

Write only at run-time, not available at design time.

Syntax

[form.]TList.LoadAndInsert(index&) = FileHandle%

Remarks

If you specify index of -1 the Tree data are added to the end of the list.

Note Tree data from several TLists or tree buffers may be stored in a given file. The data is stored sequentially.

Example

Dim FreeHandle%

FreeHandle% = FreeFile

' Open file for input.

Open "e:\MyTListFile.tlt" For Binary Access Read As FreeHandle%

TList1.LoadAndInsert(-1) = FreeHandle%

Close FreeHandle% ' Close file.

LoadBuffer Methodxe "Loading Trees"

xe "File I/O"

xe "tree buffer"

xe "LoadBuffer method"

xe "TListLoadBuffer function"
Description

The method loads tree data from a file to a tree buffer. Several tree buffers may be stored in the same file. The data is stored sequentially so to get to the third buffer, load and discard the first two.

The return value is zero if the function is successful. Otherwise, the return value is an error code.

Not available at design time.

Syntax

[form.]TList1.LoadBuffer(hTreeBuffer&, ByVal nFile As Integer) As Integer
Example

Dim Dummy%, hTreeBuffer%, FreeHandle%

FreeHandle% = FreeFile

' Open file for input.

Open "c:\MyTListFile.tlt" For Binary Access Read As FreeHandle%

...

Dummy% = TList1.LoadBuffer(hTreeBuffer, FreeHandle%)

if Dummy% <> 0 then ' error

...

Close FreeHandle% ' Close file

LoadData Method xe "LoadData method"

xe "File I/O"

xe "Adding items"
Description

This property loads TList properties and data from a file compatible with the SaveData method. LoadData method loads not only TList’s tree structure (items), but TList’s properties settings like FontItalic, ViewStyle etc.

Files loaded by LoadData can be created either by SaveData method or other TList's SaveXXX properties. But files created with SaveData can be loaded back ONLY by LoadData method.

Files loaded with LoadData method can be created by TDesigner application.

All properties will be changed after loading from a file.

Write only at run-time, not available at design time.

Syntax

[form.]TList.LoadData(FileName As String) As Integer
Remarks

The LoadData method returns one of the following values:

Setting
Description

0
Succeeded.

1
Read File Error.

2
File Not Found.

LostFocus Eventxe "LostFocus event"
Description

This event occurs when the TList control loses focus.

Syntax

Sub TList_LostFocus([Index As Integer])

Remarks

For more information, see the description of the LostFocus event in the Microsoft Visual Basic On-Line Help.

MarkClick and MarkDblClick Events xe "Marks"

xe "MarkClick event"

xe "MarkDblClick event"
Description

These events are generated when a mark picture associated with an item is clicked or double clicked.

Syntax

Sub TList1_MarkClick ([Index As Integer,] ByVal I As Long)
Sub TList1_MarkDblClick ([Index As Integer,] ByVal I As Long)
Remarks

This event passes I, the index of the item in the list whose mark picture was clicked or double-clicked.

MarkedItemsAlwaysHidden Propertyxe "MarkedItemsAlwaysHidden property"

xe "Marks"

xe "Display"

xe "Hidden Items"
Description

The MarkedItemsAlwaysHidden property is an array of 256 elements (0:255) containing boolean values.

The MarkedItemsAlwaysHidden property specifies whether items whose ItemMark property is equal to a given Mark are always hidden when the ShowHiddenItems property is False (regardless of the expand state of the tree).

Not available at design time.

Syntax

[form.]TList. MarkedItemsAlwaysHidden(MarkIndex&)[= bool%]

Remarks

If a parent item is Alwayshidden, its children can never be seen regardless of its expand state or their ItemAlwaysHidden state.

Data Type

Boolean

MarkPicture Property xe "Marks"

xe "Display"

xe "MarkPicture property"
Description

The MarkPicture property is an array containing up to 256 distinct pictures.

The MarkPicture property specifies the picture associated with a given Mark. A Mark can be associated with a given TList item using the ItemMark property.

MarkPictures are displayed along the far left of the control lined up horizontally with the list elements they are associated with. Typically, MarkPictures are used to visually categorize items.

Not available at design time.

Syntax

[form.]TList.MarkPicture(MarkIndex&)[= picture%]

Remarks

The MarkPicture is only visible when the ViewStyleEx property is set to 2 or 3. Under these conditions, and when Redraw is set to True, setting the MarkPicture property will update the display of each item which associated with the mark to show the new image.

A default MarkPicture may be assigned using the PictureMark property.

Note The PictureMark property and MarkPicture(0) refer to the same picture. If you change PictureMark, it means that you also change the first item of MarkPicture array.

Example

The following example shows how to set the mark picture of TList items:

TList1.MarkPicture(MarkIndex&) = LoadPicture("PIC.BMP")

TList1.ItemMark(5) = MarkIndex&

TList1.ItemMark(505) = MarkIndex&

TList1.ItemMark(1005) = MarkIndex&

MarkTag Property xe "Marks"

xe "User defined data"

xe "MarkTag property"
Description

The MarkTag property is an array property of 256 elements (0:256) containing string values.

The MarkTag property specifies the text associated with a given Mark. A Mark can be associated with a given TList item using the ItemMark property.

Not available at design time.

Syntax

[form.]TList.MarkTag(MarkIndex&)[=Text$]

Example

The following example shows how to get the tag of the mark associated with an item:

MarkIndex& = TList1.ItemMark(1005)

MarkTag$ = TList1.MarkTag(MarkIndex&)

MarkWidth and MarkHeight Propertiesxe "Display"

xe "Marks"

xe "MarkWidth property"

xe "MarkHeight property"
Description

These properties specify the screen display size of mark pictures. If MarkWidth property is set to 0, then the width of the default mark is used. If MarkHeight property is set to 0, then the height of the default mark is used. The defaults are based on the dimensions of the picture held in the PictureMark property. These properties are measured in terms of the units of TList’s container. Not available at design time.

Syntax

[form.]TList.MarkWidth[= Width&]

[form.]TList.MarkHeight[= Height&]

Default Value:

15 pixels

Remarks

Keep in mind that these properties determine the size of all mark pictures. If you have MarkHeight and MarkWidth properties set to zero, and the PictureMark property doesn’t have a picture, then the height and width of all mark pictures will be 0 and no mark pictures will be displayed.

MoveTo Methodxe "MoveTo method"

xe "TListColDef object"
Applies To

TListColDef Object

Description

This method changes a column’s position. The order in which columns are displayed is specified by a position of the TListColDef object in TListColDefs object collection.
Syntax

TListColDefObject.MoveTo (ByVal NewPosition As Long)

Parameters

The MoveTo method syntax has these parts:

Part
Description

NewPosition
Required. A Long representing the new position within the TListColDefs object collection.

For the first col, NewPosition = 0.

To move the column to the end of the list set NewPosition to –1.

MouseCol and MouseRow Propertiesxe "MouseCol property"

xe "MouseRow property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

The properties return the current mouse position, in row and column coordinates. Read-only.

Syntax

TListGridObject.MouseCol
TListGridObject.MouseRow
 [form.]TList.Grid.MouseCol
[form.]TList.Grid.MouseRow
 [form.]TList.ItemGrid(ItemIndex).MouseCol
[form.]TList.ItemGrid(ItemIndex).MouseRow
Remarks

You can use these properties in code to determine where the mouse is. These properties are especially useful to display context-sensitive help on the contents of individual cells or to test whether the user has clicked on a row or column.

MouseDown and MouseUp Eventsxe "MouseDown event"

xe "MouseUp event"
Description

These events occur when the user presses (MouseDown) or releases (MouseUp) a mouse button over a TList control.

Syntax

Sub TList_MouseDown([Index As Integer], Button As Integer,

[image: image112.wmf]Shift As Integer, X As Single, Y As Single)

Sub TList_MouseUp([Index As Integer], Button As Integer,

[image: image113.wmf]Shift As Integer, X As Single, Y As Single)

Remarks

For more information, see the description of the MouseDown and MouseUp events in the Microsoft Visual Basic Language Reference.

See Also

GetItemByXY function

MouseMove Eventxe "MouseMove event"
Description

This event occurs when the user moves the cursor over a TList control.

Syntax

Sub TList_MouseMove([Index As Integer], Button As Integer,

[image: image114.wmf]Shift As Integer, X As Single, Y As Single)

Remarks

For more information, see the description of the MouseMove event in the Microsoft Visual Basic On-Line Help.

See Also

GetItemByXY function

MousePointer Propertyxe "MousePointer property"
Description

This property determines the mouse pointer that is displayed when over the control.

Syntax

[form.]TList.MousePointer[= numeric_expr]

Remarks

For more information, see the description of the MousePointer property in the Microsoft Visual Basic On-Line Help.
Data Type

Integer

Move Methodxe "Move method"
Description

This method moves and/or resizes the TList control.

Syntax

TList.Move left[, top[, width[, height]]]

Remarks

For more information, see the description of the Move method in the Microsoft Visual Basic Language Reference.
MSOutlineAdd Property xe "Compatibility"

xe "AddItem method"

xe "MSOutlineAdd property"
Description

The setting of MSOutlineAdd determines the behavior of the AddItem method.

Set to True, TList implements the AddItem method in a method similar to the MSOutline control included with Visual Basic:

When set to False (default), TList implements the AddItem method as defined in the AddItem method.

Syntax

[form.]TList.MSOutlineAdd[= bool%]

Data Type

Boolean

See Also

The AddItem method for further information

MultiLine Propertyxe "MultiLine property"

xe "TListCellDef object"
Applies To

TListCellDef Object

Description

This property specifies whether the object’s data will word wrap based on the width of the column header.

Syntax

TListCellDefObject.MultiLine [= enum%]
[form.]TList.ItemCell(ItemIndex&).MultiLine [= enum%]
Settings

The MultiLine property settings are:

Setting
Value
Description

TLMULTILINE_DEFAULT
-1
Use the control’s DefMultiLine property value.

TLMULTILINE_ON
1
Word wrapping is enabled.

TLMULTILINE_OFF
2
word wrapping is disabled.

MultiSelect Propertyxe "MultiSelect property"

xe "Selection"
Description

The property determines whether a user can make multiple selections in a list box and how the multiple selections can be made.

Read-only at run time.

Syntax

[form.]TList.MultiSelect
Settings

The MultiSelect property settings are:

Setting
Description

0
(Default)Multiple selection is not allowed.

1
Simple multiple selection. A click or the Spacebar selects or deselects an item in the list.

2
Extended multiple selection. Shift+click or Shift+arrow key extends the selection from the previously selected item to the current directory. Ctrl+click selects or deselects an item in the list.

Data Type

Integer

Name Propertyxe "Name property"
Description

This property specifies the name that must be used in code to refer to the TList control. Not available at run time.

Remarks

For more information, see the description of the Name property in the Microsoft Visual Basic On-Line Help.
NewIndex Property xe "NewIndex property"

xe "AddItem method"
Description

The NewIndex property returns the index of item most recently added, or whose indent or shift property was most recently changed. If a number of items were added (for example using the Add property) the NewIndex property will return the index of the first added item.

For a sorted list, use of the NewIndex property is the only way to determine the index of newly added items.

Not available at design time, read only at run time.

Syntax

[form.]TList.NewIndex
Remarks

Note that a special Index value of -3 may also be used to refer to the most recently added item, as in:

TList1.ItemFontName(-3) = "Times New Roman"

This is in fact faster than using the NewIndex property.

