 Seq D2HDocument \h \r1
User’s Guide
 & Reference

MetaDraw™
Object Oriented Graphics .NET Component

Version 1.1

Copyright © 2002 – 2004

Bennet-Tec Information Systems, Inc.

 All rights reserved

(Documentation Revision 25 April2004)

MetaDraw™
Copyright notice
© 2002-2004 Bennet-Tec Information Systems, Inc.

All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced, transmitted or translated in any form or by any means, electronically or mechanical, without the written permission of Bennet-Tec Information Systems, Inc.

Trademarks

The following trademarks are used in this document. Whenever you come across them, please remember that they are the trademarks or registered trademarks of the companies shown below.

MetaDraw™, ALLText ™, TList™, UpdateLive™, TBack™, are trademarks of Bennet-Tec Information Systems, Inc
Microsoft® is a registered trademark;
Windows™, Visual C++ and Visual Basic™ are trademarks of the Microsoft Corporation.

Published by
Bennet-Tec Information Systems, Inc.
50 Jericho Tpk,
Jericho, NY 11753
Phone:(516) 997-5596
Fax: (516) 997-5597
Info@Bennet-Tec.Com

Web site: http://www.Bennet-Tec.Com

License Terms: Use and Distribution

The following is a summary of the licnese terms governing the use of the MetaDraw™ custom component (file BTIS.MetaDraw.DLL) hereafter referred to as "MetaDraw" or "MetaDraw Component", as well as the use of any associated files distributed by Bennet-Tec Information Systems with MetaDraw (such files including MetaDraw are hereafter collectively referred to as "MetaDraw Package". The formal license agreement is provided as a Certficate of License upon purchase of a License. Terms of this agreement are binding upon any individual using MetaDraw, the employer of any such individual using MetaDraw under the terms of his/her employment, and any individual or organization purchasing the MetaDraw Package, and any software publisher distributing an application built using MetaDraw.

1. Ownership: The MetaDraw and MetaDraw package are owned by Bennet-Tec Information Systems, Inc. and are protected by US copyright laws and international treaty provisions. Neither the software nor any accompanying documentation may be copied for distribution or resale, in whole or in part, without express permission from Bennet‑Tec, except as stipulated below (see Distribution of Runtime software).

2. Single Developer Multiple Machine Licensing / Grant of License: Licenses are granted on an Individual Developer basis. A “Developer” is any individual (not an organization) who will be using the licensed component for the purposes of developing, maintaining, modifying, debugging, or compiling applications, or who will otherwise load the licensed component into memory within a design time environment for software design or web site design purposes such as the creation, modification, maintenance, compilation, testing, or code review.

The license may not be shared among developers. A separate license must be purchased for each developer loading MetaDraw or any element of the MetaDraw package in a design time environment. Prior to use the license must be formally registered to identify the individual developer using the license.

Ownership of a Development License is provided in the form of a Certificate of License identifying a specific License Serial Number. The license owner may be an individual or an organization. Ownership of a Development License allows the license owner to designate a single individual Developer as a licensed User.

Licenses may not be transferred except with specific written authorization from Bennet-Tec Information Systems. To request a license transfer, write to us at Support_License@Bennet-Tec.Com identifying the licnese owner and previous license user, and confirming that the previous user has removed the license from his / her machine and is no longer working in design time mode on any MetaDraw based project.

Each licensed developer may install on multiple machines using the same serial number. Thus each licensed component may be used on a computer at home, a laptop, and another at the office. All machines registered with a given license must however be used by the same individual developer.

3. Restrictions on Use: Use of the MetaDraw for purposes of reverse engineering is expressly prohibited. MetaDraw may not be used to create other custom controls or software components (such as ActiveX or .NET components, OLE Servers, or DLL's) for use in a software design environment, except as such derived software is designed to require the purchase of a MetaDraw license from Bennet‑Tec in order to be used in a design environment. Applications created with MetaDraw may not be distributed prior to license registration and notification to Bennet-Tec of the distribution.

4. Royalty-Free Distribution of Run Time software: Subject to restrictions identified above, the file “BTIS.MetaDraw.DLL” may be distributed without any additional fees or royalties with any compiled application, created with MetaDraw by a licensed developer or license owner. Neither the help file, nor the design-time support files may be distributed under any circumstances - these files are for use solely by the licensed user of the MetaDraw component. In distributing MetaDraw based applications, the appropriate DLL file should be copied into the end-user's system.

The “About Box” or Documentation (on-line files or hard copy) distributed with MetaDraw based applications should clearly identify the use of the MetaDraw component and should also identify Bennet-Tec Information Systems, Inc. as the copyright owner for the MetaDraw component. (Example: “This application was created using the MetaDraw(component (Bennet-Tec Information Systems, Inc “)

 Bennet-Tec requests (but does NOT require) that the Licensed Developer or Publisher of any MetaDraw based application inform Bennet-Tec of any applications developed and provide Bennet-Tec with a copy of such distributed applications based upon the use of the licensed component.

5. Limited Warranty: Bennet-Tec warrants that the software (MetaDraw) will perform as advertised and as provided for in the documentation for a period of ninety (90) days from the date of receipt. Should the software (MetaDraw) fail to perform as advertised within such a period, Bennet-Tec will make every reasonable effort to satisfy any such claims, alternatively the customer may return the software (original disks and documentation) within this period with proof of purchase for a full refund of the purchase price (not to include shipping and handling charges).

6. Other Warranties: To the maximum extent permitted by law, Bennet-Tec disclaims all other warranties, expressed or implied.

7. No Liability for Consequential Damages: To the maximum extent permitted by law, Bennet‑Tec will refuse to accept any liability for damages whatsoever arising out of the use or inability to use this product (MetaDraw), even if Bennet‑Tec has been advised of the possibility of such damages. Individuals, their employers, and application publishers making use of the MetaDraw component are fully responsible for testing applications built using the software and accept responsibility for any liability or damages incurred by the end-user of such applications resulting from the use or inability to use such applications.

8. Contact Information: Should you need to discuss this agreement, or have any questions concerning the product (MetaDraw) itself, please contact Bennet-Tec directly:
 Phone (516) 997 5596,
 Fax (516) 997 5597
 E-Mail: Info@Bennet-Tec.Com.
 Mailing address 50 Jericho Tpk, Jericho, NY 11753.

Other Services and Products
available from Bennet‑Tec

Custom controls and Components:

	[image: image1.png]

	ALLText™
	ALLText is an enhanced text control designed for full format editing and/or write protected documented creation and presentation.

ALLText offers both character and paragaph formatting, Colors, Images, cut & paste, save and load to file or string.

Advanced features include Transparent or Bitmapped Background , Hypertext tags, Bookmark tags, Hidden Text, Conversion between RTF and HTML (requires HTML Licnese), Tables (requires Table Support license) and more.

	[image: image2.png]

	TList ™
	TList – List / Tree / Grid control for presentation or data entry

The fastest control of its type TList is designed for the maximum in flexibility.

Full Formatting support – Row by Row, Column by Column, Individual cell, or even apply RTF formatting for mixed fonts and colors within a single cell.

Multiple Bitmaps per item - one in each column
Virtual Items - keep only those items in memory actually needed.
Unlimited named data items associated with each element of the list.
Search/Sort based on any column or hidden data item
3-D look; Drag&Drop; Hide Rows and Columns; LevelDef formatting. And much more.

	[image: image3.png]

	TBack/Pro™
	TBack – a scrollable frame control. Scroll entire Forms
Offers Transparent, Gradient, or BitMapped Background.

	[image: image4.png]

	UpdateLive
	UpdateLive – Keeps your applications and data current on your end-users’ systems. You ship UpdateLive with your application as a utility. UpdateLive can be run at the end of an install kit to check your web site for updates. UpdateLive can be run from a start menu allowing users to update anytime. UpdateLive can be run at system startup to check for updates on a daily basis. UpdateLive makes its own HTTP connection to your server, checks to see which files (if any) need updating, shows the customer what's new. UpdateLive then downloads the appropriate files, creates a backup directory (to allow reversal of the process), registers any OCX's if necessary, adds desired registry entries, and runs any Exe's if necessary.

Contact Information

Bennet-Tec Information Systems,
50 Jericho Tpk, Jericho, NY 11753
Phone (516) 997-5596
Fax (516) 997-5597
E-Mail: info@bennet-tec.com

Contents

iLicense Terms: Use and Distribution

Other Services and Products available from Bennet‑Tec
iii
Contact Information
iii
CHAPTER 1 Introduction
11
What is MetaDraw ?
11
Potential Applications of MetaDraw
12
Registration
14
License Registration Questions and Answers
15
Distribution Notes
17
On-Line Help
17
Technical Support
17
CHAPTER 2 Concepts
19
The MetaDraw Picture
19
Image and Control Size
19
MetaDraw Coordinate System
21
Picture Organization - Graphic Objects and Containers
22
The Component Area vs. the Drawing Area
24
File Formats
25
CHAPTER 3 Basic Programming Techniques / How To …
27
Loading an Existing Picture
27
Initializing a New Image / Setting Active Drawing Size
28
Zooming and Scrolling pictures
30
Editing an Image
32
Converting File Formats
44
Support of UnDo / ReDo
44
Printing with MetaDraw
45
Using HyperGraphic Hot-Spots
46
How to count and loop through objects in an image
48
How to search for objects within MetaDraw
50
How to create and manipulate diagram links
50
How to create transparent bitmap objects
54
How to Add Object Shadows
54
How to work with FloodFills
54
How to specify an Alignment grid
55
How to Cut, Copy, and Paste
55
How to Add, Remove or Change Points (Verticies) in a Polygon or PolyLine
56
How to Maximize Performance (speed)
58
How to write a HotSpot and Painting Application
58
CHAPTER 4 MetaDraw Reference
61
General Information
61
Properties
61
Methods
65
Events
66
Detailed Specifications
67
About Property
69
Action Method
69
AddObject Method
70
AutoScale Property
73
BackColor Property
74
BackPicture, BackPictureAlignment Properties
75
BackStyle Property
77
BorderStyle Property
77
Change Event
78
ChangeLogicalCoords Method
80
Clear Method
81
Click Event
82
ClientHeight, ClientWidth Properties
82
CopyToClipboard Method
85
CreateImageMap Method
86
CreateLink Method
88
Current Property
89
DoubleClick Event
90
DrawMode Property
91
EditFlags Property
92
EditMode Property
93
EventMask Property
95
Export Event
96
ExportDC Method
97
ExportOptions Property
99
FillColor Property
100
FillPattern Property
101
FillStyle Property
101
FindObjectTags Method
103
FontCharSet Property
106
FontName Property
107
FontOrient Property
107
FontSize Property
108
FontWidth Property
108
GradientStyle Property
109
GridAlign Property
109
GridColor Property
110
GridHeight, GridWidth Properties
110
GridShow Property
111
GridStyle Property
111
HitObject, HitObjectDouble Events
112
HitSensitivity Property
113
HotSpots Property
114
LineColor Property
114
LineStyle Property
115
LineWidth Property
116
LinkColor Property
116
LinkFlags Property
117
LinkLabel Property
118
LinkLength, LinkWidth Properties
119
LinkObject Property
119
LinkStyle Property
120
LoadData Method
121
LoadPicture Method
121
MarkerColor Property
124
MarkerSize Property
124
MetaDC Property
125
Modifications Property
126
MouseCursor Property
127
MousePointer Property
127
MoveObjects method
128
ObjCount Property
131
ObjectHitMarker Method
131
ObjectsInRect Method
132
ObjectsHitTest Method
133
ObjectsOverlappedBy Method
135
ObjGetBounds Method
136
ObjGetParams Methods
137
ObjHotSpot Property
138
ObjMove Method
139
ObjLinkCount Property
140
ObjLinks Property
141
ObjNumber Property
142
ObjOpened Property
143
ObjResolution Property
143
ObjRotation Property
144
ObjSelected Property
145
ObjSetBounds Method
145
ObjSetParams Method
146
ObjShadow Property
148
ObjShadowColor Property
149
ObjShadowOfsX, ObjShadowOfsY Properties
149
ObjStatus Property
149
ObjTag Property
151
ObjTags Property
151
ObjTagsCount Property
152
ObjTagsName Property
153
ObjTagsValue Property
154
ObjType Property
154
ObjURL Property
155
ObjVisible Property
156
OnHotSpot Event
157
OpenDraw Property
158
OrigHeight, OrigWidth Properties
159
PasteFromClipboard Method
160
PicBackColor, PicBorderColor Properties
161
Picture Property
163
PictureChanged Property
164
PictureClip Property
165
PictureImage Property
166
PictureOptions Property
166
PictureSource Enumeration
168
PictureType Enumeration
169
PictureType Property
169
PicXOfs, PicYOfs Properties
170
PicXSize, PicYSize Properties
171
ReadImageMap Method
172
Redo Method
173
RedoAvailable Property
173
Redraw Property
174
Refresh Method
174
RemoveObject Method
175
Repaint Property
176
RotateObjects Method
176
RotatePicture Method
177
SaveData Method
178
SavePicture Method
178
ScaleUnits Property
180
Scroll Event
181
ScrollBars Property
181
ScrollCheck Property
182
ScrollKeyboard Property
183
ScrollMouse Property
183
SetLinkPoint Method
184
ShowAboutBox Method
185
ShowInvisible Property
185
Text Property
186
TextColor Property
187
TextStyle Property
187
TextHAlign Property
188
TextVAlign Property
189
Undo Method
190
UndoAvailable Property
191
UndoLevels Property
191
UndoGrouping Property
192
ZoomCentering Property
193
ZoomFactor Property
194
Appendix A Trappable Errors
195
Trappable Errors
195
Appendix B Metafile Restrictions
198
Metafile Restrictions
198
Appendix C DXF Support Notes
199
DXF Support Notes
199
Appendix D Other Notes
204
Other Notes
204
Appendix E Trouble Shooting Tips
205
Trouble Shooting Tips
205
Appendix F Changes from MetaDraw 3 OCX edition
206
Features Not Supported in .NET Edition
206
Syntax Changes .NET Edition
207
Index
209

CHAPTER 1
Introduction

The Object Oriented Graphics control. MetaDraw supports creation, display and manipulation of graphic objects within an enhanced picturebox. MetaDraw is great for Drawing, Diagramming, Layout, and HyperText hotspot applications. Easy to use and Powerful.

What is MetaDraw ?xe "Introduction"

xe "BTIS.MetaDraw"

xe "BTIS.MetaDraw.MetaDraw"
MetaDraw is a special purpose vector or object oriented image manipulation control. MetaDraw looks like a standard picture box on your form, but offers unique support for the creation, editing and display of images and diagrams, composed of multiple image elements such as lines, shapes, text and other images. MetaDraw is ideal for applications requiring the drawing and/or moving graphical objects, such as Cad / Drawing, Layout, Mapping, and Diagramming. The ability to manipulate individual elements within an image at real time make it suitable for Data Presentation, Animation and Interactive Graphic Interfaces. MetaDraw is also specially designed to allow you to tag individual graphic objects for HyperGraphic/HotSpot applications.

MetaDraw features include:

· Scroll and Zoom Images by code or by mouse action;

· Vector / Object Oriented Image Editing - act on individual elements of a picture:

· Create pictures built from individual graphic objects: - text, bitmaps, shapes, floodfill;

· Select, Move, ReSize, Rotate, Change attributes (color, line styles, fill patterns, etc);

· Full Programmatic Control;

· End User Drawing with Mouse;

· UnDo and Redo Changes;

· Polyline / Polygon Manipulation;

· Group and Ungroup elements, manipulate groups as a single element;

· Rotation at any angle;

· HotSpot/HyperGraphics support:

· Capture clicks or mouse moves through hotspot shapes;

· Assign data to individual elements for identification and information display;

· Diagraming:

· Diagram Links - automatically updated to as connected objects are moved;

· Specify arrow head style, text labels, straight or segmented links;

· Properties to set connecting line color, thickness and style;

· User Defined Coordinate System - Grid Display and Alignment;

· Merge and Layout Images from multiple sources;

· Selective Display – hide or show individual elements within an image;

· Save and Load to a Variety of Image Formats
The whole picture, or any part, can be exported as a metafile (WMF or EMF), bitmap (BMP), compressed image (JPG, GIF, TIFF or PNG), icon (ICO), or MetaDraw's own compact format vector format (MDP). DXF format is supported for users with optional DXF License;

· Print to any specified device - even to the Windows Desktop or another Window;

· Drag & Drop from Windows Explorer, OLE Drag Drop and VB -and-drop sources;

· Transparent, Gradient or Bitmap Background;

· Enhanced Graphic Effects : shadows, gradient filling;

· Transparency support for bitmaps.

Potential Applications of MetaDrawxe "Applications"
There is a set of application that can be developed using the MetaDraw Component.

Diagramming / Flow Charts

Link objects built into MetaDraw make it ideal for diagramming. Users (or application code) can connect any objects with link lines which maintain the connection between elements of the diagram as the individual elements are moved around. Links may have distinct arrow heads, line styles, line colors, even hidden tag values describing the nature of the link. Common applications include tracking product and/or waste flow within a production cycle, and software flow charts.

Layout, Floor Plans

One of the more popular uses of MetaDraw is to create layout diagrams, often for the purpose of creating Seating or Furniture arrangements, or to sketch accident scenes, or to keep track of the location of corporate staff or resources. It's easy to display a map in the background and allow users to drag around graphic elements representing chairs, or people, or anything else.

Data Mapping

MetaDraw is frequently used to associate points on a map (geographic, anatomic, or basically any two dimensional space) with information to be stored in a database. With MetaDraw you can set up your own coordinate system and populate the image programmatically with information from your database. Object Tags on each element of the overall image can be used to hold database record ID's such that a user's click can quickly retrieve appropriate data. Users may also be allowed to add graphic elements, which event is then trapped to add new data in a database.

With MetaDraw you may even dispense with traditional database storage altogether. MetaDraw can store multiple object tags for each graphic element in the image - Such tags are the equivalent of database fields. You can even search for elements based on their tags. MetaDraw's MDP format preserves both the image and the tags acting as a complete storage system for all your information needs.

Interactive Graphic Interfaces

MetaDraw can be used as the engine for an interactive graphic interface. Populate (or allow end-users to populate) the control with graphic objects that can be moved around on the screen (by dragging or by programmatic manipulation), resized, colored, ... A great way to present information - a great way to interact with users.

You can even construct graphic elements to represent buttons, add a hotspot and process the click. Such buttons can be any graphic element with any shape.
Viewers

You can use MetaDraw as a simple image viewer or as a full featured Graphic Editor. The control looks just like a picturebox on your screen. As a viewer, MetaDraw not only quickly displays the entire image and supports scroll and zoom, but also uniquely allows you show or hide individual Metafile records.

Graphic Editing & Annotation

You can use internal features of the MetaDraw control to create and edit pictures. MetaDraw includes all the standard edit modes of a stand-alone draw package. New images can be easily created or an existing image can be loaded and manipulated at run-time. The user can add new graphic elements, Delete portions of an old image, move objects around or change their attributes (size, color, orientation, etc.).

You can easily change the color of any rectangle, text or other object. Objects can be grouped, ungrouped, moved in back or in front of other objects, or even dragged around on the screen.

HyperGraphics

MetaDraw is a wonderful tool for creating HyperGraphic applications. Any object (Metafile record or group of records) can be declared as a HotSpot. MetaDraw will automatically change the mouse cursor when it is moved over a tagged HotSpot and will generate a special HotSpot click event when clicking on such an object.

We even include our own Picture and HotSpot editor application (a stand-alone EXE) with the MetaDraw control. Pictures with HotSpot objects can be saved in a file, then loaded and displayed. All hotspots will be saved with objects.

Animations

The ability to manipulate individual elements of the picture in real-time, provide exciting opportunities for Animation within MetaDraw. Rather than redrawing a complete image, simply update those portions relevant to the movement. Move lines or shapes, Hide or show other elements, Move elements behind or in front of other elements.

Registrationxe "Registration"
All Bennet-Tec software will run in demonstration mode for 30 day with full functionality. During this time you will see a demonstration message in the lower right corner of the control. After 30 days the software will time out and you will not be able to program with it. At this point, you must download another demonstration version to another machine, or purchase a license.

If your software is not properly registered, you will receive a message saying you do not have an appropriate license or that you are in demo mode.