Example

TList1.AddItem "August the 15th"

TList1.ItemFontName(TList1.NewIndex) = "Times New Roman"

Data Type

Long

NoIntegralHeight Propertyxe "NoIntegralHeight property"

xe "Display"

xe "FixedSize property"
Description

This property is not supported anymore and does nothing when accessed.

NoPictureRoot Propertyxe "Display"

xe "NoPictureRoot property"
Description

If NoPictureRoot is set to True, the PictureRoot property is ignored and:

· The PictureLeaf property is used as the default image for items having zero indentation and no subordinate items

· The PictureOpen property is used as the default image for items having zero indentation and at least one subordinate item.

Otherwise, the PictureRoot property specifies the default image in each of these cases.

Syntax

[form.]TList.NoPictureRoot [= bool%]

Data Type

Boolean

{QUOTE}OLEDragDrop Event xe "Drag Drop"

xe "OLE Drag Drop"

xe "OLEDragDrop event"
Description

This event occurs when a source component is dropped onto TList when the source component determines that a drop can occur.

Syntax

Sub TList1_OLEDragDrop([Index As Integer,]

[image: image115.wmf]data As TListDataObject,

[image: image116.wmf]effect As Long, button As Integer, shift As Integer,

[image: image117.wmf]x As Single, y As Single)

Remarks

The OLEDragDrop event syntax has these parts:

Part
Description

index
An integer that uniquely identifies a member of a control array.

data
A TListDataObject object containing formats that the source will provide and possibly the data for those formats.

effect
A long integer set by the target component identifying the action that has been performed (if any), thus allowing the source to take appropriate action if the component was moved (such as the source deleting the data). The possible values are listed in Settings.

button
An integer which acts as a bit field corresponding to the state of a mouse button when it is depressed. The left button is bit 0, the right button is bit 1, and the middle button is bit 2. These bits correspond to the values 1, 2, and 4, respectively.

shift
An integer which acts as a bit field corresponding to the state of the SHIFT, CTRL, and ALT keys when they are depressed. The SHIFT key is bit 0, the CTRL key is bit 1, and the ALT key is bit 2. These bits correspond to the values 1, 2, and 4, respectively. The shift parameter indicates the state of these keys. For example, if both the CTRL and ALT keys were depressed, the value of shift would be 6.

x, y
A number that specifies the current horizontal (x) and vertical (y) position of the mouse pointer within the target control. These coordinates are always expressed in terms of the target's coordinate system as set by the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties.

Settings

The settings for effect are: {SAMPLE}
Constant
Value
Description

vbDropEffectNone
0
Drop target cannot accept the data.

vbDropEffectCopy
1
Drop results in a copy of data from the source to the target. The original data is unaltered by the drag operation.

vbDropEffectMove
2
Drop results in data being moved from drag source to drop source. The drag source should remove the data from itself after the move.

{QUOTE}OLEDropMode Property xe "Drag Drop"

xe "OLE Drag Drop"

xe "OLEDropMode property"
Description

This property determines whether TList control can be a target in an OLE drag drop operation.

Syntax

[form.]TList.OLEDropMode[= enum%]

Settings

The OLEDropMode property settings are: {SAMPLE}
Setting
Description

0
(Default). (Default) None. The target component does not accept OLE drops and displays the No Drop cursor.

1
Manual. The target component triggers the OLE drop events, allowing the programmer to handle the OLE drop operation in code.

Remarks
TList inspects what is being dragged over it in order to determine which events to trigger; the OLE drag/drop events, or the Visual Basic drag/drop events. There is no collision of components or confusion about which events are fired, since only one type of object can be dragged at a time.

{QUOTE}OLEDragOver Event xe "Drag Drop"

xe "OLE Drag Drop"

xe "OLEDragOver event"
Description

The event occurs when a component is dragged over TList.

Syntax

Sub TList1_OLEDragOver([Index As Integer,]

[image: image118.wmf]data As TListDataObject,

[image: image119.wmf]effect As Long, button As Integer, shift As Integer,

[image: image120.wmf]x As Single, y As Single

[image: image121.wmf]state As Integer)

Remarks

The OLEDragOver event syntax has these parts:

Part
Description

index
An integer that uniquely identifies a member of a control array.

data
A TListDataObject object containing formats that the source will provide and possibly the data for those formats.

effect
A long integer initially set by the source object identifying all effects it supports. This parameter must be correctly set by the target component during this event. The value of effect is determined by logically Or'ing together all active effects (as listed in Settings). The target component should check these effects and other parameters to determine which actions are appropriate for it, and then set this parameter to one of the allowable effects (as specified by the source) to specify which actions will be performed if the user drops the selection on the component. The possible values are listed in Settings.

button
An integer which acts as a bit field corresponding to the state of a mouse button when it is depressed. The left button is bit 0, the right button is bit 1, and the middle button is bit 2. These bits correspond to the values 1, 2, and 4, respectively.

shift
An integer which acts as a bit field corresponding to the state of the SHIFT, CTRL, and ALT keys when they are depressed. The SHIFT key is bit 0, the CTRL key is bit 1, and the ALT key is bit 2. These bits correspond to the values 1, 2, and 4, respectively. The shift parameter indicates the state of these keys. For example, if both the CTRL and ALT keys are depressed, the value of shift would be 6.

x, y
A number that specifies the current horizontal (x) and vertical (y) position of the mouse pointer within the target control. These coordinates are always expressed in terms of the target's coordinate system as set by the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties.

state
An integer that corresponds to the transition state of the control being dragged in relation to a target form or control. The possible values are listed in Settings.

Settings

The settings for effect are:

Constant
Value
Description

vbDropEffectNone
0
Drop target cannot accept the data.

vbDropEffectCopy
1
Drop results in a copy of data from the source to the target. The original data is unaltered by the drag operation.

vbDropEffectMove
2
Drop results in data being moved from drag source to drop source. The drag source should remove the data from itself after the move.

vbDropEffectScroll
2147483648
(&H80000000)
Scrolling is occuring or about to occur in the target component. This value is used in conjunction with the other values. Use it only if you are performing your own scrolling in the target component.

The settings for state are:

Constant
Value
Description

vbEnter
0
Source component is being dragged within the range of a target.

vbLeave
1
Source component is being dragged out of the range of a target.

vbOver
2
Source component has moved from one position in the target to another.

OnDragDrop and OnDragOver Methods xe "Drag Drop"

xe "OnDragDrop method"

xe "OnDragOver method"
Description

The OnDragDrop and OnDragOver functions must be called in the first line in the assoicated DragDrop and DragOver events. This is required to notify TList about these events in any application using the OCX editions where drag/drop operations are performed.

Syntax

[form.]TList.OnDragDrop([index As Integer,] Source As Control, x As Single,
[image: image122.wmf] y As Single)
[form.]TList.OnDragOver([index As Integer,] Source As Control, x As Single,
[image: image123.wmf] y As Single, State As Integer)
Remarks

The OnDragOver and OnDragDrop methods syntax have these parts: {QUOTE}
Part
Description

index
An integer that uniquely identifies a member of a control array.

source
The control being dragged. You can refer to properties and methods with this argument, for example, Source.Visible = False.

x, y
A number that specifies the current horizontal (x) and vertical (y) position of the mouse pointer within the target control. These coordinates are always expressed in terms of the target's coordinate system as set by the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties.

state
An integer that corresponds to the transition state of the control being dragged in relation to a target control:
0 = Enter (source control is being dragged within the range of a target);
1 = Leave (source control is being dragged out of the range of a target);
2 = Over (source control has moved from one position in the target to another).

PasteBuffer Methodxe "tree buffer"

xe "PasteBuffer method"

xe "TListPasteBuffer function"
Description

The PasteBuffer method creates a tree buffer and fills it with information pasted from the clipboard.

The return value is zero if the function is successful. Otherwise, the return value is an error code.

Not available at design time.

Syntax

[form.]TList1.PasteBuffer (hTreeBuffer As Long) As Integer
Remarks

The parameter hTreeBuffer is a variable of a Long type. This variable is filled with a pointer to the clipboard information after the call to the PasteBuffer function.

You can use any TList control to paste any tree buffer.

Parent Propertyxe "Parent property"
Description

This property specifies the form in which the control is located.

Not available at design time and read-only at run time.

Syntax

[form.]TList.Parent
Remarks

For more information, see the description of the Parent property in the Microsoft Visual Basic On-Line Help.
Data Type

Form

ParentItemIndex Propertyxe "ParentItemIndex property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

This property returns an index of the item, which owns the grid. This property always returns –1 for TreeGrid.

Read-only, not available at design-time.

Syntax

TListGridObject.ParentItemIndex
[form.]TList.ItemGrid(ItemIndex&).ParentItemIndex
[form.]TList.Grid.ParentItemIndex (item&)

Data Type

Long

PathSeparator Propertyxe "PathSeparator property"

xe "FullPath property"
Description

The property sets and returns the item delimiter string used when accessing the FullPath property. The default value is the backslash character (\).

Syntax

[form.]TList.PathSeparator[=delimiter$]

Data Type

String

Picture and PictureSelected Propertiesxe "Picture... properties"

xe "Display"

xe "Picture property"

xe "PictureSelected property"

xe "TListCellDef object"
Applies To

TListCellDef object.

Description

These properties set and return the picture associated with a TListCellDef object in normal and selected states. TListCellDef objects are used to specify graphics for grid cells.

Syntax

TListCellDefObject.Picture [=picture]

TListCellDefObject.PictureSelected [=picture]

[form.]TList.Grid.Cells(Ro&, Col&).CellDef.Picture [=picture]

[form.]TList.Grid.Cells(Ro&, Col&).CellDef.PictureSelected [=picture]

[form.]TList.LevelDef(Index%).CellDef.Picture [=picture]

Example

The code below sets pictures which should be shown in a cell:

TList1.Grid.Cells(10, 10).CellDef.Picture =_

LoadPicture("Off.BMP")

TList1.Grid.Cells(10, 10).CellDef.PictureSelected =_

LoadPicture("On.BMP")

Picture... Propertiesxe "Picture... properties"

xe "Display"

xe "NoPictureRoot property"

xe "TListLevelDef object"
Applies To

Picture... properties apply to TList control.

PictureClosed, PictureLeaf, PictureOpen properties apply also to TListLevelDef object.
Description

These properties set and return the picture associated with items in particular states.

The graphic displayed for a given item is most directly determined by the Image and InvImage properties set for that individual item. If however, either of these two properties are not set in code, they are automatically set by TList to the appropriate Picture... properties as determined by the current state of the item (closed, open, root, etc) and the PictureType property.

The PictureInverted property determines the graphic referenced by the InvImage property (an array) corresponding to a given item unless the value of InvImage for that item is otherwise directly set to a non-zero value in code.

The PictureRoot property determines the graphic referenced by the Image property (an array) for an item having a corresponding Shift property value of 0 (such an item has no parents) unless the value of InvImage for that item is otherwise directly set to a non-zero value in code. This may be overridden by use of the NoPictureRoot property

For all non-root items the PictureLeaf property defines the Image property value for items without subordinates, PictureOpen defines the value when there are visible subordinates items, and PictureClosed defines the value for items having all subordinates hidden.

When PictureClosed, PictureLeaf, PictureOpen properties apply to TListLevelDef object they specify default item pictures for items of a given indentation level.

Syntax

[form.]TList.PictureRoot[=picture]

[form.]TList.PictureOpen[=picture]

[form.]TList.PictureClosed[=picture]

[form.]TList.PictureLeaf[=picture]

[form.]TList.PictureInverted[=picture]

[form.]TList.LevelDefs(IndentationLevel&).PictureClosed [=picture]

[form.]TList.LevelDefs(IndentationLevel&).PictureLeaf[=picture]

[form.]TList.LevelDefs(IndentationLevel&).PictureOpen[=picture]

Remarks

These properties can display either bitmap files(*.BMP) or icon files(*.ICO) or metafiles (*.WMF).

Setting of these properties updates the control unless the Redraw property is set to False.

At run time, any of these properties can be set to any other object's DragIcon, Icon, Image, or Picture property, or you can assign it the graphic returned by the LoadPicture function. These properties can only be assigned directly.

No picture is displayed if the control's ViewStyle property is set to a value greater than 3.

PicturePalette Propertyxe "Picture... properties"

xe "PicturePalette property"

xe "Display"
Description

This property sets and returns the picture which palette is used to display all pictures in TList.

Syntax

[form.]TList.PicturePalette[=picture]

Remarks

This property can be only DIB file (*.DIB).

PicInMultiLine Property xe "MultiLine property"

xe "PicInMultiLine property"
Description

Setting the PicInMultiLine property determines the vertical alignment of a picture associated with an item having multiple lines of text (see ItemMultiLine and WidthOfText properties).

Syntax

[form.]TList.PicInMultiLine[= enum%]

Settings

The PicInMultiLine property settings are:

Setting
Description

0
(Default) Picture at top.

1
Picture in the middle.

2
Picture at the bottom

PictureClick Eventxe "PictureClick event"
Description

This event is generated whenever a picture associated with an item is clicked.

Syntax

Sub TList_PictureClick([Index As Integer])

Remarks

To determine the item whose picture was double-clicked use the ListIndex property. {SAMPLE}
PictureDblClick Eventxe "PictureDblClick event"
Description

The event is generated whenever a picture associated with an item is double-clicked.

Syntax

Sub TList_PictureDblClick([Index As Integer])

Remarks

To determine the item whose picture was double-clicked use the ListIndex property.

PictureMark Propertyxe "PictureMark property"

xe "Display"

xe "Marks"
Description

This property specifies the default picture assigned to elements of the MarkPicture array.

Syntax

[form.]TList.PictureMark [= picture]

Remarks

To display mark pictures, the ViewStyleEx property must be set to 2 or 3.

Data Type

Object

See Also

ItemMark, MarkPicture, MarkTag, MarkHeight, MarkWidth, and ViewStyleEx
PicturePlus and PictureMinus Properties xe "Display"

xe "PlusMinus pictures"

xe "PicturePlus property"

xe "PictureMinus property"

xe "Expanding and Collapsing"
Description

The PicturePlus and PictureMinus properties are used to designate images displayed within the tree lines for items which can be expanded or collapsed.

The PictureMinus property defines the picture used for an item which can be collapsed to hide its currently displayed children. The PicturePlus property defines the picture used for an item which can be expanded to display its currently hidden children.

If PicturePlus / PictureMinus property is not set to any picture, TList draws a default plus and/or minus image resembling those used by the Windows 95 Explorer .

Syntax

[form.]TList.PicturePlus [= Picture]
[form.]TList.PictureMinus [= Picture]
Remarks

The result of double clicking on the Plus or Minus picture is controlled by TList’s AutoExpand property.

To display plus/minus pictures, the ViewStyleEx property must be set to 1 or 2.

See Also

PicturePlus, PictureMinus, AutoExpand, and ViewStyleEx
PictureType Propertyxe "PictureType property"
Description

This property sets and returns the type of picture that appears for each item in the TList control.

Syntax

[form.]TList.PictureType [= enum%]
Settings

The PictureType property settings are:

Setting
Description

0
(Default) The picture that appears for each item is determined by the type of the item.

1
The picture of each item is specified by the PictureRoot property

2
The picture of each item is specified by the PictureOpen property

3
The picture of each item is specified by the PictureClosed property

4
The picture of each item is specified by the PictureLeaf property

Remarks

Setting of the PictureType property updates the control unless the Redraw property is set to False.

Data Type

Integer

PlusMinusClick and PlusMinusDblClick Events xe "Expanding and Collapsing"

xe "PlusMinusClick event"

xe "PlusMinusDblClick event"
Description

These events are generated whenever a plus/minus picture associated with an item is clicked or double clicked.

Declarations

Sub TList_PlusMinusClick([Index As Integer], ByVal I As Long)
Sub TList_PlusMinusDblClick([Index As Integer], ByVal I As Long)

Redraw Propertyxe "Redraw property"

xe "Display"
Description

This property determines whether the TList control displays updates as they are made. Updates are not displayed while the Redraw property is False. Upon setting Redraw to True, any changes, will be displayed, as will any future changes made while the property remains True. Setting Redraw to True doesn't always cause updating of the control. Only changed items will be updated.

Not available at design time.

Syntax

[form.]TList.Redraw[= {True/False}]

Remarks

It is generally advisable to set the Redraw property to False before making changes to the control which cause numerous repaint events. Then reset Redraw back to True when you are done. For example:

TList1.Redraw = False

For I% = 1 to 1000

TList1.AddItem "Item" & I%

Next

TList1.Redraw = True

The Refresh xe "Refresh method"method automatically sets the Redraw property to True.

It is possible to use recursive calls to the Redraw property:

TList1.Redraw = False

AddItemsProcedure

TList1.Redraw = True

...

Sub AddItemsProcedure

TList1.Redraw = False

For I% = 1 to 1000

TList1.AddItem "Item" & I%

Next

TList1.Redraw = True

End Sub

TList counts the number of calls to Redraw property and repaints itself only when the Redraw property was reset to True as many times as it had been set to False .

Data Type

Boolean

Refresh Methodxe "Refresh method"
Description

This method updates a control at run time.

Syntax

TList.Refresh
Remarks

For more information, see the description of the Refresh method in the Microsoft Visual Basic On-Line Help.
RefreshItems Methodxe "RefreshItems method"

xe "Virtual Items"

xe "ItemQueryData event"
Description

This method generates ItemQueryData for the specified range of virtual items.

Syntax

Sub TList.RefreshItems(ByVal IndexFrom As Long, ByVal IndexTo As Long)
Example

' This example updates virtual children of a given parent

NumChildren = TList1.ItemVirtualCount(ParentID)

If NumChildren > 0 then

TList1.RefreshItems ParentID+1, ParentID + NumChildren

End If

RemoveItem Methodxe "RemoveItem method"
Description

The method removes an item and subordinate items from the TList control at run time.

Syntax

TList.RemoveItem index&
Remarks

The RemoveItem method removes both the specified item and all its subordinate items.

Calls to this method update the control unless the Redraw property is set to False. {SAMPLE}
RemoveRow Methodxe "RemoveRow method"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid Object

Description

This method removes a row from a Grid object. The RemoveRow method doesn't support named arguments.
Syntax

TListGridObject.RemoveRow (ByVal index As Long)

Parameters

The RemoveRow method syntax has these parts:

Part
Description

Index
Required. A Long representing the position within the control from where the row is removed. For the first row, index=0.

RequestEditing Event xe "RequestEditing event"

xe "Editing"

xe "In-place Editing"
Description

This event is triggered when the ItemEditText property is set to 2 (BEGIN) but before any actual editing takes place.

Syntax

Sub TList1_ RequestEditing ([Index As Integer,] Cancel As Integer,

[image: image124.wmf] ByVal ItemIndex As Long, TextToEdit As String, Options As Integer)
Parameters

Parameter
Description

Cancel
Initially set to False. If you set it to True, editing is canceled.

ItemIndex
The index of the item being edited.

TextToEdit
Initially this is the same as text of the item being edited, but you can modify this text, changing what is seen in the edit box.

Option
This parameter is a sum composed of specified flag bits (see following table), you can change any of these settings in the RequestEditing event procedure.

Option parameter flags:

Constant
Value
Description

TL_REQED_LEFT
&H0
Left aligns text.

TL_REQED_CENTER
&H1
Centers text.

TL_REQED_RIGHT
&H2
Right aligns text.

TL_REQED_MULTILINE
&H4
Designates multiline editing.

TL_REQED_UPPERCASE
&H8
Converts all characters to uppercase as they are typed.

TL_REQED_LOWERCASE
&H10
Converts all characters to lowercase as they are typed..

TL_REQED_PASSWORD
&H20
Displays all characters as an asterisk (*) as they are typed.

TL_REQED_AUTOVSCROLL
&H40
If this flag is specified, the control automatically scrolls horizontally when the caret goes past the right edge of the control. To start a new line, the user must press ENTER.

TL_REQED_AUTOHSCROLL
&H80
If this flag is not specified, the control automatically wraps words to the beginning of the next line when necessary. A new line is also started if the user presses ENTER. The position of the wordwrap is determined by the item size.

TL_REQED_READONLY
&H800
Prevents the user from typing or editing text.

TL_REQED_STDCOLORS
&H100
Displays edited item using standard colors.

TL_REQED_BORDER
&H200
Draws border around edited item.

TL_REQED_VSCROLLER
&H400
Displays vertical scrollbar while item is edited.

TL_REQED_HSCROLLER
&H2000
Displays horizontal scrollbar while item is edited.

RowHeight Propertyxe "RowHeight property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

This property returns or sets the height of a given row of a grid. Not available at design time.

Syntax

TListGridObject.RowHeight(Row&) [= number&]
[form.]TList.Grid.RowHeight(Row&) [= number&]
[form.]TList.ItemGrid(ItemIndex&).RowHeight(Row&) [= number&]
Settings

The RowHeight property settings are:

Setting
Description

-1
(Default) The row height will be calculated. Row zero cannot be set to this value.

> -1
Specifies the height of a row

Data Type

Single

See Also

ItemHeight property

RowTitleCellDef Propertyxe "RowTitleCellDef property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

This property returns a reference to a TListCellDef object. This object collects all properties which determine the default formatting for row titles. This property doesn’t affect formatting of either other grid cells or column titles.

Syntax

 [form.]TList1.Grid.ColTitleCellDef
[form.]TList1.ItemGrid(ItemIndex&).ColTitleCellDef
Example

TList1.Grid.ColTitleCellDef.BackColor = RGB(127, 127, 127)

RowTitlesWidth Propertyxe "RowTitlesWidth property"

xe "TListGrid object"

xe "Grid"
Applies To

TListGrid object

Description

This property returns or sets the width of the row titles area of a grid (the first column shown if ShowRowTitles is set to True). Measured in twips. Not available at design time.

Syntax

TListGridObject.RowTitlesWidth [= number&]
[form.]TList.Grid.RowTitlesWidth [= number&]
[form.]TList.ItemGrid(ItemIndex&).RowTitlesWidth [= number&]
Data Type

Single

Save Property xe "Saving Trees"

xe "Storing Trees"

xe "File I/O"

xe "Save property"
Description

This property saves the item pointed to by its index and its subordinates to a file.

Write only at run-time, not available at design time.

Syntax

[form.]TList1.Save(index&) = FileHandle%
Remarks

TList1.Save(-1) will save the entire contents of the control.

Example

Dim FreeHandle%

FreeHandle% = FreeFile

' Open file for output.