When you install the software, whether you have downloaded the installation kit or you have installed from one of our disks, you are given the opportunity to register your software near the end of the installation process. You may register at this point, or at any time you choose. If you don't register at install time, you can do that any later time that is convenient to you by selecting the MetaDraw License Registration menu link in the Windows Start Menu.

The MetaDraw License Registration utility presents 2 tabs:


On-line Registration
Use this tab if your computer is connected to the Internet.
This will automatically communicate via the Internet (without a web browser) with the Bennet-Tec License Registration Server to accept and verify license information from your system
You will need three pieces of information:
 1) Your 11-character Serial Number
 (provided to you when you purchase a Bennet-Tec software product)
 2) Machine Key
 (automatically determined by the license system and entered for you)
 3) User Name
 (the name – first and last name - of the individual developer, not the company name

- each use must have a separate license serial number.)

Off-Line Registration
If the computer on which you will be doing development is not connected to the internet,
you may use the Off-Line tab of the License utility to enter your information.
You will need four pieces of information:
 1) Your 11-character Serial Number
 (provided to you when you purchase a Bennet-Tec software product)
 2) Machine Key
 (automatically determined by the license system and entered for you)
 3) User Name (individual developer's name, not company name)
 (the name of the individual developer, not the company name
 - each use must have a separate license serial number.)
 4) Registration Code
 (you can get this using any computer which is connect to the internet
 to access the web site http://www.bennet-tec.com/register.htm)
Select the appropriate tab and enter your information. All requested information must be entered. If all text boxes are not filled in, or have not been filled in properly, the "Register" button will not become activated. After entering the requested information, press the "Register" button. In response you will get a message box that confirms the successful entering of the registration information into the system – note this may take a few seconds as the system communicates with our license registration server.

To verify that you have your license properly installed on your development machine, start a brand new program and place your control on a form or dialog. If there is no registration message inside the control, then you are registered. At this point you may open any existing project. If you still get a registration message at this point, open and resave each individual form (not the project file) or dialog on which the control is used. Alternately, you may remove the control from your project and then add it back to the project

Important Notes:
Your Serial Number is issued to you upon purchase of your license. It can also be found on your invoice and on your Bennet-Tec License Agreement.
The User Name is the name of the person actually doing the development with the control, not the company name and not the name of the individual who purchased the license. It is important to use the developer's name for the User Name so that we can recognize that name if and when we are called upon to offer support. Remember each license is valid for just one individual and cannot be shared – if you must transfer the license at some point – just contact us and let us know the name of the previous and future developers so we can update our databases. Put your User Name and your Serial Number in a safe place, as you must use the correct Serial Number and User Name each time you register.
Your Machine Key can be found inside a text box when you run the MetaDraw License Registration program. You need not worry about your Machine Key; it is already filled in for you.
The Registration Code will only concern you if you are registering off line. If this is the case, if you have access to any computer that is on line (it need not be your development machine), you may go to our registration web site--7 days a week/24 hours a day--at http://www.bennet-tec.com/register.htm. Click on the name of your control, fill in all the text boxes, then click the "Register Me!" button on the bottom of the page. This will generate your Registration Code.
This code is valid for one machine only. You will need to generate a new registration code for each development machine you wish to register off line on.
Or you may call us (516-997-5596) or e-mail us (Support_License@Bennet-Tec.com) with your Serial Number, User Name and Machine Key and we will then generate a Registration Code for you.

See Also

Registration Questions and Answers

License Registration Questions and Answersxe "Registration Q&A"
1. Who's name should I enter as User Name when I register?

The user name is the name of the license user (the developer) not the owner of the license. Please specify your own full name (first and last name) . If you are registering the license then you should be the only individual using this license. Each license is registered for development use by one individual – this individual developer's name should be specified. Do not specify a company name, the person who purchased the control, the license owner’s name or a project name.

2. Do end users of a compiled application created with a Bennet-Tec control require a License from Bennet-Tec? Are there any Royalties?

No. End-users of a compiled EXE, or a web page built with a Bennet-Tec control do not require a license and there is NO Royalty or distribution fee . Users of other applications running in a run-time only mode (for instance run-time only Access databases also do not require a license) User of environments such as MS Word which do not offer run-time only support DO require licenses.

3. How many individuals can use a single license?

Each license is valid for just one individual developer. A developer is any individual loading a Bennet-Tec component, or loading a form or other components built around the Bennet-Tec component, within a software design environment such as Visual Basic .NET, Visual C# .NET, etc.

4. Can licenses be shared?

No, a separate license should be purchased for each individual working on a project. Licenses must be purchased for anyone opening a form, Dialog, or Class, or active X control built around a Bennet-Tec component, whether to write code, for testing, or simply to review code.

5. Can licenses be transferred?

Licenses can be transferred, but only with written approval from Bennet-Tec, and only within a company.

6. Can I incorporate a Bennet-Tec component in my own .NET component?

Yes - BUT - Each individual developer using an .NET component built around a Bennet-Tec component must still purchase a license from Bennet-Tec.

7. Do I really need a separate license for project members working on other areas of the application, if I am the only one working with code based on the Bennet-Tec component?

YES - every individual opening your project in the software development or web design environment must have a license. This includes individuals working on other areas of code in the project, reviewing the code within the design environment, testing within the design environment, or compiling projects. No license is required for testers running a compiled EXE, or for reviewing code in an ASCII text editor.

8. Are Site Licenses available?

Yes - contact our sales department for further information.

9. How many computers may I install the license on?

You may install your license on up to 3 computers at one time, So it is possible to install on your office computer, a computer at home, and a laptop. Or to install on a Win 98 machine, Win NT, and Win XP * BUT * these computers must all be used by the same individual. Remember each license is valid for just one individual.

10. How can I remove a license from my computer?

Click the UnRegister button on the License Registration Tab. This will generate a LOG file in the same directory which you should e-mail to us at Support_License@Bennet-Tec.Com or print and fax to 1 516 997 5597

11. Why do I see a license warning even after I registered my license?

There are several possibilities:

a) If an individual without a license opened your project files, possibly to review the code or to work on another part of the project, then his / her unlicensed status would have been stored in the project when that individual closed the project. Remember each individual working in development mode requires a separate license – even to review your code or to work on another part of the project. To allow code review without a license – send your code to the individual in an ASCII file or as a wordprocessing document.

b) If you last opened the project while working in demonstration mode, the demonstration mode status may have been saved as part of the project. Open and resave each form using the control.

c) If you have installed a new operating system or a new hard drive partition the Machine ID may have changed, in this case you need to re-register your license.

12. Can I use the same License Registration code on Multiple Machines?

No. The registration code is uniquely determined by the combination of User Name, Serial Number and Machine ID Code.

13. How do I register my License if my computer is not connected to the Internet?

You can use the Off-Line tab of the license registration system. You will be asked here for a Registration code. You can get the registration code using any other computer to access our web registration page.

Go to

http://www.bennet-tec.com

and select Register

14. What if I can't find my Serial Number or I can't remember my User Name?

If you can't locate your Serial Number, either contact us or contact the reseller from whom you purchased your software. If you can't remember your User Name, contact us and we will attempt to look it up for you.

15. What if I follow the instructions, But still can't successfully register my license?

Either attempt to reregister the license again, or contact us for assistance. You may call us (516-997-5596) or e-mail us (Support_License@Bennet-Tec.com) with your Serial Number, User Name and Machine Key, and we will then assist you in registering.

16. What if I receive a message saying that my Bennet-Tec software has been registered by the Maximum Number of Users?

This message means that the software license has already been registered, and that you are attempting to register the software license again, but you have entered a User Name that differs in some way from the one that was originally licensed. If you can't remember the original User Name, of if you would like to transfer your license to a different user, please contact us.

17. Must I Register My Bennet-Tec .NET component with Windows?

Whether you install your Bennet-Tec software by downloading the installation kit from our web site (www.bennet-tec.com) or from our disk, your .NET component is registered with Windows automatically for you as part of your software's installation process. Our license registration program has nothing to do with registering with Windows.

18. Must I Reregister My Bennet-Tec Software License After Downloading an Update?

You should not have to reregister your software license after updating the software (except if you have purchased a major Upgrade – i.e.: a new edition of the product not just a minor edition update) . However, if you choose to install the update it in a different location, you may have to register it with Windows in order to be sure your program is accessing the correct version of your software.

19. Must My Bennet-Tec Software License Be Registered on My End User's Machine?

No, you need only run our license registration program on each development machine. You need not run our License Registration program on any end-user's machine; however, you must make sure as part of your installation kit that any Bennet-Tec Component is registered (not licensed) with Windows on your end user's machine.

20. Where can I get more information?

Write to us at support_license@bennet-tec.com
Please include your MetaDraw serial number, or let us know if you are still working with the control in demonstration mode prior to purchase of a license.

Distribution Notesxe "Distribution Notes"

xe "Licensing Restrictions"
Design Time Use

As a reminder, MetaDraw licenses may not be distributed or shared among developers. A separate license must be purchased for each individual who will use the component within a design environment (one in which code can be written using MetaDraw, or the MetaDraw properties can be directly accessed). This includes consultants, maintenance engineers, and testers regardless of whether the individual is directly interacting with code related to MetaDraw.

Developers using MetaDraw based components must also purchase MetaDraw licenses even if they are not directly interacting with MetaDraw itself.

Application Distribution

The BTIS.METADRAW.DLL file itself may be freely distributed with compiled applications (.EXE). You should redistribute the appropriate custom control file BTIS.METADRAW.DLL with your application and install it on the end-user's PC in the GAC or application's directory where DLLs can be found. In addition, the Microsoft Common Language Runtime DLLs are required for support of MetaDraw components

Prior to distribution you should make sure each developer using MetaDraw has registered his/her license.

* Bennet-Tec requests that developers notify us of the application name and contact point when distributing applications.

Installation Files
The MetaDraw installation package includes the following files:

	File
	Description

	BTIS.MetaDraw.DLL
	MetaDraw for .NET Component

	MetaDraw.HxS
	The help file

	*.VB, *.VBPROJ, etc.
	Various application code samples

	MDN_Registrar.EXE
	License registration application

On-Line Helpxe "On-Line help"
MetaDraw has an on-line Help system that includes all the information contained in this guide. To access Help on a MetaDraw property or event, highlight it in the properties (events) list window at design time and press F1.

The given help file can be started manually, as you would start any other application. Simply select "MetaDraw Help" from the MetaDraw group of the Windows Start Menu.
Technical Supportxe "Technical Support"
Free Technical support is provided by phone, fax, e-mail or online during the first 30 days following purchase. After 30 days Bennet-Tec reserves the right to charge for Technical support. Technical Support is provided only to registered users who have returned the registration form with full information including the name of the individual developer. Prior to calling Bennet-Tec, it is suggested that developers visit the Support section of our Web site (http://www.bennet-tec.com/) for answers to commonly asked questions.

Contact Informationxe "Contact Information"
Bennet-Tec Information Systems,
50 Jericho Tpke, Jericho, NY 11753
phone (516) 997-5596
fax (516) 997-5597
e-mail: support_metadraw@bennet-tec.com (support questions) or support@bennet-tec.com (other)

CHAPTER 2
Concepts

The MetaDraw PictureXE "New picture"

XE "Resetting the picture"
The MetaDraw component displays and operates on an image specified by the Picture property. All operations for creating, deleting, and changing objects are applied only to this picture (Main Picture) or elements within this picture (as pointed to by the .Current property).

This picture may be determined at design time either by specifying the picture’s coordinates properties (to create an empty picture of some size) or by assigning a picture to the Picture property. The picture may also be specified at run-time by creating a new picture, or by loading or modifying an existing picture

Image and Control Size

Position and Size of the Component Window XE "Control Window Size and Position"
There are three pairs of properties specifying the size and position of the component and its client area.

Location.X, Location.Y
Size.Width, Size.Height
ClientWidth, ClientHeight

The Location and Size properties determine the position and the size of the component inside its container. The ClientWidth/ClientHeight properties return the actual size of the MetaDraw's client area (without borders and /or scroll bars). ClientWidth and ClientHeight properties have an optional parameter to allow retrieving the size of the client area with or without the scroll bars.

[image: image5.wmf](Left,Top)

Width

Height

ClientHeight

ClientWidth

Note that the size of the image held by MetaDraw is not constrained by the size of the client area. The image may be larger or smaller than the client area of the component.

Image Size – Original Unzoomed Size

Original Size - Base Display Dimensions XE "Original Size"

XE "OrigWidth Property"

XE "OrigHeight property"
The properties OrigWidth and OrigHeight set the Original size assumed to be "normal" (1:1 zoom) for picture display or printing. This information is included within images saved by MetaDraw and will be used by most applications to determine how to handle the image. The original size is measured in units specified by the container's scaling mode; the measurement units for the picture can be also explicitly set via the MetaDraw ScaleUnits property.

Note that the size at which an image is displayed or printed is not limited by the Original Image Size. The image may be Zoomed for either on-screen, or printed display.

Also note that the image size is independent of the coordinate system used for adding image elements, and manipulating the image.

Image On-Screen Presentation – Size and Position of the Image XE "Size – On-Screen Display"

XE "Scrolling" XE "Offset"

XE "Zoom" XE "Display Size" XE "PicXSize Property" XE "PicYSize Property " XE "AutoScale Property" XE "PicXOfs Property " XE "PicYOfs Property "

XE "ZoomFactor Property "
The On-Screen presentation size and position of the image is controlled by the following properties:

PicXOfs, PicYOfs
PicXSize, PicYSize
ZoomFactor, AutoScale

Display Size - Zoom Dimensions
The display size properties PicXSize and PicYSize specify the On-Screen Display size of the image. These properties are measured in the units specified by the scale mode of the parent container in which MetaDraw control is placed or by the MetaDraw ScaleUnits property.

To stretch or shrink the image, set the ZoomFactor property (preferred), or set the PicXSize and PicYSize to a multiple of OrigWidth and OrigHeight. Setting the ZoomFactor property automatically sets both PicXSize and PicYSize to the same multiple of OrigWidth and OrigHeight, preserving the aspect ratio of the image. The AutoScale property may also be used to automatically scale the image (when MetaDraw window sizes is changed), thereby setting the ZoomFactor, PicXSize and PicYSize properties.

Note that while it is possible to zoom the image by different ratios in X and Y direction (by directly setting PicXSize and PicYSize to different multiples of OrigWidth and OrigHeight, or by setting the AutoScale property to AutoScaleMode.Resize) this can result in the appearance of certain distortions or misalignments – especially with regard to Text. It is therefore recommended to maintain the ratio PicXSize/ OrigWidth and PicYSize / OrigHeight, and to control zooming by setting either the Zoomfactor property, or by setting AutoScale to AutoScaleMode.Original, or AutoScaleMode.FitToWindow.

Changing the displayed size of the image has no effect upon the underlying data or the internal coordinate system.

Offsets
The offset properties (PicXOfs, PicYOfs) determine the position of the picture inside the MetaDraw component box. When PicXOfs, PicYOfs are zero the left-upper corner of the picture will be placed in the left-upper corner of the client area. PicXOfs, PicYOfs and PicXSize, PicYSize are independent.

[image: image6.wmf]PicXSize

PicYSize

PicXOfs

PicYOfs

Visible area

Invisible area

Image Print / Export Size

MetaDraw also supports control over the printed size of an image. The printed size of an image is controlled by the following properties:

ExportLeft, ExportTop,
ExportHeight, ExportWidth, ExportOptions

It is possible to print only specified part of MetaDraw picture using the ClipXXXX properties:

ClipLeft, ClipTop,
ClipHeight, ClipWidth

MetaDraw Coordinate System XE "Picture Coordinates"

XE "Logical coordinates"

XE "PicWidth Property"

XE "PicHeight Property"

XE "PicLeft Property"

XE "PicTop Property" XE "Resolution"
Logical (or picture) coordinates
MetaDraw supports an internal Logical Coordinate System which is independent of either the original (unZoomed) or the on-screen display size of the image. This coordinate system is used when adding new drawing objects (as with the AddObject method), when reading the position of an object, or when moving an object.

The coordinate system is specified by the following properties:

	PicLeft
	specifies the minimum X (Horizontal) coordinate,
referencing the Left Edge of the image.

	PicTop
	specifies the minimum Y (Vertical) coordinate,
referencing the Top Edge of the image.

	PicWidth
	specifies the range of the X axis,
horizontal extent of the coordinate system

	PicHeight
	specifies the range of the Y axis,
vertical extent of the coordinate system

All object coordinates within a MetaDraw picture are specified in logical units ranging from (PicLeft, PicTop) to (PicLeft+PicWidth, PicTop+PicHeight). Coordinates always increase from Left to Right and from Top to Bottom.

[image: image7.wmf](-50,-50)

PicHeight = 1000

OrigHeight = 1"

PicLeft = -50

PicWidth = 1000

OrigWidth = 0.9"

PicTop = -50

(950,950)

When loading an image the coordinate system will be determined by the image being loaded.

When creating a new image, the default coordinate system ranges from (0,0) to (1000, 1000) but PicTop, PicLeft, PicHeight and PicWidth may be chosen for convenience – generally to establish a coordinate system which is either easy to use (say from 0 to 1000) or which easily translates to some real-world corresponding units (such that each unit represents a degree of Latitude, a tenth of an inch, or a degree Centigrade, etc.)

Coordinate System and Image Resolution:

In addition to defining the extent of the coordinate system, the PicWidth and PicHeight properties also determine the picture resolution. Assigning too low a value to PicWidth and/or PicHeight limits the precision with which graphic elements (lines etc) may be placed or drawn, and may result in blockier images. For most applications a value between 1000 and 10,000 is quite suitable. The values of PicWidth and PicHeight are usually chosen for convenience.

The following images show the effect of changing resolution using PicWidth and PicHeight.

[image: image8.wmf]PicWidth = 50

PicWidth = 1000

PicHeight

PicHeight

50

1000

Resolution 50 x 50

Resolution 1000 x 1000

Note - the standard for Windows MetaFile Format only supports resolution settings up to 32,767 – higher values should not be used for PicWidth and PicHeight if the image is to be exported to WMF format.

Note – it is important to use the same coordinate resolution in the X and Y directions – The rations, PicWidth/OrigWidth and PicHeight/OrigHeight should be maintained as equal values.

The Logical Coordinate System settings HAVE NO EFFECT upon picture placement or size and DO NOT depend upon the device context.

Note that the ClientToLogicX and ClientToLogicY properties may be used to convert between a pixel based X, Y coordinate location within the client rectangle, and logical coordinates within the overall image.

The PicWidth and PicHeight properties can be changed after objects are created inside the MetaDraw picture. In that case only size of main picture is changed, coordinates of objects remain changed. To change picture resolution or to clip any part of existent picture use the ChangeLogicalCoords method.

For more information see “Initializing a New Image / Setting Active Drawing Size” in the “Techniques” section.

Picture Organization - Graphic Objects and ContainersXE "Picture organization"
An Image is Build from Graphic Objects XE "Objects"
The image held in the MetaDraw component consists of a set of graphical "objects or "elements" such as lines, rectangles, polygons, texts, bitmaps, and containers (object groups). Each graphic object is distinctly maintained and manipulated by MetaDraw within the context of the overall image. It is therefore possible to add, delete, move, resize, rotate, and change various characteristics of each object independently of the rest of the image.

MetaDraw properties which are used to modify objects in the picture act upon the object(s) referenced by the .Current property. This property can be set to point to a specific object, or to a group of objects (for instance all the selected objects). For more details refer to the section “Object Handles - Accessing the Current Object(s)” later in this chapter.

Multiple Objects can be "Grouped" into "Containers" to act as a single object. For further details see “Layering Order of Objects” later in this chapter.

Objects are layered – objects can be moved in front or behind other objects. For further details see “Containers/ Object Groups” later in this chapter.

Object Handles - Accessing the Current Object(s)

Each object within an image is automatically assigned an object handle as it is created (drawn or added to the image) or as the image is being loaded. The handle, a long integer value, uniquely identifies that object to MetaDraw.

The "Current Object" is the object (or objects) MetaDraw's Internal Pointer points to, it is the object upon which actions are taken, or for which attributes may be read by most MetaDraw properties. The Current property points to the Current Object within the overall image by specifying an object handle identifying the object.

Any actions taken to modify object attributes (line colors, line thickness, text, object position, etc) are applied to the Current Object (the object or the set of objects pointed to by the Current property). This is NOT necessarily the same as the currently Selected object(s).