Open "e:\MyTListFile.tlt" For Binary Access Write As FreeHandle%

TList1.Save(-1) = FreeHandle%

Close FreeHandle% ' Close file.

SaveBuffer Methodxe "Saving Trees"

xe "Storing Trees"

xe "File I/O"

xe "SaveBuffer method"

xe "TListSaveBuffer function"

xe "tree buffer"
Description

This function saves a tree buffer to a file. Several tree buffers may be saved to the same file. The data are stored sequentially.

The return value is zero if the function is successful. Otherwise, the return value is an error code.

Not available at design time.

Syntax

[form.]TList1.SaveBuffer (ByVal hTreeBuffer As Long, ByVal nFile As Integer) As Integer
Example

Dim Dummy%, hTreeBuffer%, FreeHandle%

FreeHandle% = FreeFile

' Open file for output.

Open "c:\MyTListFile.tlt" For Binary Access Write As FreeHandle%

...

Dummy% = TList1.SaveBuffer(hTreeBuffer, FreeHandle%)

if Dummy% <> 0 then ' error

...

Close FreeHandle% ' Close file

See Also

File/IO in Using TList for further information

SaveData Method xe "SaveData method" xe "File I/O"
Description

This method saves TList properties and data to a file compatible with the LoadData method. SaveData method saves not only TList’s tree structure (items), but TList’s properties settings like FontItalic, ViewStyle etc.

Files created by SaveData can be loaded only by the LoadData method, other TList LoadXXX properties won’t work here.

Files created with SaveData method can be viewed and edited by the TDesigner application.

Syntax

[form.]TList.SaveData(FileName As String) As Integer
Remarks

The SaveData method returns one of the following values:

Setting
Description

0
Succeeded.

1
File Write Error.

2
File Not Found.

SaveOne Property xe "Saving Trees"

xe "Storing Trees"

xe "File I/O"

xe "SaveOne property"
Description

This property saves an item pointed to by its index, without its subordinates, to a file.

Write only at run-time, not available at design time.

Syntax

[form.]TList.SaveOne(index&) = FileHandle%

Example

Dim FreeHandle%

FreeHandle% = FreeFile

' Open file for output.

Open "e:\MyTListFile.tlt" For Binary Access Write As FreeHandle%

TList1.SaveOne(300) = FreeHandle%

Close FreeHandle% ' Close file.

SaveSub Property xe "Saving Trees"

xe "Storing Trees"

xe "File I/O"

xe "SaveSub property"
Description

This property saves the subordinates of an item pointed to by its index to a file.

Write only at run-time, not available at design time.

Syntax

[form.]TList.SaveSub(index&) = FileHandle%

Example

Dim FreeHandle%

FreeHandle% = FreeFile

' Open file for output.

Open "e:\MyTListFile.tlt" For Binary Access Write As FreeHandle%

TList1.SaveSub(300) = FreeHandle%

Close FreeHandle% ' Close file.

Scrollbars Property xe "Scrolling"

xe "Scrollbars property"

xe "Display"
Description

The ScrollBars property determines whether TList scrollbars are displayed. This property is generally set in the design time properties window.

Read-only at run-time.

Syntax

[form.]TList.Scrollbars
Settings

The Scrollbars property settings are:

Setting
Description

0
(Default) Neither scrollbar is displayed.

1
Only the horizontal scrollbar is displayed.

2
Only the vertical scrollbar is displayed.

3
Both scrollbars are displayed.

Remarks

This property only enables scrollbars, it does not force them to be visible when not needed. By default the specified scrollbars are shown only as required. To show the desired scrollbars all the time set the DisableNoScroll property to True.

ScrollHorz Propertyxe "Scrolling"

xe "ScrollHorz property"
Description

This property returns or sets the Horizontal scroll position in Percent (%) of the maximum horizontal scroll value).

Run-time only.

Syntax

[form.]TList.ScrollHorz[=int %]{SAMPLE}
SelBackColor and SelForeColor Propertiesxe "SelBackColor property"

xe "SelForeColor property"

xe "Selection"

xe "TListCellDef object"
Applies To

TList control

TListCellDef object

Description

When applied to a TList control:

· SelBackColor determines the background color of a selected item.

· SelForeColor determines the foreground color used to display text in a selected item.

When applied to a TListCellDef object:

· SelBackColor determines the background color of a selected cell.

· SelForeColor determines the foreground color used to display text in a selected cell.

Syntax

[form.]TList.SelBackColor[= color&]

[form.]TList.SelForeColor[= color&]

[form.]TList.Grid.Cells(Row&, Col&).SelBackColor[= color&]

[form.]TList.Grid.Cells(Row&, Col&).SelForeColor[= color&]

Remarks

The default settings at design time are:

SelBackColor = HIGHLIGHT 'system default backcolor for selected items

SelForeColor = HIGHLIGHT_TEXT ' system forecolor for selected items

For the value of these constants, refer to the CONSTANT.TXT file supplied with Visual Basic.

Setting of these properties updates the control unless the Redraw property is set to False.

Data Type

Long

Selected Propertyxe "Selected property"

xe "Selection"
Description

This property determines the selection status of an item in a list box. This property is an array of Boolean values with the same number of items as the List property. You can set this property only while in multiple selection mode, defined by the MultiSelect property. With MultiSelect set False, setting of Selected has no effect and the return value is always False.

Not available at design time.

Syntax

[form.]TList.Selected(index&)[= {True|False}]

Settings

The Selected property settings are:

Setting
Description

True
The item is selected.

False
(Default) The item is not selected.

Remarks

This property is particularly useful when users want to make multiple selections. You can quickly check if an item in the list is selected. You can also use this property to select or deselect items in a list.

If only one item is selected, you can use the ListIndex property to get the index of the selected item. However, in a multiple selection, the ListIndex property returns the index of the item contained within the focus rectangle, whether or not the item is actually selected.

Only visible items can be selected. An item whose parent is collapsed can not be selected.

Setting of Selected property updates the control unless the Redraw property is set to False.

Data Type

Boolean

See Also

SelItemCount and SelItemIndex properties which return the number of selected items and the indexes of all selected items

SelectEx Property xe "Selection"

xe "SelectEx property"
Description

Setting the SelectEx property selects all subordinate elements of an item specified by its index. If the index is set to -1, it selects the entire list (as defined by the CurrentIndexMethod property).

Not available at design time, write-only at run time.

Syntax

[form.]TList.SelectEx(index&) [= {True|False}]

Example

'Copy all subordinates of item 5 to a second

' instance of TList

TList1.CurrentIndexMethod = 2

TList1.SelectEx(5) = -1

Tree_buffer& = TList1.CopySelected

TList2.Add (-1) = Tree_buffer&

TList2.FreeBuffer(Tree_buffer&)

Data Type

Boolean

SelItemCount Property xe "Selection"

xe "SelItemCount property"
Description

The SelItemCount property returns the number of currently selected items.

Not available at design time, read-only at run time.

Syntax

[form.]TList.SelItemCount
Data Type

Long

SelItemIndex Propertyxe "Selection"

xe "SelItemIndex property"
Description

The SelItemIndex property contains an array of the indices of all selected items. Reading this property returns the index of the Nth selected item. Not available at design time, read-only at run time.

Syntax

[form.]TList.SelItemIndex(IndexOfTheSelectedItem&)

Example

'Routine to copy text of all selected items to a Text Box

Text1.Text = ""

For I = 0 To TList1.SelItemCount - 1

ItemIndex% = TList1.SelItemIndex(I)

Text1.SelText = TList1.List(ItemIndex%) & Chr$(13) & Chr$(10)

Text1.SelLength = 0

Next

Data Type

Long

SetFocus Methodxe "SetFocus property"
Description

This method sets the focus to TList control.

Syntax

[form.]TList.SetFocus
Remarks

For more information, see the description of the SetFocus method in the Microsoft Visual Basic Language Reference.
Shift Propertyxe "Shift property"

xe "Indent property"
Description

The Shift property is an integer array in which each element defines an item's hierarchic indentation.

This property is not available at design time.

Syntax

[form.]TList.Shift(index&)[= new_shift%]

Remarks

Refer to the illustration below.

[image: image125.wmf] Picture

1

Picture

2

First item's text

Second item's text

Indentation in levels

On this figure Shift(Item2) = Shift(Item1) + 1

The Shift property may only be increased if the item immediately above is a peer (has the same current shift value) or has a higher Shift value. Incrementing the Shift property by one moves the item to become an immediate subordinate of its previous peer, simultaneously increasing the shift value of all the item's children.

Decrementing the Shift property by one moves an item to the same level as that of its parent, (keeping all the subordinate items of the shifted item as children and modifying their Shift properties appropriately). The shifted item now shares the same parent as its previous parent.

The Shift property is TList’s analog to MSOutline’s Indent property.

Example

Sub Form_Load ()

' This is item 0, with indentation of 0

TList.AddItem "Fred"

' This is item 1 with indentation of 0

TList.AddItem "Fred’s son"

' This is also a child of item 0

TList.AddItem "Fred’s Grand daughter", 0

' Shift item 2. It is now a child of item 1.

TList.Shift(2) = 1

' Shift item 1. It is now a child of item 0

TList.Shift(1) = 1

' Item 2 is at level 2, a grandchild of item 0.

End Sub

Data Type

Integer (Array)

ShiftStep Propertyxe "ShiftStep property"

xe "Display"
Description

This property determines the horizontal indentation between items one indentation level apart. Measured in twips.

[image: image126.wmf]Picture

1

Picture

2

First item's text

Second item's text

Shift Step in twips

Syntax

[form.]TList.ShiftStep [= long_expression&]

Remarks

Setting of the ShiftStep property updates the control unless the Redraw property is set to False.

Data Type

Long

ShowCaption Propertyxe "Display"

xe "ShowCaption property"
Description

Setting the ShowCaption property determines the style of the control’s caption.

Syntax

[form.]TList.ShowCaption [= enum%]
Settings

The ShowCaption property settings are:

Setting
Description

0
(Default) None.

1
Simple.

2
3D.

Data Type

Integer

ShowChildren Propertyxe "ShowChildren property"
Description

This property determines whether TList will scroll upon expansion of an item, to show as many newly visible subordinate items as possible.

Syntax

[form.]TList.ShowChildren[=bool_expr%]

Settings

The ShowChildren property settings are:

Setting
Description

True
(Default) TList will scroll automatically during the Expand event.

False
TList will not automatically scroll during the Expand event.

Data Type

Boolean

ShowHiddenItems Propertyxe "ShowHiddenItems property"

xe "Marks"

xe "Display"

xe "Hidden Items"
Description

This property makes all "always hidden items" visible without changing any of ItemAlwaysHidden properties or MarkedItemsAlwaysHidden property.

Not available at design time.

Syntax

[form.]TList. ShowHiddenItems [= bool%]

Data Type

Boolean

ShowColTitles Propertyxe "TListGrid object"

xe "Grid"

xe "ShowColTitles property"

xe "Titles"
Applies To

TListGrid object

Description

This property determines whether column titles are displayed in a grid. If set to True column titles will be shown.

Syntax

TListGridObject.ShowColTitles [= bool%]

[form.]TList.Grid.ShowColTitles [= bool%]

[form.]TList.ItemGrid(ItemIndex&). ShowColTitles [= bool%]

Data Type

Boolean

ShowRowTitles Propertyxe "TListGrid object"

xe "Grid"

xe "ShowRowTitles property"

xe "Titles"
Applies To

TListGrid object

Description

This property determines whether row titles are displayed in a grid. If set to True row titles will be shown.

Syntax

TListGridObject.ShowRowTitles [= bool%]

[form.]TList.Grid.ShowRowTitles [= bool%]

[form.]TList.ItemGrid(ItemIndex&).ShowRowTitles [= bool%]

Data Type

Boolean

ShowTitles Propertyxe "Display"

xe "ShowTitles property"

xe "Titles"
Description

This property is not supported anymore; use Grids to obtain the same functionality.

SmartDragDrop Propertyxe "SmartDragDrop property"
Description

This property determines whether TList will change the selection of the currently drag-dropped item in response to a mouse click in multi-selection mode. When this property is set to True the changing of selection of the item occurs on MouseUp event, not on MouseDown as would otherwise be the case. The SmartDragDrop property has no effect on TList behavior when MultiSelect property is set to 0 (None).

The following describes how events are generated when SmartDragDrop property is set to True:

a) User clicks on the item - ListIndex is changed and focus rectangle appears;

b) MouseDown event is generated - no Click events are triggered;

c) MouseMove events are generated as appropriate;

d) User releases the mouse button;

e) if Drag method was called inside the MouseDown event or MouseMove event neither MouseUp nor Click is generated;

f) if Drag method wasn’t called inside the MouseDown event or MouseMove event; first the Click(PictureClick, MarkClick) event and then MouseUp event is generated.

Syntax

[form.]TList.SmartDragDrop[=bool_expr%]

Settings

The SmartDragDrop property settings are:

Setting
Description

True
TList will change the selection on MouseUp event.

False
(Default) TList will change the selection on MouseDown event.

Remarks

X and Y parameters of MouseDown events are expressed in PIXELS when SmartDragDrop property is set to True, not in terms of container’s scale as would otherwise be the case. See the MouseDown event description.

Data Type

Boolean

Sorted Propertyxe "Sorting"

xe "Sorted property"

xe "Grid"

xe "TListGrid object"
Aplies To

TListGrid object

Description

The Sorted property allows you to specify a sorting method for a grid. If this property is set to True, the grid is sorted accordingly to the settings of SortingMethod and SortingKey properties.

Syntax

TListGridObject.Sorted [= bool%]
[form.]TList.Grid.Sorted [= bool%]
[form.]TList.ItemGrid(ItemIndex&).Sorted [= bool%]
Remarks

When sorting Tree Grid only rows which hold items of zero indentation level will be sorted.

Data Type

Boolean

See Also

SortingMethod and SortingKey properties

SortingMethod and SortingKey Propertiesxe "Sorting"

xe "SortingKey property"

xe "SortingMethod propertty"

xe "Grid"

xe "TListGrid object"
Aplies To

TListGrid object

Description

The SortingMethod property specifies how the rows of a grid should be sorted. SortingKey property specifies which column should be used as the key for the sorting. The sorted property initiates the sorting.

Syntax

TListGridObject.SortingMethod [= enum%]
[form.]TList.Grid.SortingMethod [= enum %]
[form.]TList.ItemGrid(ItemIndex&). SortingMethod [= enum %]
TListGridObject.SortingKey [= ValueName$]
[form.]TList.Grid.SortingKey [= ValueName$]
[form.]TList.ItemGrid(ItemIndex&). SortingKey [= ValueName$]
Settings

The SortingMethod property settings are:

Setting
Description

0
(Default) Sort items in the ascending order.

1
Sort items in the descending order.

Remarks

Changing the sort method causes all rows of the specified grid to be resorted according to the new method.

Data Type

Integer

See Also

Sorted property

TabIndex Propertyxe "TabIndex property"
Description

This property is the position of the control within the tab sequence of controls on a given form.

Syntax

[form.]TList.TabIndex [= numeric_expr]

Remarks

The valid range is any integer from 0 to (n-1), where n is the number of controls on the form that have a TabIndex property. Assigning a TabIndex value of less than 0 generates an error.

For more information, see the description of the TabIndex property in the Microsoft Visual Basic Language Reference.
Data Type

Integer

TabStop Propertyxe "TabStop property"
Description

This property determines whether the control's focus can be reached by tabbing from other controls.

Syntax

[form.]TList.TabStop [= bool_expr]

Remarks

The TabStop property settings are:

Setting
Description

True
(Default) Designates the control as a tab stop.

False
Bypasses the control when the user is tabbing, although the control still holds its place in the actual tab order, as determined by the TabIndex property.

For more information, see the description of the DragMode property in the Microsoft Visual Basic Language Reference.
Data Type

Boolean

TabStopDistance Propertyxe "Tabs"

xe "TabStopDistance property"

xe "Columns"
Description

This property is the spacing between Tab locations. Measured in the scale of the control’s container.

Syntax

[form.]TList.TabStopDistance [= Integer%]

Remarks

TList supports the tab character, CHR$(9) within the List property for displayed text. The TabStopDistance property sets the relative spacing between tab stops. If set to a value less than the screen’s resolution, the tab will instead be displayed as a quad character.

Note To build a true Grid with sizable columns and optional gridlines, iIt is possible to instruct TList to interpret Tabs as column delimiters when calling the AddItem method. This is controlled by the ColDelimiter and ConvertTabsToCols properties. Data can also be added directly to a grid. For further information refer to the section Using TList Grids.

See Also

ConvertTabsToCols property; ColDelimiter property

Tag Propertyxe "Tag property"

xe "TListCellDef property"
Applies To

TList control

TListCellDef object

Description

TList’s Tag property holds a string to be associated with the TList control.

TListCellDef object’s property holds a Variant to be associated with the TListCellDef object.

Syntax

[form.]TList.Tag [= string_expr$]

[form.]TListCellDefObject.Tag [= Variant]

Remarks

For more information, see the description of the Tag property in the Microsoft Visual Basic On-Line Help.
Data Type

TList’s Tag property - String

TListCellDef object’s Tag property - Variant

Text Property xe "Default"

xe "Text property"

xe "TListCellDef property"
Applies To

TList control

TListCellDef object

Description

When applied to TList control:

· The Text property is the default property for TList. It returns the text for the item pointed to by the ListIndex property. Run-time only.

When applied to TListCellDef object:

· The Text property is the default property for TListCellDef object. It returns the text for the cell this object refers to. Run-time only.

Syntax

[form.]TList.Text[=str$]

[form.]TList
Remarks

TList.Text is equivalent to TList.List(TList.ListIndex):

Data Type

String

TitleHeight Propertyxe "Titles"

xe "TitleHeight property"
Description

This property is not supported anymore; use Grids to obtain the same functionality.

TitlePicture Propertyxe "Titles"

xe "TitlePicture property"
Description

This property is not supported anymore; use Grids to obtain the same functionality.

TitleText Propertyxe "Titles"

xe "TitleText property"
Description

This property is not supported anymore; use Grids to obtain the same functionality.

TitleVisible Propertyxe "Titles"

xe "TitleVisible property"
Description

This property is not supported anymore; use Grids to obtain the same functionality.

TitleWidth Propertyxe "Titles"

xe "TitleWidth property"
Description

This property is not supported anymore; use Grids to obtain the same functionality.

TListCopyBuffer Function xe "tree buffer"

xe "Clipboard"

xe "TListCopyBuffer function"
Description

See CopyBuffer method description.

Syntax

Function TListCopyBuffer (ByVal hTreeBuffer&) As Integer
TListFind … Functions xe "Searching"

xe "TListFindItem function"

xe "TListFindValue function"
Description

See FindItem and FindValue methods description.

Syntax

Function TListFindItem (tltTree As TList,

[image: image127.wmf]ByVal FindWhat As String,

[image: image128.wmf]ByVal nFlags As Integer,

[image: image129.wmf]ByVal nFromIndex As Long,

[image: image130.wmf]ByVal nToIndex As Long) As Long
Function TListFindValue (tltTree As TList,

[image: image131.wmf]FindWhat As Variant,

[image: image132.wmf]ByVal nFlags As Integer,

[image: image133.wmf]ByVal nFromIndex As Long,

[image: image134.wmf]ByVal nToIndex As Long,

[image: image135.wmf] ByVal ValueName As Variant) As Long
Parameters

Parameter
Description

tltTree
Name of the TList control.

FindWhat
String or Variant data being sought.

nFlags
How to search the item, This parameter is composed as the sum of bit flags - see description in the following table.

nFromIndex
Specifies the first item in the range.

nToIndex
Specifies the last item in the range.

VaueName
Optional. If present specifies the valuename of the data to be earchedwhich valueswill be sought.

nFlags parameter Flags:

Constant
Value
Description

TL_FI_DONTUSECASE
&H1
if set, search is not case-sensitive.

TL_FI_RELAXED
&H2
if set, valid item may include FindWhat as a substring of the item’s text; otherwise the match must be exact.

TL_FI_BACKDIR
H100
if set, TList searches backwards from the end of the range.

TL_FI_SELONLY
&H200
if set, TList searches only among selected items.

TL_FI_STARTSWITH
&H400
if set TList searches items whose text starts with the FindWhat.

Returns

Index of the first found item or -1 if item wasn't found.

TListFreeBuffer Functionxe "TListFreeBuffer function"

xe "tree buffer"

xe "Memory"
Description

See FreeBuffer method description.

Syntax

Sub TListFreeBuffer(ByVal hTreeBuffer As Long)

TListGetItemByXY Function xe "Move event"

xe "Coordinates"

xe "TListGetItemByXY function"
Description

See GetItemByXY method description.

Syntax

Function TListGetItemByXY(tltTree As TList,

[image: image136.wmf]ByVal X As Integer, ByVal Y As Integer,

[image: image137.wmf]ByVal nType As Integer) As Long
TListGetItemRect Functionxe "TListGetItemRect function"
Description

See GetItemRect method.

TListIndexByBM Function xe "Bookmarks"

xe "TListIndexByBM function"
Description

See the IndexByBM method description.

Declarations

Function TListIndexByBM(tltTree As TList, ByVal hTreeBookmark As Long) As Long
TListIsClipboardFormatAvailable Function xe "Clipboard"

xe "TListIsClipboardAvailable function"
Description

This function works identically to the IsClipBoardAvailable property, but does not require an instance of TList.

Not available at design time.

Syntax

Function TListIsClipboardFormatAvailable() As Integer

Example

' if data is available, then paste from the

' clipboard before selected item

If TListIsClipboardFormatAvailable then

TList_Dest.Clipboard(TList.ListIndex) = 4

End If

TListIsValidBM Function xe "TListIsValidBM function"

xe "Bookmarks"
Description

See IsValidBM method description.

Syntax

Function TListIsValidBM(tltTree As TList, ByVal hTreeBookmark&) As Integer
TListIsValidBuffer Functionxe "TListIsValidBuffer function"

xe "tree buffer"
Description

See IsValidBuffer method.

Syntax

Function TListIsValidBuffer(ByVal hTreeBuffer As Long) As Integer
TListLoadBuffer Functionxe "Loading Trees"

xe "File I/O"

xe "tree buffer"

xe "TListLoadBuffer function"
Description

See LoadBuffer method description

Syntax

Function TListLoadBuffer(hTreeBuffer&, ByVal nFile As Integer) As Integer
TListPasteBuffer Functionxe "tree buffer"

xe "TListPasteBuffer function"
Description

See PasteBuffer method description.