It is possible to read the Current property for an object immediately after it is created (for instance by the AddObject method, after setting the Action property, after setting the ObjNumber property), or during the Change event when an end-user is adding items with the mouse. This value may be saved and then used at a later time to refer to the object.

Note that in MetaDraw the most convenient way to identify an object is to assign an Object Tag using the ObjTags property to the item as it is created, and then to use the FindObjectTags method which will automatically set the Current property to the desired item according to its tag.

Certain reserved handles have been defined to allow easy access to frequently used objects. Simply assign one of the following constants to the Current property.

	The ObjHandle Enumeration
	Value
	Description

	ObjHandle.Container
	1
	Specifies all objects in the current open container.

	ObjHandle.Selected
	2
	Specifies all selected objects.

	ObjHandle.SelAttr
	3
	Specifies all selected objects and global MetaDraw object’s attributes for getting/setting attribute operations.

· This setting is valid only for getting or setting attributes of an object (like LineColor, Text, BackStyle, DrawMode).

· Reading an attribute property while the Current property is set to ObjHandle.SelAttr returns the attribute value of the selected objects only if this is the same for all selected objects, otherwise the value of the global object’s attribute is returned.

	ObjHandle.Default
	4
	Specifies global MetaDraw object’s attributes for getting/setting operations.

· This setting is valid only for getting or setting attributes of an object (like LineColor, FontSize, BackStyle, DrawMode).

	ObjHandle.MainContainer
	5
	Specifies the Main Container.

· If you set the Current property to ObjHandle.MainContainer and then read it back, the resulting value is the handle of Main Container.

Containers/ Object Groups XE "Container"
Several objects can be grouped into a "container" (also referred to as a "group"). The container can then be manipulated (moved, resized, rotated, color changed, or otherwise modified) as a single object. The complete image that held by MetaDraw is itself a container holding all the graphical elements within the picture.

[image: image9.wmf]Polyline

Polygon

Rectangle

Rectangle

Rounded

Lines

Ellipse

Container

Selected Objects may be grouped, and grouped Containers may be ungrouped using the Action property. Containers may be opened or closed using the ObjOpened property. Opening a container allows action on the individual elements within the container.

Open containerXE "Open container"
A container (grouping of objects) can be put into another container resulting in nested levels. The Editing of MetaDraw objects can however be performed on only one container (one level) at a time. The Open Container is the container (group) where editing operations are allowed. New objects will also be added to this open container.

[image: image10.wmf]Main container

Open

Container

These objects can't be changed

But you can edit

these objects

Layering Order of ObjectsXE "Layering order of objects"

XE "Picture organization: stacking order of objects"
All objects inside a MetaDraw container are held in an internally maintained list that determines which objects are in front of others. As objects are added to a MetaDraw image they are appended to the end of that list. When the picture is repainted, it is drawn starting with the bottommost object, up to topmost one. Therefore, objects that are added later will generally be drawn on top of (in front of) previously drawn objects. An object’s position in the list (and thereby the visible layering of the objects) can be modified by appropriate using of the Action method. (See “Changing the layering order of objects”).

Within a container, an object's position within the list may be read with the ObjNumber property.

[image: image11.wmf]First

Object

Topmost

Object

The Component Area vs. the Drawing Area

As noted above, the picture or Active Drawing Area held within MetaDraw may be smaller than the component itself. The on-screen picture size is specified by the PicXSize and PicYSize properties and the client area of the control by the ClientWidth and ClientHeight properties. If PicXSize is smaller than ClientWidth, or PicYSize is smaller than ClientHeight, then the background of the component will be seen beyond the drawing area. This Background will generally be shown with a solid color as specified by the PicBorderColor property, while the background color of the image is generally specified by the PicBackColor property. These backgrounds may be further modified depending on the BackPicture, BackPictureAlignment, GradientStyle properties.

End-Users can not draw outside of the ActiveDrawing area, regardless of the size of the control.

File FormatsXE "File Formats"
MetaDraw supports loading and saving both Raster and Vector Format images.

	Format Name
	Exten​sion
	Type
	Comments

	Bitmap
	.BMP, .RLE, .DIB
	Raster
	

	Icon
	.ICO
	Raster
	

	JPEG
	.JPG
	Raster - Compressed
	

	PNG
	.PNG
	Raster - Compressed
	

	Metafile
	.WMF
	Vector
	

	Enhanced metafile
	.EMF
	Vector
	

	MetaDraw picture
	.MDP
	Vector
	

	MetaDraw data
	.MDR
	Vector
	MDR format actually is more than an image format; it contains the complete state of the MetaDraw component and properties, and is generally used for setting up defaults especially on Web pages. This format is accessed only with the SaveData and LoadData methods.

	AutoCAD DXF
	.DXF
	Vector
	DXF format support for MetaDraw requires DXF Support License Option. (See Appendix "DXF Support" for details)

	GIFXE "GIF"
	.GIF
	Raster - Compressed
	GIF formatted images may be read under Visual Basic using the Visual Basic LoadPicture function to assign to MetaDraw's Picture property.

	Note:
	Other file formats may be supported through use of MetaDraw in conjunction with other third party controls. Bennet-Tec may also be contracted to develop support for other image filters on a contract basis.

Note that the MetaDraw internal MDP format is generally preferred for maximum speed, and to preserve the complete set of features of independent objects making up a drawing / diagram within MetaDraw.

Raster vs. Vector Format Images

Raster images are images in which the color and intensity of each location within an image is represented by a data point.

Vector images are images where distinct entities such as lines, shapes, text, and are maintained within an image and represented by their locations and characteristics (example Line start and end points, line thickness, line style, color…).

There are several Advantages of Vector Format Images:
· For most drawing and Diagramming applications, Vector images may require only a tiny fraction of the disk space/memory required for Raster images,

· Independent elements within a vector image remain distinct when saved and reloaded. Annotations can be recognized distinct from the original image, even keeping track of annotations created by different end-users. Lines drawn in one session may be later moved in another session. Text added in one session can be recognized and modified in a later session, etc.

· Printing and Zooming of Vector format images results in higher quality output

MetaDraw can load and save both Vector and Raster images.

Conversion from Vector to Raster images is quite simple with MetaDraw. The image is simply saved to the desired Raster Format.

Embedding Raster Images within a Vector format is also straight forward with MetaDraw. A Raster image can be loaded in its native format and simply resaved in one of the supported vector formats, or merged with other images, shapes and text and then saved.

CHAPTER 3
Basic Programming Techniques / How To …

Programming Techniques

The MetaDraw component displays and operates on an image or canvas specified by the Picture property. All the operations for creating, deleting, and changing objects are applied only to this picture (Main Picture) or elements within this picture (as pointed to by the .Current property).

This picture can be created/initialized, loaded with some existing image, drawn upon by the end-user or by the program code, assigned hotspots, rotated, printed, saved, and more. This section will describe some of the basic techniques used in working with MetaDraw.

Loading an Existing Picture

MetaDraw's picture may be set at design time or run-time by assigning a picture to the Picture property.

· DESIGN TIME PICTURE SETTING
MetaDraw's Picture property can be set directly from the Design Environment's Property List. Alternatively right-click on MetaDraw at design time, choose the Properies menu item to open the Properties window and set the Picture property in MetaDraw's property window.

· DIRECTLY SETTING THE PICTURE PROPERTY
At run time, you can also initialize the picture by directly assigning a picture to the Picture property by reference to a picture held in another component.

MetaDraw1.Picture = New BTIS.MetaDraw.MDPicture(PictureBox1.Image)
When directly setting the Picture property the picture’s size and coordinates will be set according to the picture loaded.

· COPYINNG A PICTURE FROM ANOTHER INSTANCE OF METADRAW
The Picture property of MetaDraw is a stock property which can not hold all the details which may be represented within a MetaDraw image. Using the Picture property to transfer an image from one MetaDraw control to another retains the full details.

MetaDraw1.Picture = MetaDraw2.Picture
· LOADING PICTURES FROM A DATA SOURCE (File, Binary Array)
MetaDraw's LoadPicture method provides flexible support for loading a variety of image formats from a variety of possible sources.

The LoadPicture method takes 3 parameters – the first, Source determines from where MetaDraw loads the image.

The image source can be:

· a FileName

· a Stream

· an Image object

· a Byte Array – a byte array variable which contains picture data

The 2nd parameter, PicDst, specifies which MetaDraw property (Picture, PictureImage, PictureClip, etc.) will receive the loaded picture. To specify the main picture – the picture seen within MetaDraw control – this PicDst should be set to the constant PictureSource.Picture (value 0)

The 3rd (last) parameter, PicType, is optional. If the PicType parameter is zero, the function will try to recognize the type of the picture automatically. Otherwise MetaDraw will try to interpret the datasource according to the picture type specified by PicType.
	Note:
	Attempting to load a picture from a file which does not exist, can not be opened, or which does not contain an image type recognized by MetaDraw will result in a trappable error condition.

Image Formats:XE "File Formats"
MetaDraw supports the following picture formats: bitmap (.BMP, .RLE, .DIB), icon (.ICO), JPeg (.JPG), PNG (PNG), metafile (.WMF), enhanced metafile (.EMF), MetaDraw internal format (.MDP).

DXF format support for MetaDraw is available as a separate licensing option from Bennet-Tec.

	Note:
	Other file formats may be supported through use of MetaDraw in conjunction with other third party components. Bennet-Tec may also be contracted to develop support for other image filters on a contract basis.

· LOADING PICTURES FROM THE INTERNET
MetaDraw's LoadPicture method does not accept direct URL to a picture placed on the Internet. You may use the WebClient object to access such a resource. To insert a picture given by a URL to MetaDraw first create the WebClient object, then open the corresponding Stream object that points to the URL and pass it into MetaDraw’s LoadPicture method (as the first parameter).

Dim client As New WebClient(), stm As System.IO.Stream
stm = client.OpenRead("http://domain.com/Images/Image.gif")
MetaDraw1.LoadPicture(stm, BTIS.MetaDraw.PictureSource.Picture)

· INITIALIZING IMAGE FROM THE CLIPBOARDXE "Clipboard"
An image may be pasted from the clipboard into MetaDraw via its PasteFromClipboard methodXE "Clipboard":

MetaDraw.PasteFromClipboard(ClipboardFormat.Bitmap, PictureSource.Picture)
· COPYING DATA FROM MetaDraw’s “temporary” image (PictureImage property).

You can initialize the MetaDraw's picture with an image held in the PictureImage property. To do this, call the Action method with the Actions.ImagePicture or Actions.ImageSwap parameters:

MetaDraw.Action(Actions.ImagePicture) ' or
MetaDraw.Action(Actions.ImageSwap)

	Note
	The PictureImage property must be set with some valid picture before performing this action. The PictureImage property may be set directly (as with the Picture property), or may be set with the MetaDraw LoadPicture method specifying PictureSource.PictureImage as the PicDst parameter.

Initializing a New ImageXE "New picture"

XE "Resetting the picture" / Setting Active Drawing Size

You will generally want to start by initializing MetaDraw either by loading an existing image, or by creating a new blank picture upon which to build/draw an image or diagram. Alternatively you may wish to load an initial picture rather than starting with a blank canvas – in that case see the section "Loading an Existing Picture".
As described earlier, the image held in MetaDraw has independent attributes of Size and Coordinate System. The Original size is as specified by OrigWidth and OrigHeight. The display size is as specified by the ZoomFactor or by PicXSize and PicYSize properties, and the coordinate system is as specified by PicLeft, PicTop, PicWidth and PicHeight properties.

When creating a new image/diagram you will want to identify some "original size" – that is the unzoomed or natural size of the image. For example the image should be 8 inches by 11 inches in an unzoomed state. This may be larger or smaller than the MetaDraw window itself and may later be zoomed in or out for the desired on-screen image presentation.

You will also want to define a convenient "logical coordinate system", setting up the units used for placement of image elements. The logical coordinate system is independent of the physical image size but should be chosen to have the same ratio in height and width as the image dimensions.

To initialize MetaDraw with a new empty picture at run time, execute these steps:

1. Destroy the old picture by resetting PicWidth or PicHeight to zero:

MetaDraw.PicWidth = 0 ' or
MetaDraw.PicHeight = 0

2. Set the properties required to specify the logical coordinate system (PicLeft, PicTop and PicWidth, PicHeight), the original Unzoomed size (OrigWidth and OrigHeight), and the Zoom (ZoomFactor for the picture being created).

3. Create the new empty picture with the specified logical coordinates and original size by calling the Clear method:

MetaDraw.Clear()

Note – It is IMPORTANT for best presentation to maintain the same coordinate resolution in X and Y directions – Original Image Size and Coordinate System extent should be set such that PicWidth / PicHeight = OrigWidth / OrigHeight. For convenience, we strongly recommended to define two global constants and to set the values PicWidth, PicHeight, OrigWidth and OrigHeight based on these constants.

EXAMPLES:

Example 1 –Simple Image and Coordinate Systems
' Define two Global constants
' These constants should be defined to fit the application
' - the first constant is used as a reference to set
' the original (unzoomed) image size – the workspace area
' as defined by OrigWidth and OrigHeight
' - the second constant is used to set up a convenient
' logical coordinate system as defined by PicWidth and PicHeight
 LogicalUnitsPerInch = 1000 ' gives 1000 logical units per inch
' < OR >
 LogicalUnitsPerCM = 1000 ' gives 1000 logical units per cm
' Define size of the drawing area - the canvas
 MetaDraw.ScaleUnits = ScaleUnit.Inches
 MetaDraw.OrigWidth = DesiredWidthInInches
 MetaDraw.OrigHeight = DesiredHeightInInches
' Define the internal coordinate system
 MetaDraw.PicLeft = 0
 MetaDraw.PicTop = 0
 MetaDraw.PicWidth = DesiredWidthInInches * LogicalUnitsPerInch
 MetaDraw.PicHeight = DesiredHeightInInches * LogicalUnitsPerInch
' Lastly set up actual on-screen viewable size.
' This may be done using the ZoomFactor property,
' or the PicXSize and PicYSize properties,
' or the AutoScale property
 MetaDraw.ZoomFactor = 1

Example 2 – A Scaled Image and Coordinate System
Alternatively you may want to start with an image size at some scale relative to a larger (or smaller) real world dimension. For instance in constructing a map of some geographic area of say 10 miles by 20 miles, you may wish to represent this on a scale of 1 inch = 20 mile. Then the coordinate system should be specified for convenience and to establish a desired resolution.

ScaleMilesPerInch = 20 ' MilesPerInch
LogicalUnitsPerScaleMile = 5267 'internal units represent feet.
MetaDraw.ScaleUnits = ScaleUnit.Inches
MetaDraw.OrigWidth = RealWorldWidthInMiles * ScaleMilesPerInch
MetaDraw.OrigHeight = RealWorldDepthInMiles * ScaleMilesPerInch
MetaDraw.PicWidth = RealWorldWidthInMiles * LogicalUnitsPerScaleMile
MetaDraw.PicHeight = RealWorldDepthInMiles * LogicalUnitsPerScaleMile

Note that the scaling used here to get an Original Width and Height defines the Unzoomed size of the image, and still leaves one free to set the on-screen display size using the ZoomFactor, PicXSize, PicYSize or AutoScale properties.

Example 3 –Representing Longitude and Latitude
Or let's set up a Latitude and Longitude system centered at the equator at 0 Longitude.
We'll assume we want each logical unit to represent 1 minute of arc (60 minutes per degree), and the logical coordinate system might range from Longitude , Latitude (-180 ,-90) to (180, 90) and we'd like each degree of arc to be displayed as 1 mm (unzoomed).

LogicalUnitsPerDegreeOfArc = 60 '1 unit = 1 minute, 60 min/degree
MetaDraw.ScaleUnits = ScaleUnit.Millimeters
MetaDraw.PicLeft = -180 * LogicalUnitsPerMinuteOfArc
MetaDraw.PicWidth = 360 * LogicalUnitsPerMinuteOfArc '(-180 to 180)
MetaDraw.PicTop = -90 * LogicalUnitsPerMinuteOfArc
MetaDraw.PicHeight = 180 * LogicalUnitsPerMinuteOfArc '(-90 to 90)
MetaDraw.OrigWidth = 360
MetaDraw.OrigHeight = 180

Note the picture size can also be set at Design Time either directly in the Design Time Properties Windows of the programming environment, or by right clicking on MetaDraw at design time and selecting Properties to pull up the MetaDraw design time properties dialog.

Example 4 –Making the picture be of the MetaDraw window size
Finally let's set up a picture where we'd like the picture size to simply be set by the size of the MetaDraw control as it has been placed on the form at design time.

Const UnitsPerInch = 100 '(global constant - choose a value
 ' convenient for your needs)
' Set up size
With MetaDraw
 .Clear
 ' size the picture without Zoom to fill the MetaDraw control
 .ScrollBars =BAR_NONE
 .ScaleUnits = ScaleUnit.Inches
 .OrigWidth = .ClientWidth
 .OrigHeight = .ClientHeight
 ' Set up Coordinate System (by default this is 1000 x 1000)
 ' for best results make proportional to image dimensions
 .PicWidth = .OrigWidth * UnitsPerInch
 .PicHeight = .OrigHeight * UnitsPerInch
 .ZoomFactor = 1 ' don't zoom image
End With
Following these steps, a new empty picture will be created. You can now programmatically create and edit new objects using AddObject method, or you can set the EditMode property to allow the end-user to draw new objects directly by dragging the mouse.

Zooming and Scrolling pictures XE "Scrolling"

XE "Zoom"
MetaDraw offers flexible and easy support for both Zooming and Scrolling of images.

End-Uses may directly zoom or scroll the picture:

1. Zoom or Scroll using the MouseWheel
The ScrollMouse property determines how MetaDraw reacts to user action upon the MouseWheel. In addition the MouseWheel event may be processed to provide customized support of the mouse wheel. Mouse wheel support is provided only under Win 98, ME, 2000, NT4, and XP. MouseWheel support is not provided under Win 95.

2. Scroll using the scrollbars
The ScrollBars property determines whether MetaDraw will display scrollbars all the time, never or only as needed.

3. Scroll by dragging the mouse within the image (with the Right mouse button).
Press and hold the RIGHT mouse button, drag the picture in the control, then release the button. The cursor [image: image12.png]

 appears while you are dragging the picture. This feature can be disabled by setting the ScrollMouseXE "ScrollMouse" property.

4. Scroll using the keyboard.
When MetaDraw has the focus the cursor keys scroll the picture horizontally or vertically. This feature may be disabled by setting the ScrollKeyboardXE "ScrollKeyboard" property to False.

5. Zoom and Scroll by selecting an area with the mouse.
With the EditMode property set to ED_ZOOM, the user can draw a zoom rectangle and MetaDraw will automatically scroll and Zoom to that rectangle. Simply Clicking with the mouse while in this edit mode will also Zoom the image. In this edit mode, the image may be UnZoomed by holding down the Control Key while using the mouse.

When EFLG_DONTSCROLL is cleared (not set) in EditFlags property MetaDraw will scroll the picture when the user drags an object beyond the client window.

Scrolling by code

The offset properties (PicXOfs, PicYOfs) are used to determine the position of the picture inside the MetaDraw control box. When PicXOfs, PicYOfs are zero the left-upper corner of the picture will be placed in the left-upper corner of the client area. PicXOfs, PicYOfs and PicXSize, PicYSize are independent.

Zooming by Code

Zooming is most easily accomplished with the ZoomFactor property. This sets the visible size of the image to a multiple of the OrigWidth and OrigHeight properties.

MetaDraw.ZoomFactor = 0.60 ' zooms the image to 60 percent of
 ' it's Original size a specified by
 ' OrigWidth and OrigHeight properties
The PicXSize, PicYSize properties determine the visible size of the picture, in units specified by the ScaleUnits property. To ZOOM or SHRINK the image to a specific size, the PicXSize and PicYSize properties may be set to some multiple of the OrigWidth and OrigHeight properties (the original size) or to other desired values (e.g. in twips or pixels):

MetaDraw.Redraw = False
MetaDraw.PicXSize = Zoom * MDraw.OrigWidth
MetaDraw.PicYSize = Zoom * MDraw.OrigHeight
MetaDraw.Redraw = True
MetaDraw images may also be automatically scaled using the AutoScaleXE "AutoScale" property. You can display the picture in its original size (AutoScaleMode.Original), fit it inside the MetaDraw box preserving its aspect ratio (AutoScaleMode.FitToWindow), or scaleXE "Scaling" it so that it will always cover the whole MetaDraw window (AutoScaleMode.Resize). The PicXSize and PicYSize property can only be set while the AutoScale property is set to AutoScaleMode.User.

	Note:
	Stretching the image by different percentages along the two axis (horizontal and vertical) may result in some distortion - especially when if the image contains some text objects. For best presentation the original aspect ratio should be maintained – setting the ZoomFactor property, or setting AutoScale to AutoScaleMode.Original or AutoScaleMode.FitToWindow are therefore preferable in most cases to directly setting PicXSize and PicYSize, or setting AutoScale to AutoScaleMode.Resize.

	Note:
	To prevent the picture from "flashing" while changing the position or/and size, use the Redraw property. Set the Redraw property to False before changing the PicXOfs, PicYOfs and PicXSize, PicYSize properties. Then reset Redraw to True in order to redraw the picture with new size and position.

Scroll Event Notification

The Scroll eventXE "Scroll Event" will occur after any changes in the picture’s position or size, regardless of how they were changed. Also, the picture will be automatically updated after any changes of the PicXOfs, PicYOfs and PicXSize, PicYSize properties. You may prevent changing the PicXOfs, PicYOfs and PicXSize, PicYSize properties in the Scroll event. The following code prevents vertical scrolling while allowing user to scroll horizontally.

Private Sub MetaDraw_Scroll(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MetaDraw.Scroll
 MetaDraw.PicYOfs = 0
End Sub

EditingXE "Editing" an Image

The MetaDraw component has several built-in tools for editing the picture. You can add new graphic elements, merge pictures, delete parts of the picture, move objects around or change their attributes (size, colors, etc.).

All editing operations are performed only on the picture specified by the Picture property. Also, you can restrict editing to only one part of the picture (a group of objects) at a time (the currently open container - see the ObjOpened property).

Adding to an Image XE "Creating a new object"

XE "Adding a new object"
The ability to annotate an image by adding new graphic objects (text, lines, rectangles, polygons, and even other complete images) is a basic MetaDraw feature.

Annotation/drawing may be done manually using the mouse under one of the special edit modes (see the EditMode property), or programmatically using the AddObject method.

Drawing with the MouseXE "Editing using mouse"
MetaDraw supports several edit modes for drawing/adding new objects using the mouse.

To create an object using the mouse, set the EditMode property (this may be done in a command button, or menu item). The mouse cursor’s appearance will change for each mode (see table). Then, press the left mouse button and drag the mouse to draw the object. A new object will be added after the left mouse button is released. After the object has been added you may continue editing the object (for polyline/polygon and text objects).

After adding an object with the mouse, the Current property will contain the handle of the new object. The new object is NOT automatically selected and the prior selection status of existing objects is not changed.

Also after adding an object the Change event is fired. The change event is an excellent time to specify an object tag or to save the value of the Current property in order to identify that object at a later time.

The edit modes supported by MetaDraw include:

	EditMode Constant
	Value
	Cursor
	Action

	EditMode.View
	0
	
	View Only – no editing allowed

	EditMode.Line
	1
	[image: image13.png]

	Draw a line

	EditMode.Rectangle
	2
	[image: image14.png]

	Draw a rectangle

	EditMode.RoundRect
	3
	[image: image15.png]

	Draw a rounded rectangle

	EditMode.Ellipse
	4
	[image: image16.png]

	Draw an ellipse

	EditMode.Arc
	5
	[image: image17.png]

	Draw an arc

	EditMode.Pie
	6
	[image: image18.png]

	Draw a sector

	EditMode.Chord
	7
	[image: image19.png]

	Draw a chord

	EditMode.Polyline
	8
	[image: image20.png]

	Draw a polyline

	EditMode.Polygon
	9
	[image: image21.png]

	Draw a polygon

	EditMode.Text
	10
	[image: image22.png]

	Add a text object

	EditMode.Select
	11
	[image: image23.png]

	In this mode the user can select, move and resize objects.

	EditMode.Image
	12
	[image: image24.png]

	Add an image

	EditMode.Rotate
	13
	[image: image25.png]

	In this mode the user can select, move, and rotate objects.

	EditMode.Bezier
	14
	
	Draw Bezier Curve

	EditMode.DimLine
	22
	
	Add Dimension Lines

	EditMode.LinkLine
	23
	
	Add / Draw Link Lines between elements

	EditMode.Zoom
	24
	
	Zoom / Unzoom by clicking

Adding Text - If the EditMode property is EditMode.Text, dragging the mouse draws a line, which specifies the desired text size and rotation angle (if <SHIFT> key is held down) for text entry. A single mouse click will add a new text object with the current attributes (size and orientation). After the left mouse button is released an empty text object will be created and the cursor caret will appear, ready to accept characters from the keyboard. The end-user can now specify the text string for the new object. For Boxed or Mutli-Line styles the user may add a new line using the <CNTL> <ENTER> keyboard combination.

Adding an Image - In EditMode EditMode.Image, dragging the mouse determines a rectangular area into which the image specified by the PictureImage property is inserted.

Adding PolyLines/Polygons - When the EditMode property is EditMode.Polyline or EditMode.Polygon, the end-user can drag the mouse to create freeform shapes.
The user interface – how MetaDraw interprets MouseClicks and Mouse Drag operations in these edit modes depends on the setting of the EditFlags.PolyFreeHand flag bit in the EditFlags property.
By default (with this bit set), Click the left mouse button to indicate the initial vertex. Simply click again to add a new vertex joined to the previous by a straight line segment, or continue to hold down the left mouse button while dragging in order to draw freeform shapes (the mouse cursor will be changed according to drawing mode). Each click of the mouse adds another straight line segment. Double click the left mouse button or press the <ENTER> key (last vertex will be included) or the <ESC> key (last vertex will be removed) to complete the object

With the EditFlags.PolyFreeHand flag bit cleared, lifting the mouse completes the drawing of the shape –in this case use the <Shift> key to draw line sections of polygon

Adding Bezier Curves-When EditMode property is EditMode.Bezier the initially drawn object will be made up of straight line segments.. (Holding down the <SHIFT> key will force the segments vertical or horizontal). If EditFlags.PolyFreeHand flag is set in EditFlags property you may add several segments of Bezier curves (on each left mouse button click) and the object is completed on a DoubleClick. If this flag is not set, only one segment will be added (editing is finished on mouse up).

It is then possible in EditMode.Select mode to double click on the Bezier object to open it and edit the curves. Or remaining in EditMode.Bezier mode the object can be opened for editing by setting ObjOpened = True. In this mode points may be added, moved, or removed. This is as done with Polylines and Polygons.
Adding Diagram Link Lines - When the EditMode property is EditMode.LinkLine the end-user can click first on one object and then another to create a diagram link between the objects. Refer to "How to Create and Manipulate Diagram Links" for further information.

Keyboard Options While Drawing

During mouse dragging, you can hold down the following keys:

<SHIFT> - Equal Sided Objects / Angle of Text / Perpendicular Lines

The <SHIFT> key allows you to add an object with equal sides. Hold down this key if you want to create a circle or a square or prevent the change of an aspect ratio of image.

Holding down the <SHIFT> key also allows you to determine orientation of the text string (a rotation angle) (this feature is available only for TrueType fonts).

The <SHIFT> key may also be used to restrict Lines, PolyLine and Polygon segments to horizontal and vertical sections.

<CTRL> - Snap To Grid

During mouse dragging, you can hold down the CTRL key, which toggles Snap-to-Grid effect. The current mouse coordinates will be pulled into alignment with the nearest intersection of grid lines during the drawing of an object.

This can be used to draw most objects with the inverse of the GridAlign property current setting. For PolyLines and Polygons the CTRL key is always required regardless of GridAlign property setting in order to snap to grid points.

Programmatically Adding Objects - (Using the AddObject method)XE "Methods:AddObject"

XE "Programmatically Adding Objects"

Using the AddObject method you can add an object with one of the following typesXE "Object Types":

	Object Description
	Image
	Constant

	Line
	[image: image26.wmf]
	ObjectTypes.Line

	Rectangle
	[image: image27.wmf]
	ObjectTypes.Rectangle

	Rectangle with rounded corners
	[image: image28.wmf]
	ObjectTypes.RoundRect

	Ellipse
	[image: image29.wmf]
	ObjectTypes.Ellipse

	Arc
	[image: image30.wmf]
	ObjectTypes.Arc

	Sector (pie slice)
	[image: image31.wmf]
	ObjectTypes.Pie

	Chord
	[image: image32.wmf]
	ObjectTypes.Chord

	Polyline
	[image: image33.wmf]
	ObjectTypes.Polyline

	Polygon (freeform) -initialized as line
	[image: image34.wmf]
	ObjectTypes.Polygon

	Text
	‘abc’
	ObjectTypes.Text

	Image
	[image: image35.png]

	ObjectTypes.Image

	Dimension Lines
	[image: image36.wmf]
	ObjectTypes.dimLine

	Bezier Curves
	[image: image37.png]

	ObjectTypes.Bezier

	Polygon - Triangle shape
	[image: image38.wmf]
	ObjectTypes.Triangle

	Polygon - Diamond shape
	[image: image39.wmf]
	ObjectTypes.Diamond

	Polygon - Hexagon shape**
	[image: image40.wmf]
	ObjectTypes.Hexagon

	Polygon - Pentagon shape**
	[image: image41.wmf]
	ObjectTypes.Pentagon

	Polygon - Octagon shape
	[image: image42.wmf]
	ObjectTypes.Octagon

	Polygon - Star shape
	[image: image43.wmf]
	ObjectTypes.Star

	** Note:
	Adding Triangles, Diamons, Hexagons, Pentagons, Octagons, or Stars actually adds objects of type ObjectTypes.Polygon, once added they are treated as ordinary polygons. Reading the ObjType property will return ObjectTypes.Polygon, not ObjectTypes.Triangle, etc

Objects/graphic elements are added to a MetaDraw image by specifying the object type (from the list above) and its size (based upon the bounding rectangle).

Syntax

MetaDraw.AddObject (ByVal objType As BTIS.MetaDraw.ObjectTypes)
MetaDraw.AddObject (ByVal objType As BTIS.MetaDraw.ObjectTypes, _

ByVal pos As Point)
MetaDraw.AddObject (ByVal objType As BTIS.MetaDraw.ObjectTypes, _

ByVal bounds As Rectangle)
MetaDraw.AddObject (ByVal objType As BTIS.MetaDraw.ObjectTypes, _

ByVal left As Integer, ByVal top As Integer, ByVal right As Integer,

ByVal bottom As Integer)

In each of the above methods/functions, the parameter objType is an ObjectTypes enumeration specifying which type of graphic element (from the list above) to add. You can specify this parameter using one of the predefined constants (ObjectTypes.XXXX, see table above).

The parameters left, top, right, and bottom specify the coordinates of the bounding rectangle determining the size of the added object. By default the coordinate system ranges from (0,0) to (1000, 1000). A different logical coordinate system may be specified using the PicLeft, PicTop, PicWidth and PicHeight properties.

Example:

' add a rectangle bounded by left/top coordinate (100,100) and
' right/bottom coordinate (300,500)
MetaDraw.AddObject(ObjectTypes.Rectangle, 100, 100, 300, 500)

AddObject allows you to add an object with default coordinates when being called with the only objType patameter.

Example:

MetaDraw.AddObject(ObjectTypes.Text)
Upon adding a new object to the picture the Current property contains the handle of this new object. This is an excellent time to either save the Current property to some variable, or to set an object tag for later identification of the object.

	Note:
	Objects added programmatically using the AddObject method are NOT automatically selected. Any previously existing selection is left unchanged. You can however select the new object by setting the ObjSelected property immediately after adding the object.

Each object is created with default attributes, including color, line style, and fill style. These attributes may be set before creation of the object by setting the Current property to ObjHandle.Default and then setting the appropriate attribute properties. Attributes may also be modified any time after creation by setting the Current property to point to the object (as it will by default immediately after object creation), and setting the appropriate attribute properties.

Each new object is always added to the top of the object stacking order, which is at the end of object list. After the object has been created you can change its layering order, placement, size and attributes.

To add a Text object, specify an object type parameter of ObjectTypes.Text. After creation of the object, it will contain an empty string. You should then use the Text property to specify a text string for the text object that has been created.

MetaDraw.AddObject(ObjectTypes.Text, 100, 200, 100, 200)
MetaDraw.Text = "Display this text for the newly created Text object"
MetaDraw.FontSize = 12
MetaDraw.FontName = "Times New Roman"
Four styles of text objects are supported: Standard, Bounded, Boxed and Multi-Line. The TextStyle property may be set after creating a text object in order to specify the desired style, or may be set as a default in advance with the Current property set to ObjHandle.Default.

New text objects are initially placed at the coordinates of the AddObject method according to current text alignment as specified by the TextHAlign and TextVAlign properties. By default text objects are aligned Top Left – that is they are added with the top left corner of the first character at the X1, Y1 postion specified in the AddObject method call. If a different text alignment is desired the TextHAlign and TextVAlign properties should be specified while Current = ObjHandle.Default) before adding the text object.

The initial size of a new text object is determined by either the bounding rectangle specified in the AddObject call, or by the default fontsize if the specified rectangle has zero height and width (x1 = x2, y1 = y2). The FontSize may also be reset after adding the text object.

With MetaDraw
 .Current = ObjHandle.Default
 .TextStyle = TextStyle.Boxed
 .FontSize = 21
 .FontName = "Times New Roman"
 .TextHAlign = TextHAlign.Left
 .TextVAlign = TextVAlign.Center
 .LineColor = System.Drawing.Color.Blue
 .BackStyle = BackStyle.Opaque
 .AddObject(ObjectTypes.Text, 100, 100, 100, 100)
 .Text = "Display this text for the newly created Text object"

End With
When adding Polylines,Polygons, or Bezier ob jects using the Addobject method, the shape is initially added with just two points using the coordinates specified. The desired full set of vertex points can then be specified using the ObjSetParams method
MetaDraw.AddObject(ObjectTypes.Polygon, New Drawing.Rectangle _
 (140, 140, 20, 20))
' reset points
Dim Points(4) As Drawing.Point
Dim iFirstPoint As Integer = 0, iNumPoints As Integer = 5
Points(0).X = 100 : Points(0).Y = 100
Points(1).X = 100 : Points(1).Y = 200
Points(2).X = 200 : Points(2).Y = 200
Points(3).X = 200 : Points(3).Y = 100
Points(4).X = 150 : Points(4).Y = 50
Label1.Text = "Points Remaining = " & MetaDraw.ObjSetParams(iFirstPoint, _
 iNumPoints, Points, SetParamsFlags.Logical)

When adding Pies, Arcs or Chords using the AddObject method, the top right 90o of arc is initially added within the rectangular region specified by the parameters of the AddObject call. The desired span of the Pie, Arc, or Chord can then be specified by modifying the first and /or last point using the ObjSetParams method.

Note that the arc is drawn in a counter clockwise fashion, and in the example below the angle is also measured counter clockwise from the positive X axis.

Dim Center As New Drawing.Point(150, 150), iRadius As Integer = 75
MetaDraw.AddObject(ObjectTypes.Arc, New Drawing.Rectangle _
 (Center.X, Center.Y - iRadius, Center.X + iRadius, Center.Y))
Dim Angle1 As Single = 30 * 3.14 / 180, Angle2 As Single = 90 * 3.14 / 180
' reset points
Dim Points(2) As Point
Points(0).X = Center.X + iRadius * Math.Cos(Angle1)
Points(0).Y = Center.Y - iRadius * Math.Sin(Angle1)
Points(1).X = Center.X + iRadius * Math.Cos(Angle2)
Points(1).Y = Center.Y - iRadius * Math.Sin(Angle2)
Dim iFirstPoint As Integer = 0, iNumPoints As Integer = 2
Label1.Text = "Points Remaining = " & MetaDraw.ObjSetParams(iFirstPoint, _
 iNumPoints, Points, BTIS.MetaDraw.SetParamsFlags.Logical)

When adding Rounded Rectangles, the ObjSetParams method may be used to adjust the width and height of corner ellipses.
With MetaDraw
 Dim pt(1) As Point
 .AddObject(ObjectTypes.Text, 100, 100, 300, 400)
 pt(0) = New Point(20, 30)
 .ObjSetParams(0, 1, pt, BTIS.MetaDraw.SetParamsFlags.Logical)
End With
When adding Dimension Lines, the terminators on either end may be modified using the LinkStyle, LinkFlags, LinkWidth and LinkHeight properties.

MD.AddObject(BTIS.MetaDraw.ObjectTypes.DimLine, 100, 200, 400, 500)
MD.LinkStyle(LinkIndex.Both) = BTIS.MetaDraw.LinkStyle.FillArrow
MD.FillColor = Color.Black

When adding Containers (object Groups), the newly added container is initially closed and will have zero width and height regardless of the specified coordinate parameters. To add object to a new container it should first be opened by using the ObjOpened property. After closing the container it's position and size will be determined by the minimum bounding rectangle surrounding the objects grouped by the container.

The following example creates a container, adds objects within the container, and then closes the container.

With MetaDraw
 .AddObject(ObjectTypes.Container)
 .ObjOpened = True
 .AddObject(ObjectTypes.Rectangle, _
 New Drawing.Rectangle(100, 120, 300, 220))
 .AddObject(ObjectTypes.Ellipse, _
 New Drawing.Rectangle(33, 60, 120, 280))
 .ObjMove(ObjMove.OpenContainer)
 .ObjOpened = False
End With
To merge/insert/paste a picture as an objectXE "Merging into a picture", load a bitmap, an icon or a metafile into the PictureImage property and call the AddObject method with the value ObjectTypes.Image for objType. The image held in the PictureImage property will then be added as a single object (ObjType will return ObjectTypes.Image) or as a container (ObjectTypes.Container) if the picture in the PictureImage property is itself a metafile containing several objects.

When the specified height and width are zero (top-left and right-bottom corner coordinates are the same) the new picture will be added at its original size and its top-left corner will be placed at specified coordinates. Otherwise, MetaDraw immediately sizes the inserted picture according to the specified boundaries.

After inserting a picture, you can use the SetBounds and MoveObjects methods to change the picture coordinates (placement and sizes).

' Add a bitmap from the file "IMAGE.BMP" with
' (10,20) coordinates for the left-upper corner
MetaDraw.LoadPicture("IMAGE.BMP", PictureSource.PictureImage, _
 PictureType.Default)
MetaDraw.AddObject(ObjectTypes.Image, New Drawing.Point(10, 20))
External Images can also be inserted (merged) into the current picture by:

 By Setting the PictureClip property

 Adding from the PictureImage property with the mouse (EditMode is EditMode.Image)

 Calling the LoadPicture method with the PictureSource.PictureClip parameter.

 Calling the PasteFromClipboard method

Setting Default Attributes XE "Default Attributes"

XE "Attributes"
Attributes of shapes, links or text (such as LineColor , LinkStyle, Font, etc) may be set up before a user starts drawing or before an object is added to the image in code.

To define defaults, just set the .Current property to the value ObjHandle.Default and then set the desired attribute properties.

Example:

' set up defaults for Text and then put user in Text mode
With MetaDraw
 .Current = ObjHandle.Default
 .FontName = "Arial"
 .FontSize = 10
 .EditMode = EditMode.Text
End With

Example:

With MetaDraw
 .Current = ObjHandle.Default
 .LineStyle = LineStyle.Solid
 .FillStyle = FillStyle.FDiagonal
 .FillColor = Drawing.Color.Blue
 .AddObject(ObjectTypes.Ellipse, 100, 100, 200, 200)
 .AddObject(ObjectTypes.Rectangle, 100, 100, 200, 200)
 'characteristics set after adding an object
 'override the and apply only to the just added object
 .FillStyle = FillStyle.Transparent
End With

Selecting objectsXE "Selecting objects"
To change an object’s parameters, you generally need to select the object(s). A selected object is displayed with special markers (small rectangles at the corners of the boundaries). Setting the MarkerSize property to zero can hide the selection markers. The MarkerColor property allows to change default color of the selection markers.

You can select an object either programmatically or by using the mouse.

Programmatically Selecting Objects

To change an object’s selection status, set the Current property to the handle of the object you wish selected or unselected. Then, assign the ObjSelected property the value True to select object or False to drop selection.

If Current is ObjHandle.Container, all objects in the current open contained will be selected or dropped from selection.