Syntax

Function TListPasteBuffer (hTreeBuffer As Long) As Integer
TListSaveBuffer Functionxe "Saving Trees"

xe "Storing Trees"

xe "File I/O"

xe "TListSaveBuffer function"

xe "tree buffer"
Description

See SaveBuffer method description.

Syntax

Function TListSaveBuffer (ByVal hTreeBuffer As Long ,

[image: image138.wmf]ByVal nFile As Integer) As Integer
TListTranslateIndex Function xe "TListTranslateIndex function"

xe "Indexes"

xe "CurrentIndexMethod property"
Description

See TranslateIndex method description.

Syntax

Function TListTranslateIndex (tltTree As TList ,

[image: image139.wmf]ByVal nFromIndexMethod As Integer,

[image: image140.wmf]ByVal nToIndexMethod As Integer ,

[image: image141.wmf]ByVal nFromIndex As Long) As Long

ToolTipsBackColor Property xe "ToolTipsBackColor property"

xe "Tool Tips"
Description

This property specifies the color of the Tool Tip box background. This property affects the TList display only if ToolTipsViewStyle property is set to 1.

Syntax

[form.]TList.ToolTipsBackColor [= Color%]

Data Type

Long

ToolTipsForeColor Property xe "ToolTipsForeColor property"

xe "Tool Tips"
Description

This property specifies the color of the text of Tool Tip box. This property affects the TList display only if ToolTipsViewStyle property is set to 1.

Syntax

[form.]TList.ToolTipsForeColor [= Color%]

Data Type

Long

ToolTipsMode Propertyxe "ToolTipsMode property"

xe "Tool Tips"
Description

The property specifies whether Tool Tips are shown while user is moving the mouse over an item.

Syntax

[form.]TList.ToolTipsMode [= enum%]

Remarks

The ToolTipsMode property settings are:

Setting
Description

0 - Disable
(Default) Do not show ToolTips.

1 - Enable
Show ToolTips.

Data Type

Integer

ToolTipsViewStyle Propertyxe "ToolTipsViewStyle property"

xe "Tool Tips"
Description

This property specifies the colors used to paint Tool Tips.

Syntax

[form.]TList.ToolTipsViewStyle [= enum%]

Remarks

The ToolTipsMode property settings are:

Setting
Description

0 - Predefined Colors
(Default) TList’s item color is used to draw Tool Tips.

1 - User-defined colors
ToolTipsBackColor and ToolTipsForeColor properties specify the colors which are used to draw ToolTips.

Data Type

Integer

Top Propertyxe "Top property"
Description

This property determines the vertical distance between the top edge of TList control and its container.

Syntax

[form.]TList.Top [= numeric_expr]
Remarks

Setting of this property updates the control unless the Redraw property is set to False.

For more information, see the description of the Top property in the Microsoft Visual Basic On-Line Help.
Data Type

Single

TopIndex Propertyxe "TopIndex property"

xe "Scrolling"
Description

This property sets and returns the item that appears in the topmost position in the TList control. If the specified item is not visible because its parent is collapsed, the next visible item will be set. The default is 0, or the first item.

Not available at design time.

Syntax

[form.]TList.TopIndex[=top&]

Remarks

Setting of TopIndex property updates the control unless the Redraw property is set to False.

The TopIndex property may be used to scroll xe "Scrolling" the control vertically.

Data Type

Long

TranslateIndex Methodxe "TranslateIndex method"

xe "TListTranslateIndex function"

xe "Indexes"

xe "CurrentIndexMethod property"
Description

The TranslateIndex method may be used to translate an index from one index method to another.

Not available at design time.

Syntax

[form.]TList. TranslateIndex (tltTree As TList ,

[image: image142.wmf]ByVal nFromIndexMethod As Integer,

[image: image143.wmf]ByVal nToIndexMethod As Integer ,

[image: image144.wmf]ByVal nFromIndex As Long) As Long
Example

' translate an index from the current indexation

' method to TL_SYSLEVEL index methods

Dim DestIndex&, SourceIndex&

...

SourceIndex& = TList1.ListIndex

...

DestIndex& = TList1.TranslateIndex(TList1.CurrentIndexMethod,_

TL_SYSLEVEL, SourceIndex&)

TransparentBackground Property xe "TransparentBackground property"

xe "Display"

xe "Background"
Description

Setting the TransparentBackground property determines whether TList background is transparent.

Syntax

[form.]TList.TransparentBackground [= bool%]

Remarks

There may be certain controls which do not show through a transparent TList. But Visual Basic forms and all graphic controls function properly with TList in transparent mode.

Data Type

Boolean

See Also

UpdateBackground method

TransparentBitmap Propertyxe " TransparentBitmap property"

xe "Display"
Description

Setting the TransparentBitmap property determines whether TList displayes bitmaps as transparent. If this property is set to True the TransparentBitmapColor property determines the transparent color.

Syntax

[form.]TList.TransparentBitmap [= bool%]

Data Type

Boolean

See Also

TransparentBitmapColor property

TransparentBitmapColor Propertyxe " TransparentBitmapColor property"

xe "Display"
Description

Determines the color, which will be considered transparent as bitmaps are displayed. These property settings are used ony if the TransparentBitmap property is set to True.

Syntax

[form.]TList.TransparentBitmapColor [= Color&]

Data Type

Long

See Also

TransparentBitmap property

TreeGrid Propertyxe "TListGrid object"

xe "Grid"

xe "TreeGrid property"

xe "Titles"
Applies To

TListGrid object

Description

This property determines whether a grid is a Tree Grid or an Item Grid. Read-only. Returns True if this is Tree Grid and False otherwise.

Syntax

TListGridObject.TreeGrid [= bool%]

[form.]TList.Grid. TreeGrid [= bool%]

[form.]TList.ItemGrid(ItemIndex&). TreeGrid [= bool%]

Data Type

Boolean

TreeLinesColor Property xe "TreeLinesColor property"

xe "Display"

xe "TreeLinesColor property"
Description

Setting the TreeLinesColor property determines what color is used to draw tree lines.

Syntax

[form.]TList.TreeLinesColor [= Color&]

Remarks

Setting of TreeLinesColor property updates control display unless the Redraw property is set to False.

Data Type

Long

TreeLinesStyle Property xe "TreeLinesStyle property"

xe "Display"

xe "TreeLinesStyle property"
Description

Setting the TreeLinesStyle property determines how tree lines are drawn (solid, dashed, etc).

Syntax

[form.]TList.TreeLinesStyle [= enum%]

Settings

The TreeLinesStyle property setting are:

Setting
Description

0
(Default) Solid.

1
Dash

2
Dot

3
Dash-Dot

4
Dash-Dot-Dot

TriggerEvents Property xe "TriggerEvents property"

xe "Events"

xe "Collapsing"
Description

The triggerEvents property determines whether a collapse event will be generated for all children (which have their own children) of a collapsed item.

Syntax

[form.]TList.TriggerEvents [= enum%]

Settings

The TriggerEvents property setting are:

Setting
Description

0
(Default) Do not generate Collapse event for children.

1
Generate Collapse event for children.

Data Type

Integer

UpdateBackground Methodxe "UpdateBackground method"

xe "Background"

xe "Transparent Background"
Description

To optimize repainting, TList saves an image of the background in its internal buffer. If for example, you changed the underlying form's background and TList’s Transparent property is set to True, you have to update TList’s background manually.

Syntax

Sub TList.UpdateBackground
Url Propertyxe "Url property"

xe "URL"

xe "WWW"

xe "TListCellDef object"

xe "AutoNavigate object"
Applies To

TListCellDef object
Description

TList’s Web Auto Navigation feature uses relative URLs stored in the Url property to navigate to a web site when a user double-clicks on a cell.

Not available at design time.

Syntax

[form.]TList.Grid.Cells(Row, Col).CellDef.Url [= String$]
Example

Below is a sample, which points to a very interesting web page:

TList1.ItemGrid(0).Cells(10,40).CellDef.UrL(2)= _

"http://www.bennet-tec.com/common/whoarewe.htm"

Data Type

String

See Also

WebAutoNavigate property

Value Propertyxe "Value property "

xe "TListValue object"

xe "TListGridCell object"
Applies To

TListValue Object

TListGridCell Object

Description

TListValue’s Value property stores data of Variant type associated with this object. Default property.

TListGridCell’s Value property returns TListValue object associated with this grid cell.

Syntax

TListValueObject.Value [= Variant]

[form.]TList1.ItemValues(ItemIndex&, ValueNameIndex).Value[= Variant]

[form.]TList1.ItemGrid(ItemIndex&).Cells(Row&, Col&).Value.Value[= Variant]

[form.]TList1Grid.Cells(Row&, Col&).Value.Value[= Variant] {SAMPLE}
ValueName Propertyxe "ValueName property "

xe "TListValue object"

xe "TListColDef object"
Applies To

TListValue Object

TListColDef Object

Description

The ValueName property is used to refer to named data which may be associated with each item in the list. This associated data may be hidden from the end-user or displayed within columns if a table/grid has been set up.

A given item/row in TList may have associated data elements as defined by the ItemValues property.

TList1.ItemValues(25, "CityName").Value = "Paris"

TList1.ItemValues(25, "Name").Value = "Michael"

These two statements create 2 new associated data elements with ValueNames, "CityName" and "Name", and associate these values with the 25th item.

The ValueNames property can be used to identify the names of associated data elements:

Dim X As TListValue

For Each X In TList1.ItemValues(100)

Print X.ValueName

Next

Setting the ValueName for a ColDef object display associated data values in a grid column. To show the city name values in the I+1th column of a grid use:

TList1.Grid.ColDefs(I).ValueName = "CityName"

Syntax

TListValueObject.ValueName
[form.]TList1.ItemValues(ItemIndex&, ValueNameIndex). ValueName
[form.]TList1.ItemGrid(ItemIndex&).Cells(Row&, Col&).Value.ValueName

[form.]TList1Grid.Cells(Row&, Col&).Value.ValueName
Data Type

String

Version Propertyxe "Version property"
Description

This property returns the current version for the control. Read-only at run-time.

This property returns major version, minor version, and build number, for example: if TList has major version 4, minor version 5 and build 25, Version would return decimal 40525. That is, the following mathematical formula is used:

Version = MajorVersion * 10000 + MinorVersion * 1000 + BuildNumber.

Syntax

[form.]TList.Version
Data Type

Long

ViewStyle Propertyxe "ViewStyle property"

xe "Display"
Description

This property determines the way an item will be displayed, ie: which visual elements to include in the display.

Syntax

[form.]TList.ViewStyle [= setting%]

Settings

The ViewStyle property settings are:

Setting
Description (which visual elements are displayed)

0
(Default) Picture, Tree lines and Text associated with the item .

1
Picture and Text

2
Picture and Tree lines

3
Picture

4
Text and Tree lines

5
Text

Remarks

Setting of ViewStyle property updates the control unless the Redraw property is set to False.

See ViewStyleEx property for extended settings.

Data Type

Integer

ViewStyleEx Property xe "Display"

xe "ViewStyleEx property"
Description

The ViewStyleEx property extends the settings of ViewStyle providing for control over display of Plus/Minus pictures and Mark Pictures.

Syntax

[form.]TList.ViewStyleEx[= enum%]

Settings

The ViewStyleEx property settings are:

Setting
Description

0
(Default) Don’t display either the Plus/Minus image or Mark Pictures.

1
Display Plus/Minus image.

2
Display Mark pictures and Plus/Minus image.

3
Display Mark pictures.

Data Type

Integer

Visible Propertyxe "Visible property"

xe "Display"

xe "TListColDef object"

xe "TListGrid object"

xe "Grid"
Applies To

TList control

TListCellDef object

TListGrid object

Description

TList 's Visible property determines whether the TList control is visible or hidden.

TListCellDef object’s Visible property determines whether the column header is visible or hidden.

TListGrid object’s Visible property determines whether the grid is visible or hidden.

Syntax

[form.]TList.Visible [= bool_expr]

[form.]TList.ColDefs(ColDefIndex&).Visible [= bool_expr]

[form.]TList.Grid.Visible [= bool_expr]

[form.]TList.ItemGrid(ItemIndex&).Visible [= bool_expr]

Remarks

The Visible property settings are:

Setting
Description

True
(Default) Control/Column Header/Grid is visible.

False
Control/Column Header/Grid is hidden.

For more information, see the description of the Visible property in the Microsoft Visual Basic Language Reference.
Data Type

Boolean

WebAutoNavigate Propertyxe "WebAutoNavigate property" xe "WWW"

xe "AutoNavigate"
Description

This property turns on or off TList’s Web Auto Navigate feature. If this feature is turned on, TList navigates to a Web document whose URL is specified by the ItemUrl property of a double clicked item or by Url property of a double clicked cell.

To determine the URL for Web navigation, TList appends the contents of ItemURL or Url property to the value of the WebURLBase property.

The WebTargetFrame property is used to specify a name of the frame in which to display the loaded Web document.

Syntax

[form.]TList.WebAutoNavigate [= enum%]

Remarks

The WebAutoNavigate property settings are:

Setting
Description

0
(Default) TList Web Auto Navigate feature is turned off.

1
TList Web Auto Navigate feature is turned on.

Navigate on double click, use ItemURL/Url property (appended to WebURLBase) as an URL.

Data Type

Integer

WebTargetFrame Propertyxe "WebTargetFrame property" xe "WWW"

xe "AutoNavigate"
Description

WebTargetFrame property is used to specify a name of the frame in which to display the loaded Web document.

Syntax

[form.]TList.WebTargetFrame [= string$]

Data Type

String

WebURLBase Propertyxe "WebURLBase property" xe "WWW"

xe "AutoNavigate"
Description

To get a full URL, which must be used for document location, TList adds the contents of ItemURL property to the value of the WebURLBase property.

Syntax

[form.]TList.WebURLBase [= string$]

Data Type

String

WebGoBack Methodxe "WWW"

xe "WebGoBack method"

xe "URL"
Description

Navigates to the previous item in the history list.

Syntax

[form.]TList.WebGoBack
WebGoForward Methodxe "WWW"

xe "WebGoForward method"

xe "URL"
Description

This method navigates to the next item in the history list.

Syntax

[form.]TList.WebGoForward
WebNavigate Methodxe "WWW"

xe "WebNavigate method"

xe "URL"
Description

Calling this method instructs the web browser to navigate to a document specified by a URL.

Syntax

[form.]TList.WebNavigate(ByVal URL As String, ByVal TargetFrameName As String,
[image: image145.wmf] ByVal Flags As Integer)
Remarks

The WebNavigate method has these parts:

Part
Description

URL
A string expression that evaluates to the URL of the resource that the browser is to display.

TargetFrameName
A string expression specifying the name of a frame in which to display the resource. This string can be empty.

Flags
A constant or value that specifies whether to display the resource in a new window. It is one of these values:
Constant
Value
Meaning
tlWebNavigateCurWindow
0
(Default) Open in the current window.
tlWebNavigateNewWindow
1
Open in a new window.

Width Propertyxe "Width property"

xe "TListColDef object"
Applies To

TList control

TListColDef object

Description

TList’s Width property contains the width of the TList control.

A TListColDef object’s Width property determines the width of a column in twips.

Syntax

[form.]TList.Width [= xsize!]

[form.]TList.Grid.ColDefs(Col&).Width [= xsize!]

[form.]TList.ItemGrid(ItemIndex&).ColDefs(Col&).Width [= xsize!]

Remarks

TList’s Width property: for more information, see the description of the Width property in the Microsoft Visual Basic Language Reference.
TListColDef object’s Width property:

You can use this property to set the width of any column at run time.
Use TListColDef object’s Visible property to create invisible columns.

The following code allows an end user to resize columns and then displays the width of column (0) in a textbox.
Sub Form1_Load()

TList1.Grid.AllowResizing = tlResizeCols
End Sub
Sub TList1_MouseUp (Button As Integer, Shift As _
Integer, X As Single, Y As Single)

MsgBox "Width = " TList1.ActiveGrid.ColDefs(0).Width

End Sub
Data Type

Single

WidthOfText Propertyxe "WidthOfText property"

xe "MultiLine property"
Description

This property specifies the wrapping width of text for an item which can display multiple lines of text. An item can accept multiple lines of text only if the DefMultiLine property is set to True or the ItemMultiLine property for this item is set to True. See Settings below for more detailed description.

Syntax

[form.]TList.WidthOfText[=xsize!]

Settings

The WidthOfText property settings are:

Setting
Description

-1
Multi-line text items are wrapped to fit within TList’s client area. The minimum wrap width is determined by WidthOfTextMin property

0
(Default)Multi-line text items are wrapped to fit within TList’s client area. But the width of the multiple-line text for each item is calculated as if the item is of zero indentation regardless of its real indentation.

> 0
Text is wrapped to the specified length as Measured in terms of the units of TList’s container.

Remarks

Setting of WidthOfText property updates the control unless the Redraw property is set to False. This property has no affect on items whose ItemMultiLine property is False unless DefMultiLine is True.

Data Type

Single

WidthOfTextMin Propertyxe "WidthOfTextMin property"

xe "MultiLine property"
Description

This property specifies the minimum wrapping width of text for an item which can display multiple lines of text. An item can accept multiple lines of text only if the DefMultiLine property is set to True or the ItemMultiLine property for this item is set to True. See Setting below for more detailed description. Used only if WidthOfText is set to -1.

Syntax

[form.]TList.WidthOfTextMin[=xsize!]

Settings

Setting of WidthOfTextMin property updates the control unless the Redraw property is set to False. This property has no affect on items whose ItemMultiLine property is False unless DefMultiLine is True.

Data Type

Single

XOffset Property xe "Display"

xe "XOffset property"
Description

This property sets the left offset of TList elements with indent = 0 from the left edge of the control. Measured in terms of the units of TList’s container.

Syntax

[form.]TList.XOffset [=xsize!]

Data Type

Single

ZOrder Methodxe "ZOrder method"
Description

Places a control at the front or back of the z-order within its graphical level.

Syntax

[form.]TList.ZOrder
Remarks

For more information, see the description of the ZOrder method in the Microsoft Visual Basic Language Reference
A P P E N D I X A:

Error Messagesxe "Error messages"
Trappable Errors

The following table lists the trappable errors for this control.

Error number
Message explanation

20101
TLERR_BADINDENTATION
Bad indentation.
The nesting level of an item cannot exceed 255.

20102
TLERR_WRONGPARAMS
Wrong parameters
This error occurs when any attempt is made to assign an invalid string to the CurrentParent (or obsolete CurrentItem) property.

20103
TLERR_ITEMNOTFOUND
Item not found
This error occurs when any attempt is made to pass the CurrentParent (or obsolete CurrentItem) property a string referencing a non-existing item.

20104
TLERR_PARENTNOTEXPANDED
Parent not expanded
An item must be visible (expanded) in order to expand its subordinate items.

20105
TLERR_INITFAULT
Initialization error.
Error during control initialization. Usually, this indicates insufficient memory.

20106
TLERR_CANNOTSHOW
Can not show an item
There is enough memory to store new items, but no room to show them. It is possible in this situation to collapse some items and then try to add or expand items again.

20107
TLERR_INVALIDSEPARATOR
Invalid path separator
Path separators can not be empty strings or strings that start with a period ('.’).

20108
TLERR_INVALIDTREEBUFFER
Invalid tree buffer
The long number being used as a pointer to a tree buffer is invalid. Use only values returned by one of the Copy properties.

20109
TLERR_BIGPICSIZE
The Picture Size is too large.
This error occurs when any attempt is made to assign an invalid picture size to the ItemImageDefHeight or ItemImageDefWidth properties or when any attempt is made to assign an invalid shift step size to the ShiftStep property. See Limitations for more details.

20110
TLERR_NOTHINGTOCOPY
Nothing to copy
An attempt was made to use property CopySelected when no items were selected.
- OR -
An attempt was made to use CopyItemSub on an item having no subordinates.

20111
TLERR_TOMANYITEMS
Too many items in the list
An attempt was made to add more items to the list than control can accept. See Limitations for more details.

20112
TLERR_TOMANYSUBITEMS
Too many subordinate items in one item
An attempt was made to add more subordinate items to one of the items in the list than the control can accept. See Limitations for more details.

Note Symbolic constants for error code definitions can be found in the file TLIST4.BAS distributed with the control.
A P P E N D I X B:

Specifications and Limitationsxe "Limitations"

xe "Specifications"
This appendix describes the limitations of TList control. Please note that in addition to TList’s own limitations, other conditions (such as available memory and system resources) may impose a restriction before the specified limit is reached.

Number Of Items

Maximum number of items that can be expanded (visible when scrolling through the list) simultaneously in a control is 2,147,483,647.

Maximum number of subordinate items for each item is 2,147,483,647.

Total number of the items that can be stored in a list is 2,147,483,647.

Number Of Columns

The maximum number of columns is 2,147,483,647.

Nesting Levels

255 nesting levels are supported by a TList control.