	Note:
	You can only select objects that are in the “objects list” of the current open container. Objects located in different containers can not be selected.

Using the mouse to select/unselect objects XE "Editing using mouse"
Setting the EditMode property to EditMode.Select allows the end-user of a MetaDraw application to select objects using the mouse.

To select a single object, click the left mouse button on an object. The selection of all other objects will be dropped. For multiple selection hold down the SHIFT key while clicking each of the objects you want to select.

To select several objects at the same time, click the left mouse button outside any object, then drag the mouse to create a rectangle enclosing all the objects you want to select. All objects that are completely placed inside this rectangle become selected. To include objects only partially inside the selection rectangle, hold down the CTRL key before releasing the left mouse button. You may also begin the selection rectangle anywhere (even over the other objects) by holding down the SHIFT key before pressing the left mouse button and dragging the mouse.

To cancel the selection of objects, do one of the following:

· To cancel the selection of some of the selected objects, hold down the SHIFT key and click the left mouse button on the object(s) you want to deselect.

· To cancel the selection of all selected objects, click the left mouse button outside any objects or click the left mouse button on an unselected object twice.

	Note:
	Selection of objects by the mouse can be disabled/enabled in the EditFlags property (EditFlags.Select, EditFlags.SelShift and EditFlags.SelGroup flags).

Editing objects XE "Modifying Object Attributes"

XE "Editing"
Each graphic object within the MetaDraw image may be independently manipulated using MetaDraw's Properties and Methods, or by using the mouse while in EditMode EditMode.Select.

Programmatically changing an object attributes

To change the attributes of an object, specify its handle in the Current property and assign new attributes to corresponding properties (LineColor, FillColor, FillStyle, DrawMode, ...). If the specified object is a container, then the specified attribute is set for all objects of this container. Note that immediately after an object has been added to the drawing, the Current property is automatically set to point to that object making this a convenient time to set the attributes. Additionally default attributes may be set prior to adding objects by setting the Current property to the special value of ObjHandle.Default.

You can change one attribute for several selected objects at one time using one assignment. To do this, select the required objects, set the Current property to ObjHandle.Selected and set corresponding attribute property to a new value.

	Note:
	Use the Text property to change strings of text objects.

You can change an object’s placement and resize it programmatically using the SetBounds, MoveObjects methods.

Any additional object's parameters (rounded corners, sector start/end points, polyline/ polygon points, etc.) can be changed using the ObjGetParams/ObjSetParams methods.

Using the mouse to modify an object

It is easy to edit objects using the mouse. To do this, set the EditMode property to EditMode.Select. In this edit mode, the end-user can: XE "Editing using mouse"
· Select Objects (see the section above).

· Move a Selected Object or group of objects
Select the object(s) you want to move, click the left mouse button on one of the selected objects and drag the object(s) to the new location. Note that this can be disabled in the EditFlags property. While dragging object(s), you can hold down the <CTRL> key to disable/enable alignment to grid.

· Resize an Object
 Select the object you want to resize (click the left mouse button on it), then click the left mouse button on one of the special markers and drag it. This feature can be disabled/enabled by setting the EditFlags.Resize flag of the EditFlags property. During dragging marker you can hold down the <CTRL> key to disable/enable alignment to grid.
MetaDraw allows you to keep the object’s aspect ratio while resizing. To enable/disable this feature hold down the <SHIFT> key when you are dragging a marker. Note: MetaDraw maintains the aspect ratio for several objects by default (bitmaps, containers, pictures).

· Change Object’s Additional Parameters (like rounded corners, sector’s start and end points, reshaping a polyline or polygon).
Double-click the left mouse button on an object you want to edit, drag one of the boundary markers to change the object’s shape. If you have double-clicked the left mouse button on a container, it is “opened” and you can edit objects inside it (this feature can be disabled in the EditFlags property).
Additional markers may be shown when an object (rounded rectangle, sector, arc, chord) is selected. So you don’t have to double click on such object to change its additional data, just drag an yellow marker.
· Add/Delete points.
MetaDraw allows you to add/delete points to/from polygons/polylines/segmented links. When you are editing a polyline/polygon/segmented links, you may click the left mouse button on a straight line to add a new point. Also you can delete some points by holding the left mouse button on a point you want to delete and pressing the <BACKSPACE> key. You may press the <BACKSPACE> key as many times as many points you want to delete.
· Edit Text Objects.
When a Text object is opened you can extend the text by typing and remove text with the <BACKSPACE> key
You can use the arrow keys to move the caret position while editing a text object and use the key to remove a character at the current caret position.
Deleting objectsXE "Deleting"
To delete an object, specify its handle in the Current property and call the RemoveObject method:

MetaDraw.RemoveObject(MetaDraw.Current)
To remove several objects, select the objects you want to delete, then call the RemoveObject method with parameter ObjHandle.Selected:

MetaDraw.RemoveObject(ObjHandle.Selected)
To delete all objects in the open container, use the RemoveObject method with parameter ObjHandle.Container:

MetaDraw.RemoveObject(ObjHandle.Container)
This deletes the container and all objects from the container, and will open the parent container.

After removing an item, the Current property contains:

· ObjHandle.Null, if an object handle was specified for deleting

· Don't change, if a reserved handle (ObjHandle.Selected or ObjHandle.Container) was specified.

You can only delete object(s) from an open container. Objects within a closed container may not be deleted without first opening the container.

You can even delete an object inside a closed container by specifying its handle in the RemoveObject method.
Keyboard Deletions

MetaDraw does not currently provide any direct keyboard support for end-users deleting objects. To implement this functionality trap the KeyUp event and call the RemoveObject method as appropriate:

Private Sub MetaDraw_KeyUp(ByVal sender As Object, ByVal e As _
 System.Windows.Forms.KeyEventArgs) Handles MetaDraw.KeyUp
 ' This subroutine deletes a selected object in response to
 'the Delete key
 ' - checking first to avoid deleting Text objects which are open for
 ' editing (in which case delete key should simply delete a character)
 With MetaDraw
 If e.KeyCode = Keys.Delete Then
 ' Check if there is something selected to delete
 If .ObjCount(ObjHandle.Selected) > 0 Then
 ' move to the currently selected object
 .ObjMove(ObjMove.FirstSelected)
 ' make sure object is not an text object open for editing
 If .ObjType = ObjectTypes.Text Then
 If .ObjOpened = True Then
 ' do not remove open text objects
 Exit Sub
 End If
 End If
 .RemoveObject(.Current)
 End If
 End If
 End With
End Sub

GroupingXE "Grouping" or ungrouping drawing objects

The MetaDraw component allows you to group several objects into one container. This allows you to treat many objects as a single unit. After several objects are grouped into a container you can move and resize them together as a single object. Containers are themselves sometimes referred to as a group.

To group objects into a container select them and then set the Current property to ObjHandle.Selected to point to all selected items. Next, set the Action property to Actions.Group. This creates a new object (a container) that is added to the Objects List. All selected objects will be moved into the container. The new container becomes selected, and the Current property contains the handle of the container object. This is a good time to set an Object tag (ObjTags property) for later identification of the container.

Examples:
' add a vertical line
MetaDraw.AddObject(ObjectTypes.Line, 200, 200, 200, 400)
' select this line
MetaDraw.ObjSelected = True
' add a horizontal line
MetaDraw.AddObject(ObjectTypes.Line, 100, 100, 300, 300)
' select this line
MetaDraw.ObjSelected = True
' point to selected objects
MetaDraw.Current = ObjHandle.Selected
' create a group
MetaDraw.Action(Actions.Group)
' Save the handle as a group identifier
Dim GroupHandle As ObjHandle = MetaDraw.Current
' Set a Tag to identify the group
MetaDraw.ObjTag = "SomeString"
' MetaDraw supports multiple named tags (any name) for each object.
MetaDraw.ObjTags("What Am I") = “A Group”

MetaDraw.ObjTags("Whats My ID") = 33

To ungroup a container, specify its handle in the Current property and set the Action property to Actions.Ungroup. All objects from the container will be moved up one level in the objects list (after ungrouping the container) and the empty container will be removed. You can ungroup many containers at once. Select the containers, and set the Current property to point to all selected objects (= ObjHandle.Selected). Then, apply the action Actions.Ungroup.

[image: image44.wmf]Group

Resize

One object

Four objects

Ungroup

Containers may also be Opened for Manipulation in EditMode EditMode.Select, by double clicking on the group. Double Click again to close the group.

Rotating an objectXE "Rotating"
90 Degree Rotations

You can rotate an object to the right or to the left in 90° increments.

To rotate an object by 90 specify its handle in the Current property and assign the Action method with one of the following values:

	Actions.RotateLeft
	- To rotate object in a clockwise direction

	Actions.RotateRight
	- To rotate object by a counter clockwise direction

If the Current property specifies several objects (ObjHandle.Selected or ObjHandle.Container), all objects will be rotated independently.

[image: image45.wmf]Text Object

Text Object

Rotate left

Bitmap

Container

Note that rotating an object may distort the picture. This is true because resolution of the device may not be the same in X and Y directions.

Arbitrary Angle Rotation

MetaDraw supports rotation of image components at any angle. You can rotate objects programmatically using the ObjRotation property (rotates about the center point of the object), or the RotateObjects method (for rotation about any point).

For text objects which have been associated as LinkLabels on Lines, Links, or Dimension Lines, the ObjStatus.LabelAngle flag in the ObjStatus property determines whether the angle is relative to the horizontal axis, or to the angle of the associated Line, Link or Dimension Line

End-User rotation by mouse dragging is also supported under the edit mode - MetaDraw.EditMode = EditMode.Rotate. In this mode the user selects an object and can rotate the object by dragging on one of the object corners. By default the object(s) is rotated around its center point (or center of bounding rectangle of selected objects), but rotation point (green marker) also can be changed by the mouse.

	Note:
	Only text objects using True-Type fonts can be rotated by MetaDraw. MetaDraw leaves text objects with other fonts unrotated.

Flipping an objectXE "Flipping"
You can create a mirror image of an object by flipping it. MetaDraw allows you to flip text objects, but instead of creating a real mirror image, it draws the text in backorder.

To flip an object specify its handle in the Current property and assign the Action method with one of the following values:

	Actions.FlipHorz
	- To flip object(s) horizontally

	Actions.FlipVert
	- To flip object(s) vertically

If the Current property specifies several objects (ObjHandle.Selected or ObjHandle.Container values) all objects will be flipped independently.

[image: image46.wmf]Text Object

Flip vertically

Bitmap

Text Object

Container

Changing the layering order of objectsXE "Layering order"

XE "Move OnTop"

XE "Move Under"
You can move an object in back or in front of other objects in the objects list.

To change the layering order of one or more objects, specify its handle in the Current property and set the Action method to one of the following values:

	Actions.SendBack
	- Send specified object(s) to the back of all other objects

	Actions.MoveFront
	- Bring specified object(s) to the front of all other objects

	Actions.OneDown
	- Move object(s) before previous object

	Actions.OneUp
	- Move object(s) after next object

If the Current property specifies several selected objects (ObjHandle.Selected), then after assigning Actions.OneDown or Actions.SendBack, all selected objects will be removed from the objects list (keeping with its stacking order). Then, they will be inserted before first object in the objects list (Actions.SendBack) or before the object in the list that is before first selected object (Actions.OneDown).

Note that the layering order is the ordering system used by the ObjNumber property.

Converting File FormatsXE "File Formats"

XE "Formats"

XE "Converting File Formats"
MetaDraw provides support for BMP, JPG, PNG, WMF, EMF, and MDP file formats. DXF format support is also available with MetaDraw DXF License Option.

To convert an image from one file format to another is simple. Just load the original image and resave in the desired format

MetaDraw.LoadPicture("InputFileName", PictureSource.Picture)
MetaDraw.SavePicture("OutputFileName", PictureSource.Picture, _
 desired_format)
Where <desired_format> can be any of the following:

	Raster formats:
	

	PictureType.Bitmap
	.BMP

	PictureType.JPEG
	.JPG

	PictureType.PNG
	.PNG

	PictureType.Icon
	.ICO

	Vector formats:
	

	PictureType.MetaDraw
	.MDP

	PictureType.Metafile
	.WMF

	PictureType.EnhMetafile
	.EMF

	PictureType.DXF*
(* DXF requires DXF license option)
	.DXF

Support of UnDo / ReDoXE "Undo"

XE "ReDo"
MetaDraw provides direct support for multi-step Undo and ReDo of changes to the image.

Support is provided for specifying how many changes to undo in one step and for grouping multiple actions into a single step to be undone in one operation.

Take a look at the following topics in our help file:

UnDo method
instructs MetaDraw to undo user actions;

ReDo method
instructs MetaDraw to redo undone actions;

UndoAvailable/

RedoAvailable properties
determines the number of currently allowed undo/ redo actions.

UnDoLevels property
specifies the maximum number of actions which can be undone;

UndoGrouping property
allows multiple operations to be grouped together for purposes of undo/redo.

Basically you'll want to set UndoLevels to some positive value and then have two command buttons and trap the click event.

Sub CmdUndo_Click ()
 MetaDraw.Undo (1)
End Sub
Sub CmdReDo_Click ()
 MetaDraw.Redo (1)
End Sub
Printing with MetaDrawXE "Printing"
MetaDraw allows the picture (or portions of the picture) to be printed on a printed page or draw on a window in any size at any location. The picture can be merged with any other printable information using the Graphics object.

The Current property is used to specify what portion of the picture to print. To print the entire picture set Current to ObjHandle.MainContainer. To print selected objects only, set Current to ObjHandle.Selected.

Setting the ExportDC property identifies the target device and starts the printing process. By setting this property it is possible to print to a physical printer, or to any window, for example a picturebox.

Setting ExportDC to the special values -1, or -2, will direct the output to the default printer, or present the user with a printer selection dialog and then print to the chosen printer. When setting ExportDC to either of these values, MetaDraw initializes the printer, prints, and then ends the print job directly. The limitation is that in this case MetaDraw it is not possible to add additional information to the page before it is ejected.

MetaDraw triggers an Export event for each exported object. This allows you to write code for unique handling of each exported object (for example, display a progress indicator).

The properties ExportLeft and ExportTop specify the placement of the exported picture on the printer page or on the device’s window. The ExportWidth and ExportHeight properties determine the size of the picture. These properties by feault are specified in Twips, but may be specified in Pixels based on the setting of the ExportOptions property.

MetaDraw offers additional flexibility through use of the ExportOptions property. It is possible to crop the printed image by specifying a Clipping rectangle, as well as to optionally print the background of the image using the ClipLeft, ClipTop, ClipWidth, ClipHeight properties. It is also no longer necessary to set the ExportLeft, ExportTop, ExportWidth and ExportHeight properties. By default (if these properties are not set) MetaDraw will print the image at 0 offset on the page, and at the original size of the image.

Examples
The following code prints the complete picture at its original (unzoomed) size to user's choice of printer:

MetaDraw.Current = ObjHandle.MainContainer ' points to the whole picture
MetaDraw.ExportDC(-2) ' prints to printer chosen by user
The following example prints a picture on the same page as text printed independently of MetaDraw (in C#):

private int m_nPage = 0;
private int m_nMaxPages = 3;

private void btnPrint_Click(object sender, System.EventArgs e)
{
 PrintDocument doc = new PrintDocument();
 doc.DocumentName = "MetaDraw picture";
 doc.PrintPage += new PrintPageEventHandler(pd_PrintPage);
 // Start printing pages
 m_nPage = 0;
 doc.Print();
}

// The PrintPage event is raised for each page to be printed.
private void pd_PrintPage(object sender, PrintPageEventArgs ev)
{
 MDraw.ExportOptions = ExportFlags.ExportRect | ExportFlags.Clipping;
 MDraw.ClipWidth = MDraw.OrigWidth/m_nMaxPages;
 MDraw.ClipHeight = MDraw.OrigHeight;
 MDraw.ClipTop = 0;
 MDraw.ClipLeft = MDraw.ClipWidth*m_nPage;
 // Print each slice in two inches width
 MDraw.ExportLeft = MarginLeft;
 MDraw.ExportTop = MarginTop;
 MDraw.ExportWidth = 2880; // Two inches in width
 MDraw.ExportHeight = 0;
// Calculate automatically
 MDraw.Current = ObjHandle.MainContainer;
 MDraw.ExportDC(ev.Graphics);
 m_nPage++;
 ev.HasMorePages = m_nPage < m_nMaxPages;
}
Using HyperGraphic Hot-SpotsXE "Hot Spots"

XE "HyperGraphics"
One of MetaDraw's really outstanding features (ok, so we’re not so modest) is it’s support for “HyperGraphic HotSpots”.

You can load any metafile or bitmap into a MetaDraw component, and identify regions of any shape and size within the picture as hot spots. When dragging the mouse over a hotspot, or clicking the left mouse button, special events will be generated. Here you can pop-up a message box, load a new image, or take any other action appropriate to your application. Hotspots may even be used to control a web browse - jumping to a URL address.

For example, you can create a picture of a world map, and declare each continent as a hot spot by changing the ObjHotSpot property for each object or container (if the continent is made up of several objects). Then, you can determine the actions to take in the OnHotSpot and HitObject event (e.g., display the detailed information about the continent pointed by the user).

[image: image47.wmf]The North America

Countires: USA, Canada,

Mexico, Panama

.

Below we list a some of the key properties and events which make MetaDraw ideal for HyperGraphic applications.

HyperGraphic Events

(these events are triggered only if EditMode = EditMode.View (0), and HotSpots is set to True, and they are not masked in the EventMask property)

	HitObject, HitObjectDouble
	Fired in response to clicking on Hitable elements.

	OnHotSpot
	Fired in response to mouse entering a Hot graphic area.

HyperGraphic Properties

	EditMode
	triggers HyperGraphic events (HitObject, OnHotSpot), changes the mouse cursor, and executes URL jumps, when in EditMode EditMode.View.

	HotSpots
	determines whether to trigger HitObject HitobjectDouble, and OnHotSpot events in response to end-user actions when EditMode is EditMode.View.

	Modifications
	a bit flag property – the status of the ModificationFlags.HitThrough flag in this property determines whether for objects in a container group, whether to trigger OnHotspot and HitObject events for the individual objects or only for the container

	ObjHotSpot
	a bit flag property determining the events fired and/or actions automatically taken in response to mouse clicks or mouse movement over a hotspot. Actions may include triggering HitObject or OnHotSpot events, changing the mouse cursor, and instructing the web browse to execute a URL Jump.

	ObjTag
	holds a string assigned to an object, you can read this string to determine what data to display or action to take in response to end-user actions associated with a particular graphic element.

MetaDraw has an additional property that allows you to determine multiple tags with different types and values.

	ObjTags
	a named vector property holding multiple named values assigned to an object. More versatile than the ObjTag property, objects assigned ObjTags values may also be found using the FindObjectTags method.

	ObjVisible
	determines whether or not to show a particular graphic element (which may just be the outline of a hotspot) when the ShowInvisible property is set to False.

	ObjURL
	identifies a URL associated with an object.

HyperGraphic Methods

	CreateImageMap
	Creates an HTML Client Side ImageMap as a string ImageMap representing HotSpot areas in MetaDraw. This ImageMap can then be used within a web page along with an image to support hotspots and tooltips within the web page (MetaDraw itself is then not needed on the web page)
 - Use of this method Requires a Subscription License for MetaDraw

By setting the HotSpot property as described above you can create hotspots of any number, shape and size, over a large bitmap or other graphic elements. It is also possible to either display the main image within a picture box (setting MetaDraw's Background to Transparent), or to load the initial image into the MetaDraw BackPicture properly or as a Background Layer using the LoadPicture method.

Programmatically creating Hypergraphic Images

To set up a hypergraphic image programmatically, follow these simple steps:

1. First create or import the basic image you are interested in.
This may be a vector-based image consisting of multiple graphic objects, or it may be a single large bitmap or metafile.
Generally this image is loaded into the standard Picture property. The LoadPicture property may be used to load a background layer image.

2. Second, add additional graphic elements within MetaDraw to define the shape and position of hotspots over the main image. These graphic elements may themselves be visible or invisible. You can add these elements as you would any visible elements - for instance, by end-user drawing, or by use of the AddObject method.

3. To define a graphic element as a hotspot, set the ObjHotSpot and/or ObjStatus properties.
You may also wish to set the ObjTag property (also ObjTags and ObjUrl in MetaDraw) to hold some specific data about the HotSpot. This additional data may then be read within the OnHotSpot and HitObjects events in the end-user application.

4. Finally, if you do not want the hotspot shapes themselves seen by the end-user, set the 'ObjVisible' flag to False for these objects. These objects will not be seen under EditMode = EditMode.View, and the ShowInvisible property set to False. They will however still react as hotspots.

For example the following code adds an ellipse as an invisible hotspot:

With MetaDraw
 .AddObject(ObjectTypes.Ellipse, 10, 10, 200, 100) 'Add an ellipse
 .ObjHotSpot = ObjHotSpot.HotSpot Or ObjHotSpot.Cursor 'Make it a hospot
 .ObjVisible = False ' Make it invisible
 .ObjTag = "this is an ellipse" ' Make it invisible
End With

To mark an existing graphic element within an image as a "hotspot" or "hitable" you should assign the handle of this object to the Current property, and then set the ObjStatus or ObjHotSpot properties.

For example the following code might be used within a command button Click Event under EditMode = EditMode.Select. In response to the click, adds an ellipse as an invisible hotspot:

Private Sub btnSetHotSpot_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSetHotSpot.Click
 With MetaDraw
 .Current = ObjHandle.Selected
 .ObjHotSpot = ObjHotSpot.HotSpot Or ObjHotSpot.Cursor Or _
 ObjHotSpot.Click
 .ObjTags("A Named Tag") = txtTag.Text
 .ObjTags("Another Tag") = txtTag1.Text
 End With
End Sub
Responding to Hypergraphic Events

When you run your application for the end-user to work with, make sure that

· the EditMode property is set to EditMode.View (0),

· the HotSpots property is set to True,

· and the ShowInvisible property is set to False.

Trap the OnHotSpot event to take action when the mouse enters, leaves, or moves within a hotspot are.

Trap the HitObject event to take action in response to a user clicking on a hotspot.

In either event it is generally useful to read the ObjTag and/or ObjTags properties.

Examples:

Private Sub MetaDraw_HitObject(ByVal sender As Object, ByVal e _
 As BTIS.MetaDraw.HitObjectEventArgs) Handles MetaDraw.HitObject
 'Load a new image based on the ObjTag of the hotspot object
 Dim sNewPictureFile As String = MetaDraw.ObjTag
 MetaDraw.LoadPicture(sNewPictureFile, PictureSource.Picture)
End Sub
Private Sub MetaDraw_HitObject(ByVal sender As Object, ByVal e _
 As BTIS.MetaDraw.HitObjectEventArgs) Handles MetaDraw.HitObject
 'Display data from multiple ObjTags of clicked hotspot
 Label1.Text = MetaDraw.ObjTags("partName")
 Label2.Text = MetaDraw.ObjTags("Vendor Name")
 Label3.Text = MetaDraw.ObjTags("Quantity in Stock")
End Sub
Web links in MetaDraw set with the ObjURL property and Status property flag ObjStatus.WebURL.
How to count and loop through objects in an imageXE "Counting Objects"

XE "Looping through Objects"
The ObjCount property of MetaDraw may be used to count the number of objects in the overall image, as well as the number of objects within a given container or the number of selected objects.

It is possible to loop through objects within MetaDraw (or within a selection) using the ObjMove property. This method updates the Current pointer.

' This counts the number of rectangle objects within the selected objects
Sub GetSelectedTypes(ByVal MD As MetaDraw)
 Dim RectangleCount As Integer = 0
 ' move .Current to first selected object
 MD.ObjMove(ObjMove.FirstSelected)
 While MD.Current <> ObjHandle.Null
 If MD.ObjType = ObjectTypes.Rectangle Then
 RectangleCount = RectangleCount + 1
 End If
 ' move .Current to next selected object
 MD.ObjMove(ObjMove.NextSelected)
 End While
 MsgBox("There are " & RectangleCount.ToString & " rectangles")
End Sub
The following example shows how you can loop through all objects (even those inside containers) in the MetaDraw picture to assign their type name and order number in the ObjTags property. Objects are enumerated in this example in the following order. Object 1 is the first object in the main container. If this is a container then the 2nd object is the 1st object within this container. Otherwise, it is the next object inside the main container.

Sub EnumerateAllObjects()
 Dim TotalObjects As Integer = 0, LastObject As ObjHandle
 ' Move Current pointer to the main container
 MetaDraw.ObjMove(ObjMove.MainContainer)
 LastObject = MetaDraw.Current
 MetaDraw.ObjOpened = True
 ' Move Current pointer to first object in the main container
 MetaDraw.ObjMove(ObjMove.FirstInCont)
 While MetaDraw.Current > ObjHandle.Valid
 TotalObjects = TotalObjects + 1
 ' Assign the object data
 MetaDraw.ObjTags("Type") = MetaDraw.ObjType.ToString
 MetaDraw.ObjTags("Number") = TotalObjects
 LastObject = MetaDraw.Current
 ' If the object is a container then loop through it
 If MetaDraw.ObjType = ObjectTypes.Container Then
 MetaDraw.ObjMove(ObjMove.FirstChild)
 Else
 MetaDraw.ObjMove(ObjMove.Next)
 End If
 ' if we reach the last child object in the container
 ' we should go up to previous container
 Do While MetaDraw.Current < ObjHandle.Valid
 MetaDraw.Current = LastObject
 MetaDraw.ObjMove(ObjMove.Parent)
 If MetaDraw.Current < ObjHandle.Valid Then Exit Do
 LastObject = MetaDraw.Current
 MetaDraw.ObjMove(ObjMove.Next)
 Loop
 End While
End Sub

MetaDraw also allows you to refer to an object by its order number (inside a container). You can set the Current object to the desired object by assigning its order number to the ObjNumber property.

The following code shows how you can loop through the objects inside the current open container using the ObjNumber property. Note that this method is much slower then previous one.

Sub ScanOpenContainer()
 Dim Total As Integer, I As Integer
 ' Get the number of objects inside the current open container
 Total = MetaDraw.ObjCount(ObjHandle.Container)
 For I = 1 To Total
 MetaDraw.ObjNumber = I
 ' The Current property contains a handle of next object
 MetaDraw.ObjTags("Type") = "Type: " & MetaDraw.ObjType.ToString
 Next I
End Sub
How to search for objects within MetaDrawXE "Searching"

XE "Find"
It is frequently desirable to find a specific object within the overall image. There are several ways in which this may be done.

	Method 1
	Loop through the objects using the ObjMove or ObjNumber properties and look for ObjTags or other object’s identification.

	Method 2
	Save the Handle (specified by the Current property) when the object is created and simply set the Current property to this handle in order to refer to the object at a later time.

	Method 3
	Use the FindObjectTags method to search for an object according to one or more tags assigned to the object. This is very powerful - in fact one can search for exact matches or substrings, case sensitive or not, even restricting the search to selected items only.

How to create and manipulate diagram linksXE "Links"

XE "How to create and manipulate diagram links"
MetaDraw supports a special object type called a Link. Links are picture elements displayed as straight lines or segmented lines with optional arrow heads which connect any two other picture elements (not including other links).

Links are very powerful - When a linked object (an object connected to another object by a link) is moved, MetaDraw will automatically update the link to maintain the connection.

Text objects may also be associated with links as Link Labels. Such text objects are automatically moved with the link. They may also be aligned to (angled with) the link depending on the ObjStatus.LabelAngle flag in the ObjStatus property.

Using the properties ObjLinks, ObjLinkCount and LinkObject it is possible to programmatically follow the flow from one linked object to another. Additional detail stored in Object Tags can then be used to provide full information about some process flow.

Code Based Creation and Manipulation of Diagram Links

To create a link between two or more Objects, call the CreateLink method. Specify the start and end points of the link as objects, and a link type (0 for straight line links, 1 for multi-segmented links). A link object will be created (object type = ObjectTypes.Link, or ObjectTypes.PolyLink) and drawn to connect the objects as specified. After creating a link the Current property will contain the handle of the link.

’ Create new straight link between two objects determined by
’ the ObjHandle1, ObjHandle2 handles
MetaDraw.CreateLink ObjHandle1, ObjHandle2, LinkType.Straight

To create a link from one object to multiple other currently selected objects, specify the first object handle as the initial object in the CreateLink method and specify ObjHandle.Selected as the second parameter.

MetaDraw.CreateLink ObjHandle1, ObjHandle.Selected, 0

When ObjHandle.Selected is specified for both parameters links will be created from bottom most selected object (first created) to other selected objects.

To delete a link - use the RemoveObject method as with any other object. If a linked object is deleted, any link objects connecting to that object are also deleted.

Links are objects (like any other type of objects), so they may be selected, placed on top or behind other objects within MetaDraw. A link can be grouped with its linked objects into a container.

Properties which define Link attributes include:

	LinkStyle
	specifies whether to draw arrow heads or other link terminators on one or both ends of a link, or as a center symbol in the middle of a link.

	LinkLength / LinkWidth
	specifies the length and width of Link terminators, or of the center symbol

	LinkFlags
	specifies additional details for drawing of link terminators and center symbol

	LinkObject
	specifies the handle of the object to which a link is attached. This can be used to change the objects being linked.

	ObjLinkCount
	returns the number of Links which are attached to some object

	ObjLinks
	returns the handle to a link object which is connected to some object

	LinkLabel
	identifies a text object as a Label for the link. Setting LinkLabel will move the text object to the link, and the text will then automatically move with the link as the link itself is updated. The ObjStatus.LabelAngle flag in the ObjStatus property can be used to specify how the text is oriented relative to the link line.

	LinkSymbolColor
	specifies the color used in display of link symbols (link terminators or link center symbol)

The LineStyle, LineColor and LineWidth properties determine the style and width of link lines. The FillStyle, FillColor properties determine the fill style of link terminators.

Most other properties which apply to MetaDraw objects may also be applied to links:

Current, LineStyle, LineWidth, LineColor, FillStyle, FillColor, FillPattern, ObjTag, ObjTags, ObjSelected, ObjHotSpot, ObjURL, ObjTop (Left, Right, Bottom), ObjStatus, ObjType, ObjVisible.

Additionally the SetLinkPoint method may be used to change the coordinates where a link is terminated relative to the center of the linked object upon which the link terminates. By default the link is terminated at the nearest edge of the linked object.

For MultiSegmented Links (PolyLinks) the ObjGetParams method may be called to retrieve the number of vertext points in the link's trace (i.e. dynamic points between terminators). The ObjSetParams method may be called to modify the connection or vertex locations (bends).

There are 3 ways to modify a PolyLink via ObjSetParams:

a) To modify only its trace (terminators will be updated automatically).

It is necessary to pass 2 as the 1st parameter and the number of points gotten from ObjGetParams as the 2nd one to the ObjSetParams method.

With MetaDraw
 .Current = hLink ' points to the presaved Link handle
 Dim numPoints As Integer = .ObjGetParams(0, 0, CoordType.Logic)
 Dim Points() As Point = .ObjGetParams(2, numPoints, CoordType.Logic)
 '- shifting the link points to the right
 Dim i As Integer
 For i = 0 To UBound(Points)
 Points(i).Offset(50, 0)
 Next
 .ObjSetParams(2, numPoints, Points, CoordType.Logic)
End With

b) To modify the entire Link object (including explicit setting positions for terminators).

It is necessary to pass 0 as the 1st parameter and the number of points gotten from ObjGetParams increased by 4 as the 2nd one to the ObjSetParams method. The 4 additional points are the 2 ending points touching the linked objects and 2 possible additional points ("pokers") appearing in some situations.

With MetaDraw
 .Current = hLink ' points to the presaved Link handle
 Dim numPoints As Integer = .ObjGetParams(0, 0, CoordType.Logic) + 2
 Dim Points() As Point = .ObjGetParams(2, numPoints, CoordType.Logic)
 '- shifting the link points to the right and down
 Dim i As Integer
 For i = 0 To UBound(Points)
 Points(i).Offset(50, 50)
 Next
 .ObjSetParams(2, numPoints, Points, CoordType.Logic)
End With

c) To automatically route the link in an "optimal" path

MetaDraw can automatically adjust a segmented link to find an "optimal" path, with a minimal number of bends and attempting to pass around other objects without moving any objects. This is done by calling the ObjSetParams method, with a second parameter (the number points) of 0 (zero points). The 1st parameter of the ObjSetParams method may be used for setting distance to objects being bypassed.

With MetaDraw
 .Current = hLink ' points to the presaved Link handle
 .ObjSetParams(200, 0, Nothing, CoordType.Logic)
End With
End-User Creation and Manipulation of Diagram Links

Setting the EditMode property to EditMode.LinkLine (or EditMode.LinkPoly) allows the end-user to create links between objects using the mouse. In this edit mode the user can click on first one object and then another to establish the link. To create a multi-segmented link (a link with bends) the user should hold down the <ALT> key when clicking on the first object.

Setting the EditMode property to EditMode.Select allows the user to double click on a link to "open" it for editing (a link may also be opened by setting the ObjOpened property to True when Current points to the link). With the link open connection and vertex markers (for segmented links) will be shown:

 as blue diamonds (for automatic connection points)

 or green diamonds (for fixed connection points).

 Yellow circles for vertex points of segmented links

The MarkerSize property determines size of these diamond & circle markers and the MarkerColor property determines their colors.

With a link open the user may change the position of a connection point by dragging on the diamond markers (click and hold left mouse button over the marker). After the left mouse is released the connection point becomes fixed (green).

Dragging connection points with the mouse on a marker without holding down any keyboard keys will move the points along the outside border of the connected object – (the connection point will be placed at the intersection of object's border and the line traced from the center of the object and current mouse position).

When adding multi-segmented link mouse click allows to add new vertex point (new segment). Last added segment can be removed by pressing the <BACKSPACE> key. Creating multi-segmented links can be stopped by double mouse click or pressing the <ENTER> key.

Depressing the <ESC> key while adding new link will cancel link creation and remove the link.

Depressing the <SHIFT> key while dragging connection points allows the connection point to be moved off the objects border, the connection point will be placed directly under the current mouse position (this behavior can be turned on by default setting the EditFlags.AutoLink flag of the EditFlags property).

Depressing the <CTRL> key while dragging points switches the align to grid behavior (if align to grid is on, depressing the <CTRL> key allows moving without regard to the grid, if align to grid is off depressing the <CTRL> key keeps the points aligned to the grid).

Depressing the <ESC> key while dragging the connection point makes that point automatic.

Depressing the <ALT> key while dragging a connection point allows the user to change the object the link is connected to (the connection will be made to the object under the mouse cursor)

The EditFlags.FreeLink flag of the EditFlags property determines whether it is possible to create a link that points to no object. When this flag is set link can start from an object and point to no object. If this flag is dropped such a link is not allowed and it will be removed.

As with other user drawn shapes, default characteristics may be set in advance of user drawing by setting attributes while the Current property is set to ObjHandle.Default.

Limitations of MetaDraw Links

· It is not currently possible to create a link to a Link object.

· Links can not currently be drawn between objects within two different groups/containers. When a linked object is included within a container group, the link to that object will be broken and no longer displayed. To keep the link you must group it with both linked objects. Nothing happens with links if the container group is opened. When the container that contains a link is ungrouped, the link object will be moved up to the same layer where the linked objects will be located.

· When saving an image to file, or copying to the clipboard, links are only maintained within MetaDraw's own proprietary formats (.MDP or .MDR). When saving to file formats other than MDP or MDR or when copying these formats to the clipboard in a format other than ClipboardFormat.MetaDraw, the actual link recognition will be lost –only the visual representation of the link (as line or lines with arrow heads) will be preserved rather than the link itself.
In WMF or EMF format file the elements making up the link are saved in a container (as a group).

· The following methods are not supported for Link Objects

ObjSetBounds, MoveObjects, RotateObjects,
CreateLink (linking a link to another object)

Examples:

' assume two objects are selected by the user in
' EditMode = EditMode.Select
' this code then creates a link between the two objects
With MetaDraw
 If .ObjCount(ObjHandle.Selected) <> 2 Then Exit Sub
 .ObjMove(ObjMove.FirstSelected) ' points to the 1st selected object
 Dim ObjHandle1 As ObjHandle = .Current
 .ObjMove(ObjMove.NextSelected) ' points to the next selected object
 Dim ObjHandle2 As ObjHandle = .Current
 .CreateLink(ObjHandle1, ObjHandle2, LinkType.Straight)
 ' the previous 5 lines may be replaced with the following line:
 .CreateLink(ObjHandle.Selected,ObjHandle.Selected,LinkType.Straight)
 ' change link’s attributes
 .LinkStyle(LinkIndex.Start) = LinkStyle.None ' origin
 .LinkStyle(LinkIndex.End) = LinkStyle.StealthArrow ' target
 .LineStyle = LineStyle.Dash ' dashed link line
 .LineColor = Drawing.Color.Blue ' blue link line
End With

' This code exchanges the terminators on a link
' Assume that the link is selected
With MetaDraw.
 ObjMove(ObjMove.FirstSelected) ' acts on the selected object
 If .ObjType <> ObjectTypes.Link Then Exit Sub ' checks object type
 Dim Temp As Integer = .LinkStyle(LinkIndex.Start)
 .LinkStyle(LinkIndex.Start) = .LinkStyle(LinkIndex.End)
 .LinkStyle(LinkIndex.End) = Temp
 Temp = .LinkFlags(LinkIndex.Start)
 .LinkFlags(LinkIndex.Start) = .LinkFlags(LinkIndex.End)
 .LinkFlags(LinkIndex.End) = Temp
End With

' This example creates two objects and a link that connects the
' left-bottom corner of the rectangle and the center of the ellipse
With MetaDraw
 .Current = ObjHandle.Container
 .ObjSelected = False ' Drops selection
 .AddObject(ObjectTypes.Rectangle, 100, 100, 400, 200)
 .ObjSelected = True ' Selects the object
 .AddObject(ObjectTypes.Ellipse, 300, 400, 700, 600)
 .ObjSelected = True
 .CreateLink(ObjHandle.Selected, ObjHandle.Selected, LinkType.Straight)
 .SetLinkPoint(LinkIndex.Start, -150, 50, LinkCoords.Logic)
 .SetLinkPoint(LinkIndex.End, 0, 0, LinkCoords.Logic)
End With
How to create transparent bitmap objectsXE "Transparent Bitmap"
MetaDraw allows you to create Bitmap objects with a transparent color. You can choose any color of a bitmap that should be transparent.

To draw any bitmap object with transparency,

· Set the Current property to the handle of the bitmap object (or ObjHandle.Selected if the bitmap(s) is(are) selected)

· Set the BackStyle property to BackStyle.Transparent
· Set the BackColor property to the color which should be considered transparent.

After that if the bitmap contains pixels with the same color as specified in the BackColor property, these pixels will not be displayed (bitmap will look transparent in those places).

Note that when saving a picture from MetaDraw to MetaFile format (WMF), the MetaFile format does not support true transparent background on bitmaps so MetaDraw represents such objects as superimposed images within the Metafile. True saving of transparent bitmap can only be supported in MetaDraw internal format.

How to Add Object ShadowsXE "Shadows"

XE "Effects"
Metadraw provides support for the presentation of "shadows", basically a solid colored duplicate of the object shape offset from the original by some distance. The ObjShadow property can be set to 1 or 2 to display the shadow. The ObjShadowColor can be used to specify a shadow color, and ObjShadowOfsX and ObjShadowOfsY specify the offset distance (in logical units) of the shadow from the original object.

' Adds a shadow to all selected objects
MetaDraw.Current = ObjHandle.Selected
MetaDraw.ObjShadow = ObjShadow.Normal
MetaDraw.ObjShadowOfsX = 50
MetaDraw.ObjShadowOfsY = 50

How to work with FloodFillsXE "FloodFill"

XE "Filling a Region"
The easiest way to specify a fill for a single object shape is to set the FillStyle, FillColor, or possibly the FillPattern properties for that object.

MetaDraw.AddObject(ObjectTypes.Ellipse, 100, 100, 200, 200)
MetaDraw.FillStyle = FillStyle.Cross
MetaDraw.FillColor = Drawing.Color.FromArgb(100, 100, 200)

MetaDraw also provides support for filling any bounded area with a color, bitmap or pre-defined pattern. For instance it is possible to fill the triangular area defined by the intersection of three lines, or the area of intersection between an ellipse and a rectangle. This may be accomplished by adding a FloodFill object at any point within the enclosed area using the AddObject method

For example:

MetaDraw.AddObject(ObjectTypes.Ellipse, 100, 100, 200, 200)
MetaDraw.AddObject(ObjectTypes.Rectangle, 150, 0.15, 250, 250)
MetaDraw.AddObject(ObjectTypes.FloodFill, 175, 175, 175, 175)
MetaDraw.FillStyle = FillStyle.Cross
MetaDraw.FillColor = Drawing.Color.Aqua

FloodFill objects added with the AddObject method are positioned using only the Left and Top coordinates parameters. The Right and Bottom parameters are ignored.