I N D E X

About property
83

ActiveGrid property
83

Add property
83

Adding items
12, 29, 83, 84, 85, 87, 117, 118, 141, 142, 165, 166

AddItem method
84, 99, 171, 172

AddItem2 Method
85

AddItem2Ex method
85

AddRow method
87

Align property
89

Alignment property
107, 108

AllowResizing property
89

Appearance property
90

Associated Data
20

AutoExpand property
14, 91

AutoFillColTitles property
91

AutoFillRowTitles property
91

AutoNavigate
212, 213

AutoNavigate object
160, 209

AutoScrDuringDragDrop Property
30

BackColor property
92

BackColorBkg property
93

Background
206, 208

BackPicture property
93

BackPictureAlignment property
93

Backward Compatibility property
94

BeforeDrag method
94

Bookmarks
34, 107, 141, 145, 146, 153, 202

BorderColor property
94

BorderStyle property
95

BottomIndex property
96

Caption property
96

Categories
35

CellDef property
97

Cells property
97

Child Controls
34

Clear method
100

ClearItem property
100

Click event
94, 101

Clipboard
101, 103, 144, 200, 202

Clipboard property
32, 101

CoerceIndex property
102

Col property
98

ColDelimiter property
84, 98, 99

Collapse event
102

Collapsing
208

Colors
15, 19, 123, 146

ColTitleCellDef property
99

ColTitlesHeight property
99

Columns
22, 198

Compatibility
115, 171

Container
34

ConvertTabsToCols property
84, 99

Coordinates
129, 202

CopyBuffer method
103

CopyItem property
103

CopyItemSub property
103

CopyOne property
104

CopySelected property
104

Count property
100

CurrentIndexMethod property
9, 84, 102, 105, 106, 203, 206

CurrentItem property
106

CurrentItemBM property
107

CurrentParent property
106

Databases - working with
26

DblClick event
109

Default
199

DefItemCellAlignment property
107, 108

DefItemCellBackColor property
92

DefItemCellBorderColor property
94

DefItemCellBorderStyle property
95

DefItemCellTextAlignment property
109

DefMultiLine property
110

DisableNoScroll property
110

Display
5, 7, 138, 139, 142, 143, 167, 168, 173, 178, 179, 180, 181, 182, 189, 193, 194, 195, 206, 207, 208, 211, 212, 216

Distribution Notes
2

Drag Drop
30, 112, 113, 119, 173, 174, 175, 176

Drag method
111

DragDrop event
111

DragHighlight property
112

DragIcon property
112

DragMode property
112

DragOver event
111

DrawFocusRect property
113

DropTarget property
113

Editing
34, 114, 148, 184

EditingKeyDown event
114

EditingKeyPress event
114

EditingKeyUp event
114

Enabled property
114

Environment Property
115

Error messages
217

Events
71, 208

Expand event
115

Expand property
14, 116

ExpandChildren property
117

ExpandEx property
14, 117

Expanding and Collapsing
14, 91, 116, 117, 181, 182

ExpandNewItem property
117

ExplorerCompatible property
118

FastAddItem method
118

FastAddItemEx method
118

File I/O
32, 118, 164, 165, 166, 186, 187, 188, 203

File property
118, 119

FindItem method
120, 200

FindValue method
120, 200

FixedSize property
121, 173

Focus
113, 131

Font property
121

Font... properties
122

FontName property
122

Fonts
19, 121, 122, 123, 149

FontSize property
123

ForeColor property
123

Format property
124

Formatting
19

FreeBuffer method
127

FullPath property
127, 178

Functions
75

GetData method
128

GetFormat method
128

GetItemByXY function
129

GetItemRect method
130

GotFocus event
131

GradientColorFrom property
131

GradientColorTo property
131

GradientStyle property
131

Grid
22, 87, 89, 91, 93, 97, 98, 99, 132, 133, 134, 149, 150, 169, 178, 184, 185, 186, 195, 196, 197, 207, 212

Grid property
132

GridCellClick event
132

GridCellDblClick event
133

GridCellDef property
133

GridLinesColor property
134

GridLinesStyle property
134

HasGrid property
135

HasSubItems property
135

Height property
135

HelpContextID property
136

Hidden data
20

Hidden Items
17, 145, 167, 194

HitTest method
160

Hot Spots
5

How to
9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39

HScroll event
136

hWnd property
137

Image property
138

ImageStretch property
139

Indent property
139, 192

Indentation property
140

Index property
140

IndexByBM method
141

Indexes
9, 203, 206

In-place Editing
34, 114, 148, 184

Insert property
141

InsertItem property
142

Internet
39

InvBorderStyle property
142

InvImage property
142

InvStyle property
143

IsItemVisible property
144

IsValidBM method
145

IsValidBuffer method
145

Item...Value properties
158

ItemAlwaysHidden property
145

ItemBackColor property
146

ItemBM
34

ItemCell property
147

ItemClick event
147

ItemData replacement
20

ItemDblClick event
148

ItemEditText property
148

ItemFont... properties
149

ItemFontName property
149

ItemFontSize property
149

ItemForeColor property
146

ItemGrid - Definition
22

ItemGrid property
149

ItemHasGrid property
150

ItemHasValue property
158

ItemHeight property
151

ItemImageDefHeight property
151

ItemImageDefWidth property
151

ItemIndex property
150

ItemIndexToRow method
150

ItemMark property
152

ItemMultiLine property
152

ItemNextSibling property
154

ItemParent property
153

ItemParentBM property
153

ItemPMPicType property
153

ItemPrevSibling property
154

ItemQueryData event
155, 183

Items property
154

ItemSorted property
155

ItemSortingKey property
156

ItemTag property
157

ItemType property
158

ItemUrl property
160

ItemValue property
20, 158

ItemVirtualCount property
159

ItemVirtualParent property
159

ItemXXXValue replacement
20

Keyboard Interface
8

KeyDown event
161

KeyPress event
161

KeyUp event
161

Languages
115

Left property
162

LevelDefs property
162

Licensing Restrictions
2

Limitations
221

List property
162

ListCount property
163

ListCountEx property
163

ListIndex property
163

LoadAndAdd property
164

LoadAndInsert property
165

LoadBuffer method
165

LoadData method
166

Loading Trees
32, 118, 164, 165, 203

LostFocus event
166

Mark Array
35

MarkClick event
166

MarkDblClick event
166

MarkedItemsAlwaysHidden property
167

MarkHeight property
168

MarkPicture property
35, 167

Marks
35, 152, 166, 167, 168, 181, 194

MarkTag property
35, 168

MarkWidth property
168

Memory
127, 201

Menu
38

Methods
73

MouseCol property
169

MouseDown event
169

MouseMove event
170

MousePointer property
170

MouseRow property
169

MouseUp event
169

Move event
129, 202

Move method
170

MoveTo method
168

MSOutlineAdd property
84, 171

MultiLine property
152, 171, 180, 215

MultiSelect property
14, 171

Name property
172

Navigating
9

New in Version 4!
5, 17, 18, 19, 20, 31, 38, 39

NewIndex property
172

NoIntegralHeight property
173

NoPictureRoot property
173, 179

OLE Drag Drop
31, 119, 173, 174, 175

OLEDragDrop event
173

OLEDragOver event
175

OLEDropMode property
174

OnDragDrop method
176

OnDragOver method
176

Palette
17

Parent property
177

ParentItemIndex property
178

PasteBuffer method
177

PathSeparator property
178

Performance
13, 21

PicInMultiLine property
180

Picture property
178

Picture... properties
178, 179, 180

PictureClick event
94, 180

PictureDblClick event
180

PictureMark property
181

PictureMinus property
181

PicturePalette property
180

PicturePlus property
181

Pictures
16, 17

PictureSelected property
178

PictureType property
181

PlusMinus pictures
91, 153, 181

PlusMinusClick event
182

PlusMinusDblClick event
182

Properties
63, 64, 76, 78, 80, 81, 82

Property Array Index
9

Redraw property
182

Refresh method
183

RefreshItems method
183

RemoveItem method
184

RemoveRow method
184

Removing items
12, 29

RequestEditing event
184

Right Mouse Clicks
147, 148

Right-Mouse Menu
38

Row property
98

RowHeight property
185

RowTitleCellDef property
186

RowTitlesWidth property
186

Save property
186

SaveBuffer method
187

SaveData method
187

SaveOne property
188

SaveSub property
188

Saving Trees
32, 118, 186, 187, 188, 203

Scrollbars property
189

ScrollHorz property
189

Scrolling
30, 136, 189, 205

Searching
31, 120, 200

SelBackColor property
189

Selected property
190

SelectEx property
191

Selection
14, 171, 189, 190, 191

SelForeColor property
189

SelItemCount property
191

SelItemIndex property
191

SetFocus property
192

Shift property
192

ShiftStep property
193

ShowCaption property
194

ShowChildren property
194

ShowColTitles property
195

ShowHiddenItems property
194

ShowRowTitles property
195

ShowTitles property
195

SmartDragDrop property
195

Sorted property
196

Sorting
31, 155, 156, 196, 197

SortingKey property
197

SortingMethod propertty
197

Special Characters
40

Special Colors
15

Special Pictures
16

Specifications
221

Speed
13

Storing Trees
32, 118, 186, 187, 188, 203

Strings
40

TabIndex property
197

Tabs
198

TabStop property
198

TabStopDistance property
198

Tag property
199

Technique
9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39

Text property
199

TextAlignment property
109

TitleHeight property
200

TitlePicture property
200

Titles
195, 200, 207

TitleText property
200

TitleVisible property
200

TitleWidth property
200

TList Grids
22

TList Indexes
9

TListCellDef object
92, 94, 95, 121, 123, 124, 171, 178, 189, 209

TListCellDef property
109, 199

TListColDef object
76, 97, 140, 168, 209, 212, 214

TListColDefs object
100, 154

TListCopyBuffer function
103, 200

TListDataObject object
119, 128

TListDataObjectFiles object
119

TListFindItem function
120, 200

TListFindValue function
120, 200

TListFreeBuffer function
127, 201

TListGetItemByXY function
202

TListGetItemRect function
202

TListGrid object
83, 87, 89, 91, 93, 97, 98, 99, 133, 134, 150, 169, 178, 184, 185, 186, 195, 196, 197, 207, 212

TListGridCell object
97, 98, 132, 209

TListIndexByBM function
141, 202

TListIsClipboardAvailable function
202

TListIsValidBM function
145, 202

TListIsValidBuffer function
145, 203

TListLevelDef object
97, 140, 179

TListLevelDefs object
100, 154

TListLoadBuffer function
165, 203

TListPasteBuffer function
177, 203

TListSaveBuffer function
187, 203

TListTranslateIndex function
203, 206

TListValue object
81, 150, 209

TListValues object
100, 154

Tool Tips
7, 204

ToolTipsBackColor property
204

ToolTipsForeColor property
204

ToolTipsMode property
204

ToolTipsViewStyle property
204

Top property
205

TopIndex property
205

TranslateIndex method
206

Transparent Background
208

Transparent Bitmap
17

Transparent Color
15

TransparentBackground property
206

TransparentBitmap property
206

TransparentBitmapColor property
207

tree buffer
29, 103, 127, 141, 145, 165, 177, 187

Tree Grid - Definition
22

tree buffer
29, 103, 104, 200, 201, 203

TreeGrid property
207

TreeLinesColor property
207

TreeLinesStyle property
208

TreePictureTable
118

TriggerEvents property
208

UpdateBackground method
208

Upgrading TList projects
36, 37

URL
160, 209, 213, 214

Url property
209

User defined data
20, 157, 158, 168

Value property
209

ValueName property
209

Version
38

Version property
210

ViewStyle property
211

ViewStyleEx property
211

Virtual Items
21, 159, 183

Visible property
212

Visual Elements
5, 7

VScroll event
136

Web Support
39

WebAutoNavigate property
212

WebGoBack method
213

WebGoForward method
213

WebNavigate method
214

WebTargetFrame property
213

WebURLBase property
213

Width property
214

WidthOfText property
215

WidthOfTextMin property
215

WWW
160, 209, 212, 213, 214

XOffset property
216

ZOrder method
216

_947198350.doc

TList Items

Marks

Mark Picture

MarkTag

Mark Tag

_960366101.doc

Item1

Item1.1

Item1.2

Item1.2.1

Item1.2.2

Item1.3

Item1.3.1

Item2

invisible items

Index 0

Current item

Item1.2.1.1

Item1.2.1.2

TList control

Accessing

Notes

Index 1

Index 2

Index 3

Index 4

Index 5

Index 6

Index 7

Index 8

Index 9

_948808119.doc

 Picture

1

Picture

2

First item's text

Second item's text

Indentation in levels

On this figure Shift(Item2) = Shift(Item1) + 1

_943132533.doc
[image: image1.bmp][image: image2.bmp][image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf]

Multi Line

Text

- Hot spots for an item

Picture

Plus/Minus Picture

Item Cell

Mark Picture

Item Text

Item Cell Picture