FloodFill objects always have 0 width and height: (ObjTop = ObjBottom, ObjLeft = ObjRight) regardless of the extent of the region which is filled.

FloodFill objects can be selected and dragged just like other objects. They may however be difficult to click on given they have no height or width – if dragging Floodfill objects is to be enabled in an application it is helpful to increase the MarkerSize and HitSensitivity properties.

The extent of fill produced by a floodfill object responds dynamically to changing boundary objects. If objects are moved, added, or removed in the drawing the floodfill object will be redrawn according to the new boundaries around its location

The Gradient FillStyle is not currently supported for FloodFill objects.

How to specify an Alignment gridXE "Grid"
MetaDraw offers the ability to display a Grid and to optionally align objects to that grid.

The GridShow property determines whether or not to show the grid , it is also possible to specify that the grid should be above or below the image. The grid spacing is then determined by the GridHeight and GridWidth properties, and the determination of restricting items to a grid is set by the GridAlign property as well as by keyboard action.

The GridStyle property determines the style of Grid to be displayed: GridStyle.Dots (shown only at Grid Points) , GridStyle.Solid, GridStyle.Dotted, or GridStyle.Dashed.

The GridColor property determines the color of Grid lines or Grid Dots.

How to Cut, Copy, and PasteXE "Cut, Copy, Paste"

XE "Clipboard"
MetaDraw does not support Cut and Paste operations directly, but you can use several techniques to add this functionality to your application:

Using MetaDraw’s temporary picture
You can use the Action property to copy MetaDraw’s objects to the temporary image (given the PictureImage property) and then insert them back to MetaDraw.

The following example shows how to copy some selected objects from one container to another one using the temporary image.

' Assume that some objects have been already selected
' in the current open container
MetaDraw.Current = ObjHandle.Selected
MetaDraw.Action(Actions.ImageCopy)
MetaDraw.Current = SecondContHandle
MetaDraw.ObjOpened = True ' Opens another container
MetaDraw.Action(Actions.ImageInsert)
' it’s possible to move the objects within the container after inserting

Using the PictureClip property
You can use the PictureClip property which refers to selected objects inside open container to copy them from one MetaDraw picture to another one. The following example moves all selected objects from MetaDraw1 picture to MetaDraw2 picture.

' Assume that some objects are selected
MetaDraw1.Current = ObjHandle.Selected
' v-- use metafile data type as a temporary picture
MetaDraw1.PictureType = PictureType.Metafile
' v-- copy objects from MetaDraw1 to MetaDraw2
MetaDraw2.PictureClip = MetaDraw1.PictureClip
' v-- remove objects that have been copied
MetaDraw1.RemoveObject(ObjHandle.Selected)

Using the clipboard
To exchange pictures between deferent applications you can use the clipboard.

MetaDraw has special CopyToClipboard and PasteFromClipboard functions for the clipboard support. They allows you to copy the MetaDraw picture (or any part of it) to the clipboard and insert an image from the clipboard to the MetaDraw picture.

You can copy to the clipboard as many formats as you want. The following line clear the old clipboard content and stores to the clipboard the main picture in two formats: as a bitmap and as a metafile.

MetaDraw.CopyToClipboard(ClipboardFormat.Clear Or ClipboardFormat.Bitmap Or ClipboardFormat.Metafile, PictureSource.Picture)

Using the PasteFromClipboard function you can insert an image from the clipboard to MetaDraw picture or replace the main or temporary picture by the image from the clipboard depending on the dst parameter. You can specify format you want to extract from the clipboard in the clbrdMask parameter.

' The following line inserts an enhanced metafile from
' the clipboard to the current MetaDraw picture
MetaDraw.PasteFromClipboard(ClipboardFormat.Metafile, _
 PictureSource.PictureClip)

The PasteFromClipboard method may also be used to test if an image with a specific image format is currently held in the clipboard.

' The PictureSource.CheckClbrFormats flag may be used to check
' if some specific image format exists in the clipboard
Dim IsBMPFormatAvailable As Boolean = (ClipboardFormat.Bitmap = _
 MetaDraw.PasteFromClipboard(ClipboardFormat.Bitmap, _
 PictureSource.CheckClbrFormats))

	Note:
	If you specify several formats in the clpbrdMask parameter, MetaDraw will choose the best format automatically.

How to Add, Remove or Change Points (Verticies) in a Polygon or PolyLineXE "Add Points"

XE "Remove Points"

XE "Vertices – Adding and Removing"

XE "Points – adding and removing"
The ObjSetParams method may be used to add, remove, or change the position of points (vertices) in a polygon, polyline, or multi-segmented link

The 1st parameter of the ObjSetParams method indicates where in the sequence to insert, remove or adjust location of points. The first point is point 0, the second is point 1, . . . Also it is possible to refer to point by relationship to the last point; to add after the last point use a value of -1. To delete or modify the last refer to point number - 2, the next to last point is -3, ...

The 2nd parameter indicates the number of points to Add. Remove, or Replace. To remove points from a polyline/polygon, specify the number of points you want to remove as a negative number in the number-of-points parameter.

The ObjSetParams method can also be used to automatically remove unnecessary points in Polygons and Polylines. If the ObjSetParams method is called for a Polyline or Polygon object and the first two parameters are zero, then points that meet the following conditions will be removed:

 a. The X/Y coordinates are the same as the previous point.

 b. The Point lies on a line determined by two previous points.

The last parameter of the ObjSetParams method serves both to specify which coordinate system is user, and also whether new points should be added or replaced

Note when modifying points, if the number of points exceeds the number available to be replaced, additional points will be added.

Example – adding points

Dim firstpoint As Integer, numpoints As Integer
Dim Points() As Point = {New Point(100, 150), New Point(300, 350)}
With MetaDraw
 Select Case (iMode)
 Case 0 ' Insert 2 new points before the 1st point
 firstpoint = 0
 numpoints = 1
 Case 1 ' Insert 1 new point between the 1st and 2nd points
 firstpoint = 2
 numpoints = 1
 Case 2 ' Insert a new point just before the last point
 firstpoint = -2
 numpoints = 1
 Case 3 ' Add a new point after the last point
 firstpoint = -1
 numpoints = 1
 End Select
 MsgBox("Points Remaining = " & .ObjSetParams(firstpoint, numpoints, _
 Points, SetParamsFlags.Logical Or SetParamsFlags.Add))
End With

Example – moving points

Dim firstpoint As Integer, numpoints As Integer
Dim Points() As Point = {New Point(100, 150), New Point(300, 350)}
With MetaDraw
 Select Case (iMode)
 Case 0 ' Change the 1st point (= point 0)
 firstpoint = 0
 numpoints = 1
 Case 1 ' Change the 2nd and 3rd points
 firstpoint = 1
 numpoints = 2
 Case 2 ' Change the last point
 firstpoint = -2
 numpoints = 1
 Case 3 ' Change the last point and add an additional one
 firstpoint = -2
 numpoints = 2
 End Select
 MsgBox("Points Remaining = " & .ObjSetParams(firstpoint, numpoints, _
 Points, SetParamsFlags.Logical))
End With

Example – deleting points

' To remove the last point the FirstPoint parameter should be -2,
' The value -1 is used for adding points at end)
Dim firstpoint As Integer, numpoints As Integer
With MetaDraw
 Dim Points(1) As Point
 Select Case (iMode)
 Case 0 ' Remove the 1st point (= point 0)
 firstpoint = 0
 numpoints = -1
 Case 1 ' Remove 2nd point
 firstpoint = 1
 numpoints = -1
 Case 2 ' Remove the 1st and 2nd points
 firstpoint = 0
 numpoints = -2
 Case 3 ' Remove the last point
 firstpoint = -2
 numpoints = -1
 End Select
 MsgBox("Points Remaining = " & .ObjSetParams(firstpoint, numpoints, _
 Points, SetParamsFlags.Logical))
End With

How to Maximize Performance (speed) XE "Speed – maximizing performance"

XE "Performance – maximizing speed"
The following tips may be used to maximize performance when using MetaDraw:

1. Set the EventMaskXE "EventMask property" property to avoid triggering events which contain code but are not being used. This can significantly improve performance when the corresponding events contain some code. For example – performance will be greater if the EventMask property is used to disable the ChangeXE "Change Property" event while programmatically adding shapes to a picture, than if the Change event is allowed to be triggered and IF or SELECT CASE statements are used to avoid running sections of code intended for use only when the end-user is drawing.

2. Set the ReDraw XE "Redraw property"property to False while executing code to make a large number of changes to the picture, and reset to True when the changes are complete.

3. Set the HotSpots XE "HotSpots property"property to False while executing code making a large number of changes to the picture, and reset to True (if needed). This will be especially useful while adding many hotspots objects.

4. It is faster to create a container of grouped objects by first creating an empty container with the AddObject XE "AddObject Method"method, opening the container, adding the objects and closing the container, than it is to create the group by first adding the objects and then selecting and grouping them.

5. XE "Default Attributes"The most important technique in improving performance is to define common object attributes as default values by first setting the .Current property to ObjHandle.Default and then setting the attributes, rather than to set common attributes for each object after creating the object.

How to write a HotSpot and Painting ApplicationXE "Writing HotSpot applications"
With MetaDraw you have everything you need to create a simple Windows paint application.

This example illustrates both the use of HotSpots and Setting up End-User Drawings.

Start up the Microsoft Visual Studio.NET and create a new Visual Basic project of the Windows application type. Add the MetaDraw control to your form (assume that its name is MetaDraw). Now copy the following code into the form class:

Private bAdded As Boolean = False ' a flag variable indicating that a new
 ' object was added
Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles MyBase.Load
 With MetaDraw
 .HotSpots = True
 .EventMask = EventMasks.HitObject Or EventMasks.OnHotspot Or _
 EventMasks.ObjectAdded
 ' Add a text string to the picture
 .AddObject(ObjectTypes.Text, 5, 5, 300, 55)
 .FontSize = 10
 .FontName = "Arial"
 .Text = " Click mouse on 'tools' for painting "
 .ObjVisible = False
 .TextColor = Drawing.Color.DarkBlue
 ' Create the "painting toolbox": 8 objects with different colors,
 ' each object is a hotspot used to change the edit mode
 Dim i As Integer, ObjType As ObjectTypes,_
 rect As Drawing.Rectangle
 rect.Width = 45 : rect.Height = 60
 For i = 0 To 7
 ObjType = i + 1
 rect.Location = New Drawing.Point(30 + i * 60, 100)
 .AddObject(ObjType, rect)
 .ObjHotSpot = ObjHotSpot.Cursor Or ObjHotSpot.HotSpot Or _
 ObjHotSpot.Click
 .FillColor = Drawing.Color.FromArgb((i And 1) * 255, _
 (i \ 2 And 1) * 255, (i \ 4) * 255)
 Next i
 End With
End Sub

Private Sub MetaDraw_OnHotSpot(ByVal sender As Object, ByVal e As _
 BTIS.MetaDraw.HotSpotEventArgs) Handles MetaDraw.OnHotSpot
 MetaDraw.ObjMove(ObjMove.FirstInCont)
 MetaDraw.ObjVisible = (e.State <> HotSpot.Leave)
End Sub
Now just run the program. It’s that simple, you’ve got a picture with hotspot objects. These objects make for a great drawing toolbox. Click any one to select a draw mode.

[image: image48.wmf]Form 1

 Click mouse on "tools" for painting

Note that:

· The Mouse pointer will change its shape when it is dragging over visible objects;

· A Hint message will appear when the mouse pointer is upon an object.

OK, add the following code to provide painting support to the application.

Private Sub MetaDraw_HitObject(ByVal sender As Object, ByVal e As _
 BTIS.MetaDraw.HitObjectEventArgs) Handles MetaDraw.HitObject
 Dim cl As Drawing.Color
 With MetaDraw
 .EditMode = .ObjNumber - 1
 cl = .FillColor
 .Current = ObjHandle.Default
 .FillColor = cl
 ' inverting the color
 cl = cl.FromArgb(Not cl.R, Not cl.G, Not cl.B)
 .LineColor = cl
 End With
End Sub

Private Sub MetaDraw_Change(ByVal sender As Object, ByVal e As _
 BTIS.MetaDraw.ChangeEventArgs) Handles MetaDraw.Change
 If e.Type = ChangeType.Added Then bAdded = True
End Sub

Private Sub MetaDraw_MouseUp(ByVal sender As Object, ByVal e As _
 System.Windows.Forms.MouseEventArgs) Handles MetaDraw.MouseUp
 If e.Button = MouseButtons.Left And bAdded Then
 MetaDraw.EditMode = EditMode.View
 ' Returns to “Toolbox” mode after object was added
 bAdded = False
 End If
End Sub

Your application is now complete. You can select the draw mode by clicking the left mouse button on the desired object, and then draw it on the picture. With just a little extra code you can modify this application to support editing, saving and printing the picture.

[image: image49.wmf]Form 1

CHAPTER 4
MetaDraw Reference

General Information XE "BTIS.MetaDraw.MetaDraw"
Class Name

MetaDraw (namespace BTIS.MetaDraw)

Toolbar Icon

[image: image50.png]

See also:

Properties

Methods

Events

What is MetaDraw?

Properties

Properties of the MetaDraw control can be divided into several groups. Properties are presented in the order according to functional grouping. Each property is described in more detail later in this chapter. Note that object attribute properties act upon the object(s) referenced by the .Current property.

Standard properties

The MetaDraw class is derived from the System.Windows.Forms.Control class and it inherits all the standard properties of this class. For more information see the System.Windows.Forms.Control class description in the .NET Framework Class Library Reference.

Appearance properties

	Property
	Description

	About

	Returns current version information for the MetaDraw control

	AutoScale

	Determines how picture should be resized

	BorderStyle

	Determines control's window border style

	HotSpots

	Determines “hot spot” mode

	MousePointer

	Determines the cursor shape in the MetaDraw window

	OpenDraw

	Determines how picture’s elements when a container is open

	Redraw

	Determines whether or not to redraw picture after any change

	Repaint

	Determines the repainting method for the picture

	ShowInvisible
	Determines whether or not to paint invisible objects

Background properties

	Property
	Description

	PicBackColor
, PicBorderColor

	Specifies the color to be used as a background inside or outside picture rectangle or as gradient colors

	GradientStyle

	Specifies whether or not to fill the MetaDraw’s background with gradient and its style

	BackPicture

	Specifies the picture that will be used to fill MetaDraw’s background

	BackPictureAlignment

	Specifies how the background picture will be displayed

Editing properties

	Property
	Description

	EditFlags

	Specifies mouse functions in selection edit mode

	EditMode

	Specifies the result of end-user mouse actions (drawing, selecting, rotating .. etc)

	EventMask

	Prevents or enables the triggering of certain event routines

	HitSensitivity

	Specifies the mouse sensitivity / precision when clicking near an object

	MarkerColor

	Determines colors of selection markers

	MarkerSize

	Determines a size of selection markers

Alignment Grid properties

	Property
	Description

	GridAlign

	Specifies whether or not to align object coordinates to the grid

	GridColor

	Specifies the color of the grid elements

	GridShow

	Specifies whether to display the grid – on or off , above or below the image

	GridStyle

	Determines the presentation style of grid lines or grid dots within MetaDraw

	GridWidth, GridHeight

	Specifies the grid spacing in logical units

Import/Export properties

	Property
	Description

	ClientHeight

	Returns the height of control’s client area

	ClientWidth

	Returns the width of control’s client area

	ClipLeft, ClipTop

	Determines the origin of the exported area when cropping image

	ClipWidth, ClipHeight

	Determines the dimensions of the exported area when cropping image

	DXFScaleFactor
	Determines scale factor when importing DXF file

	ExportLeft, ExportTop

	Determines X- or Y-coordinate of the origin for exported objects

	ExportWidth, ExportHeight

	Determines the dimensions of the area on the output device

	ExportOptions

	Exporting options

	MetaDC

	Imports or Exports hDC for painting or printing

	Modifications

	A bit flag property controlling certain optional changes to MetaDraw behavior

	HPal
	Contains a logical palette handle for loaded picture

	ObjPicture
	Returns a set of objects as a picture

	ScaleUnits
	Specifies the measurement units for OrigWidth/Height, PicX/YSize, PicX/YOfs, ClipXXXX properties.

Picture properties

	Property
	Description

	BackPicture

	Specifies the background picture

	FillPattern

	Specifies the object fill pattern

	MouseCursor

	Determines the user-defined cursor shape

	Picture
	Import/Export a picture to/from the MetaDraw control

	PictureClip
	Returns or sets a part of the main picture

	PictureImage
	A temporary picture holder

Picture information properties

	Property
	Description

	ObjCount
	Returns number of objects (objects in picture, in container, or selected objects)

	ObjResolution
	Determines the resolution when converting shapes to polylines or polygons

	Picture
	Imports/Exports a picture to/from the MetaDraw control

	PictureChanged
	Was the picture changed

	PictureOptions
	Controls options on how MetaDraw handles certain operations

	PictureType
	Image Format Type used for export

	PicLeft, PicTop
	Origin of the picture coordinate system

	PicWidth, PicHeight
	Extent of the picture coordinate system

	PicXOfs, PicYOfs
	Offset of visible rectangle of picture

	PicXSize, PicYSize
	Presentation Size (width and height) of visible picture

	OrigWidth, OrigHeight
	Original picture size

	ScaleUnits
	Determines the measurement units for OrigWidth/Height, PicX/YSize, PicX/YOfs, ClipXXXX properties.

	ZoomCentering
	Determines whether the picture image is automatically centered while zooming

	ZoomFactor
	Sets the Visible size of the image as a multiple of the Original Size

Generic object attributes

	Property
	Description

	BackColor

	Determines the background color of an object

	BackStyle

	Determines the background style (transparent or opaque)

	DrawMode

	Determines the painting mode

	FillColor

	Determines the color used to fill a shape object

	FillPattern

	Determines the bitmap pattern to fill a shape object

	FillStyle

	Determines the method used to fill shape objects

	LineColor

	Determines the color of an object’s line or border

	LineStyle

	Determines the line or border style

	LineWidth

	Determines the line or border width

Object attributes

	Property
	Description

	Current

	Acts as a pointer to the current object or group of objects within the image layout

	ObjHotSpot
	Specifies whether an object acts as a “hot spot” within the image

	ObjLeft, ObjTop, ObjRight, ObjBottom
	Return an object’s logical coordinates

	ObjNumber
	Points to object by order number (layering position) or returns order number

	ObjOpened
	Specifies whether an object (container, text, or polyobject) is “open” for editing

	ObjPicture
	Replaces an object within picture with new picture

	ObjRotation
	Specifies an objects rotation angle within the image

	ObjStatus
	Specifies the status flags of the object

	ObjSelected
	Specifies whether an object (or objects) is selected

	ObjTag
	Specifies a single associated string for an object

	ObjTags
	Specifies one or more associated named object named tags / values for an object

	ObjTagsCount
	Specifies the number of named tags associated with the object

	ObjTagsName
	Returns the name of a named object tag given by the index

	ObjTagsValue
	Returns the value of a named object tag given by the index

	ObjType
	Returns the object type, also used to convert to a new object type

	ObjURL
	Specifies a URL associated with an objects

	ObjVisible
	Specifies the visible status of the specified object

Object Shadow object attributes

	Property
	Description

	ObjShadow
	Specifies object's shadow style

	ObjShadowColor
	Specifies object's shadow color

	ObjShadowOfsX, ObjShadowOfsY
	Specifies object's shadow offset

Text object attributes

	Property
	Description

	FontBold, FontItalic, FontStrikethru, FontUnderline

	Specifies font styles for a text object in the following formats: FontBold, FontItalic, FontStrikethru and FontUnderline

	FontCharSet

	Specifies the character set used to display text

	FontName

	Specifies the font used to paint text object

	FontOrient

	Specifies the text object’s orientation (angle)

	FontSize

	Specifies the characters size

	FontWidth

	Specifies character width

	Text
	Specifies the characters (text string) for a Text object

	TextColor
	Characters color

	TextHAlign
	Specifies the horizontal alignment

	TextVAlign
	Specifies the vertical alignment

	TextStyle
	Specifies the text style (standard, multi-line, boxed)

Link object attributes

	Property
	Description

	LinkColor

	The color of link endings

	LinkFlags

	Specifies the direction and fill for link terminators.

	LinkLabel

	Associates a text object with the Link, Line, or Dimension Line object

	LinkLength/LinkWidth

	The size of Link terminators

	LinkObject

	Identifies which objects are connected to a link

	LinkStyle

	The shape of link terminators.

	LinkSymbolColor

	Specifies the color of the specified link symbol

	ObjLinkCount
	Returns the number of links connected to the object

	ObjLinks
	Returns the list of links connected to the object

Scrolling properties

	Property
	Description

	ScrollBars
	Whether or not to show scrollbars

	ScrollCheck
	Check boundaries after picture is scrolled or resized

	ScrollKeyboard
	Enable or disable picture scrolling by keyboard

	ScrollMouse
	Enable or disable picture scrolling by mouse

Undo/Redo properties

	Property
	Description

	RedoAvailable, UndoAvailable
	The number of Redo/Undo commands available for execution.

	UndoLevels
	The number of stored Undo commands

	UndoGrouping
	Starts/Ends grouping of Undo commands

Methods

The MetaDraw class is derived from the System.Windows.Forms.Control class and it inherits all the standard methods of this class. For more information see the System.Windows.Forms.Control class description in the .NET Framework Class Library Reference.

The following additional methods are implemented in the MetaDraw class:

	Method
	Description

	Action
	Applies specified action on the selected objects or container

	AddObject
	Adds a new object into MetaDraw

	ChangeLogicalCoords
	Changes logical coordinate scale for the main picture

	Clear
	Clears the picture (deletes all elements)

	ClientToLogicX, ClientToLogicY
	Converts point from client box pixels to logical picture coordinates

	CopyToClipboard
	Copies data to the clipboard

	CreateLink
	Creates a link between two object or links between several objects

	ExportDC
	Exports object(s) to the specified Device Context

	FindObjectTags
	Finds objects with specified tags

	LoadData
	Loads the entire MetaDraw content

	LoadPicture
	Loads pictures from an external file

	LogicToClientX, LogicToClientY
	Converts from logical coordinates to client pixels

	MoveObjects
	Changes position of specified objects

	ObjectHitMarket
	Returns object’s marker number that is under the specified position

	ObjectsInRect
	Selects objects that are in the specified rectangle

	ObjectsHitTest
	Finds objects which are located under specified coordinates

	ObjMove
	Applies the specified action to the Current handle

	ObjectsOverlappedBy
	Selects objects which are overlapped by the specified object

	ObjGetBounds
	Retrieves object(s) boundaries

	ObjGetParams
	Retrieves object’s additional parameters

	ObjSetBounds
	Sets new object boundaries

	ObjSetParams
	Sets or replaces object’s points.

	PasteFromClipboard
	Pastes data from the clipboard

	Redo
	Performs redo action(s)

	Refresh
	Repaint or update picture in the control

	RemoveObject
	Deletes specified object(s)

	RotateObjects
	Rotates objects around the specified point

	RotatePicture
	Rotates the entire picture

	SaveData
	Saves the entire MetaDraw content

	SavePicture
	Saves MetaDraw's pictures to a file

	SetLinkPoint
	Sets a point the link is connected to

	ShowAboutBox
	Displays a Dialog box identifying MetaDraw version and license s/n

	Undo
	Performs undo action(s)

Events

The MetaDraw class is derived from the System.Windows.Forms.Control class and it inherits all the standard events of this class. For more information see the System.Windows.Forms.Control class description in the .NET Framework Class Library Reference.

MetaDraw can trigger the following additional events:

	Event
	Description

	Change
	Occurs when changes are made to the Picture (object)

	Export
	Occurs when an object is exporting to another Device Context (e.g., during printing)

	HitObject, HitObjectDouble
	Occurs when the user clicks the left mouse button over an object

	OnHotSpot
	Occurs when the user moves the mouse over a tagged object

	Scroll
	Occurs when the control is scrolled or resized.

Detailed Specifications

The following section contains an alphabetized listing with descriptions, of all MetaDraw properties, events, methods and functions.

Note the meanings of the following markers used in this section:

	[image: image51.wmf]
	The property marked by this sign is Read-Only.

	[image: image52.wmf]
	The property marked by this sign is Write-Only.

	[image: image53.wmf]
	The property marked by this sign is available only at run-time mode. You can change or read it only using code statements. This property will not appear in the properties window in design-time mode.

About Propertyxe "Properties:About"

xe "About Property"

XE "Version Information"

xe "BTIS.MetaDraw.MetaDraw.About"
Description

At design time, double-click this property in the property window to popup the About box that shows version, copyright and registration (user name, serial number, license flags) information. The About dialog box can be also shown in run-time using the ShowAboutBox method.

Reading this property in run-time mode returns the current version of the MetaDraw component. Version is returned as Integer value calculated by the following formula:

<MajorVersion>*10000 + <MinorVesion>*100 + <BuildNumber>

Data Type

Integer
Action Methodxe "Methods:Action"

XE "Action Method"

xe "BTIS.MetaDraw.MetaDraw.Action"
Description

Takes the specified action on the selected objects, or container, specified in the Current property.

Syntax

[Visual Basic]
Public Sub Action (ByVal act As BTIS.MetaDraw.Actions)

[C#]
public void Action (BTIS.MetaDraw.Actions act);

Parameters

The act parameter specifies which action should be applied on the selected objects or container. The list of available actions is determined by the BTIS.MetaDraw.Actions enumeration.

BTIS.MetaDraw.Actions enumerationxe "Enumerations:Actions"

XE "Actions Enumeration"

xe "BTIS.MetaDraw.Actions"
	Member
	Description

	Groupxe "BTIS.MetaDraw.Actions.Group"
	Create a container grouping all currently selected objects. More than one object must be selected, and the Current property must be set to OBJ_SELECTED (= 2).

	Ungroupxe "BTIS.MetaDraw.Actions.Ungroup"
	Ungroup container (or all selected containers). After this action all objects from the container(s) become selected.

	SendBackxe "BTIS.MetaDraw.Actions.SendBack"
	Send selected objects to the back of all other objects.

	MoveFrontxe "BTIS.MetaDraw.Actions.MoveFront"
	Bring selected objects to the front of all other objects.

	OneDownxe "BTIS.MetaDraw.Actions.OneDown"
	Move object(s) below previous object.

	OneUpxe "BTIS.MetaDraw.Actions.OneUp"
	Move object(s) on top of next object.

	FlipHorzxe "BTIS.MetaDraw.Actions.FlipHorz"
	Flip object(s) horizontally.

	FlipVertxe "BTIS.MetaDraw.Actions.FlipVert"
	Flip object(s) vertically.

	RotateLeftxe "BTIS.MetaDraw.Actions.RotateLeft"
	Rotate object in a clockwise direction.

	RotateRightxe "BTIS.MetaDraw.Actions.RotateRight"
	Rotate object by a counter clockwise direction.

	ImageInsertxe "BTIS.MetaDraw.Actions.ImageInsert"
	Insert picture specified in the PictureImage property to the open container.

	ImageCopyxe "BTIS.MetaDraw.Actions.ImageCopy"
	Copy object(s) specified by the Current property into PictureImage.

	ImagePicturexe "BTIS.MetaDraw.Actions.ImagePicture"
	Reset’s the Picture property using the picture specified by the PictureImage property.

	ImageSwapxe "BTIS.MetaDraw.Actions.ImageSwap"
	Swap pictures between the Picture and PictureImage properties. This action works only when pictures are defined both in Picture and PictureImage.

	Duplicatexe "BTIS.MetaDraw.Actions.Duplicate"
	Duplicate object(s) whose handle(s) is (are) specified in the Current property. MetaDraw adds the new object(s) at the top of objects stack. If the action is applied to selected objects, each selected object will be duplicated and it becomes selected.

Remarks

The initial value of the .Current property specifies the object(s) to be affected by the action.

The Current property is not changed after the following actions: SendBack, MoveFront, OneDown, OneUp, FlipHorz, FlipVert, RotateLeft, RotateRight, and ImageCopy.

For all other actions the Current property is reset to one of the following values upon completion of the action:

	Action
	Value of the Current property

	Group
	Handle of the new container.

	Ungroup
	ObjHandle.Selected (all selected objects). After this action, ungrouped objects become selected.

	ImageInsert
	Handle of the inserted object (or container).

	ImagePicture, ImageSwap
	ObjHandle.MainContainer (reserved handle of the main container).

	Duplicate
	Handle of the new object or ObjHandle.Selected if several (selected) objects have been duplicated.

	Note:
	Objects can only be rotated 90° per action. To rotate an object 180°, the action must be applied twice. Alternatively you can use the ObjRotation property to rotate objects by any angle.

Data Type

BTIS.MetaDraw.Actions

See also

Objects selecting, Changing object’s attributes, Current property, PictureImage property

AddObject Methodxe "Methods:AddObject"

XE "AddObject Method"

xe "BTIS.MetaDraw.MetaDraw.AddObject"
Description

The AddObject method adds a new object to the picture in the MetaDraw control box.

Syntax

[Visual Basic]
Overloads Public Sub AddObject (ByVal objType As BTIS.MetaDraw.ObjectTypes)
Overloads Public Sub AddObject (ByVal objType As BTIS.MetaDraw.ObjectTypes, ByVal pos As Point)
Overloads Public Sub AddObject (ByVal objType As BTIS.MetaDraw.ObjectTypes, ByVal bounds As Rectangle)
Overloads Public Sub AddObject (ByVal objType As BTIS.MetaDraw.ObjectTypes, ByVal left As Integer, ByVal top As Integer, ByVal right As Integer, ByVal bottom As Integer);

[C#]
public void AddObject (BTIS.MetaDraw.ObjectTypes objType);
public void AddObject (BTIS.MetaDraw.ObjectTypes objType, Point pos);
public void AddObject (BTIS.MetaDraw.ObjectTypes objType, Rectangle bounds);
public void AddObject (BTIS.MetaDraw.ObjectTypes objType, int left, int top, int right, int bottom);

Parameters

	Parameter
	Description

	ObjType
	Type of new object

(from the set of BTIS.MetaDraw.ObjectTypes enumeration values)

	Pos (Point Object)
 - or -

left, top, right, bottom

 - or -

Bounds (Rectangle object)
	Point object specifying the left-top corner for the new object.

4 coordinates defining bounding rectangle of the new object.

Rectangle object specifying the Bounding rectangle of the new object.

If the second parameter is omitted MetaDraw adds a new object with default boundaries into the current picture. Calling the method in this way is equivalent to

AddObject(objType, null);

If a Point object (Pos) is specified as the second parameter, the new object will have zero size or its size will be based on the size of the inserted image (if the objType parameter is ObjectTypes.Image) or based on the text size (if objType is ObjectTypes.Text). Calling the method in this way is equivalent to

AddObject(objType, new Rectangle(pos, new Size(0,0)));

	Note:
	This method is useful when creating a new container
or when inserting an image from the PictureImage property.

If a Rectangle Object is specified as the second parameter, the new object will be added with boundaries determined by this rectangle (in logical units).

If a Rectangle Object is specified as the second parameter, or if 4 coordinate values are specified, the new object will be added with boundaries determined by this bounding rectangle or set of coordinates

The coordinates specifed must be in logical units and should be within the range from (.PicLeft, .PicTop) to (.PicLeft + .PicWidth, .PicTop + .PicHeight).

The boundaries of the new object can be changed later using the SetBounds method.

Remarks

The new object or container will be added to the content of the current open container.

After adding an object, the Current property will be automatically reset to contain the handle of the new object or container.

Newly added objects are NOT automatically selected. You may however set the ObjSelected property to select the object after adding it.

The new object will be created with MetaDraw's default attributes (line color, line style, fill, font, etc) . Default attributes for the picture can be set before adding the object by first setting the Current property to ObjHandle.Default and then specifying the desired attributes. You can also change an objects attributes (line width, fill color, …) immediately after it has been created by the AddObject method, or at any later time when .Current points to that object (such as after using FindObjectTags, or ObjMove)

Use the SetParams method to change additional parameters of the object: add new points to Polyline/Polygon, change starting and ending points in Arc/ Chord/ Pie, change rounded corners for Rounded Rectangle.

Using the AddObject method with ObjectTypes.Text will create an empty Text object. The text for this object can then be set using the Text property. In case of ObjectTypes.Text, the text object is positioned as specified by the text alignment properties, TextVAlign and TextHAlign, with respect to the object's boundaries. The size of a new text object may depend on the coordinates specified as well as the FontSize, and TextStyle properties.

Where the TextStyle = TextStyle.Standard, the font size will be determined by the specified boundaries (top, bottom), unless the specified height is 0, in which case the default FontSize will be used and the object height will be adjusted accordingly. The object width will be determined by the text later.

Where TextStyle = TextStyle.Bounded, the font size and object height will be set as with standard text objects, but the character spacing will be adjusted to fit within the specified boundary width (left, right).

Where TextStyle = TextStyle.Boxed, the text is presented according to its default FontSize, but the overall object height – the height of the surrounding box - will be set to whichever is larger - either the height specified by the FontSize, or the height specified by the coordinate parameters (top, bottom).

Where TextStyle = TextStyle.Multiline, the text is presented according to its default FontSize, but the object height and width will be increased as required to accommodate the text.

When the objType is Image, calling AddObject with zero height and width (parameters left = right and top = bottom), inserts the image determined by the PictureImage property into the open container at the image's default size. The new object will be added either as a single object (ObjType will return ObjectTypes.Bitmap) or as a container (ObjectTypes.Container) if the picture in the PictureImage property is itself a metafile containing several objects.

For objType is of Arc, Chord, or Pie, the AddObject method draws an initial 90(section (¼ ellipse) in CounterClockwise direction within the bounding rectangle. To specify a different angular range, call the ObjSetParams method after creating the object. Note that because the shape is always drawn in counter clockwise directlon the order of the X, Y parameters will determine which 90(quadrant the arc is drawn in

Newly added containers (object groups) are initially closed and will have zero width and height regardless of the specified coordinate parameters. To add object to a new container it should first be opened by using the ObjOpened property. After closing the container its position and size will be determined by the minimum bounding rectangle surrounding the objects grouped by the container.

	Note:
	It is not possible to add a link object using the AddObject method. To create links between two objects use the CreateLink method.

Example

The following are equivalent ways of creating an ellipse with bounding coordinates of 50,50, 100, 100

MetaDraw.AddObject(ObjectTypes.Ellipse, 50,50, 100, 100)

 ' or

MetaDraw.AddObject(ObjectTypes.Ellipse, New Rectangle(200, 200, 150, 100)

The following code creates a text object inside a dotted rectangle:

MetaDraw.AddObject(ObjectTypes.Text, New Point(10,10))
MetaDraw.Text = "First Line"
Bounds = MetaDraw.ObjGetBounds(CoordType.Logic)
MetaDraw.AddObject(ObjectTypes.Rectangle, Bounds)
MetaDraw.FillStyle = FillStyle.Transparent
MetaDraw.LineStyle = LineStyle.Dot
An alternative way to accomplish the same effect is to use Boxed TextStyle:

MetaDraw.AddObject(ObjectTypes.Text, New Point(20,30))
MetaDraw.Text = "Another Line"
MetaDraw.TextStyle = TextStyle.Boxed
MetaDraw.FillStyle = FillStyle.Transparent
MetaDraw.LineStyle = LineStyle.Dot

The following example creates a container, adds objects within the container, and then closes the container:

With MetaDraw1
 .AddObject(ObjectTypes.Container)
 .ObjOpened = True
 .AddObject(ObjectTypes.Rectangle, 100,120,300,220)
 .AddObject(ObjectTypes.Ellipse, 33, 60, 120, 280)
 .ObjMove(ObjMove.OpenContainer)
 .ObjOpened = False
End With

The following code will insert a bitmap at its original size in a specified location and assigns some data

MetaDraw.LoadPicture("c:\somepic.bmp", PictureSource.PictureImage)
MetaDraw.AddObject(ObjectTypes.Image, New Point(125, 200))

MetaDraw.ObjTags(“Name”) = “Table”

MetaDraw.ObjTags(“Reserved by”) = “Jones”
MetaDraw.ObjTags(“Seating”) = 5

The following code will insert a 90(Pie section and then reset it to a desired angular section

The same technique will apply to a Pie or a Chord

Dim X0, Y0, R ' Center point and Radius

X0 = 200 : Y0 = 200 : R = 100

' Draw rectangle bounding entire circle

MetaDraw.AddObject(ObjectTypes.Rectangle, X0 - R, Y0 - R, X0 + R, Y0 + R)

' Draw pie – initially as 1/4 section within bounding rectangle

MetaDraw.AddObject(ObjectTypes.pie, X0, Y0 - R, X0 + R, Y0)

' Reset start and end to desired points

' Negative angle are used because arcs are drawn counterclockwise

' and coordinate system increases as we go down.

' Positive angles may be used with Y = Y0-R* Math.Sin(angle)

Dim arr(1) As Point

arr(0).X = X0 + R * Math.Cos(-30 * Math.PI / 180)

arr(0).Y = Y0 + R * Math.Sin(-30 * Math.PI / 180)

arr(1).X = X0 + R * Math.Cos(-150 * Math.PI / 180)

arr(1).Y = Y0 + R * Math.Sin(-150 * Math.PI / 180)

MetaDraw.ObjSetParams(0, 2, arr, SetParamsFlags.Logical)

See also

Creating a new object, PictureClip property, PictureImage property

AutoScale Propertyxe "Properties:AutoScale"

XE "AutoScale Property"

xe "Zoom"

xe "BTIS.MetaDraw.MetaDraw.AutoScale"
Description

This property determines whether the picture image is automatically scaled to fit in the display window, or if the original picture size is preserved.

Usage

[Visual Basic]
Public Property AutoScale As AutoScaleMode
[C#]
public AutoScaleMode AutoScale {get; set;}

Settings

Settings of the AutoScale property are determined by the AutoScaleMode enumeration.

BTIS.MetaDraw.AutoScaleMode enumerationxe "Enumerations:AutoScaleMode"

XE "AutoScaleMode Enumeration"

xe "BTIS.MetaDraw.AutoScaleMode"
	Setting
	Description

	User (default)xe "BTIS.MetaDraw.AutoScaleMode.User
	The actual display size of the image (PicXSize, PicYSize properties) is initially set when loaded to the original picture size (as stored in the image file – and equal to OrigWidth and OrigHeight properties). MetaDraw will not continue to automate the sizing after the image is loaded.

	Resizexe "BTIS.MetaDraw.AutoScaleMode.Resize
	The display size of the image will be automatically adjusted whenever the MetaDraw control itself is resized. The PicXSize and PicYSize properties are automatically set to the width and height of the control (without border). This setting does NOT preserve the aspect ratio.

	FitToWindowxe "BTIS.MetaDraw.AutoScaleMode.FitToWindow
	The display size of the image will be automatically adjusted whenever the MetaDraw control itself is resized. The PicXSize, PicYSize properties are immediately set such that the image fits in the display window of the MetaDraw control (preserving the picture’s aspect ratio).

	Originalxe "BTIS.MetaDraw.AutoScaleMode.Original
	The PicXSize, PicYSize properties are immediately set to the actual size of the current picture. After the assignment, the control resets the value of the AutoScale property to AutoScaleMode.User. This setting also resets the PicXOfs, PicYOfs properties to zero.

Example

MetaDraw1.AutoScale = AutoScaleMode.Resize

Remarks

Setting AutoScale property to AutoScaleMode.Original is more like a command rather than a setting because it changes the picture size immediately but then has no later effect. It is an easy way to reset the picture display to its original size.

The PicXOfs, PicYOfs, PicXSize, PicYSize properties can be changed manually only if AutoScale is AutoScaleMode.User.
	
[image: image54.wmf]

	
[image: image55.wmf]

	[image: image56.emf]

	AutoScaleMode.User
	AutoScaleMode.Resize
	AutoScaleMode.FitToWindow

	The visible picture position and sizes are set manually using PicXOfs, PicYOfs and ZoomFactor or PicXSize, PicYSize properties.
	The picture fills the whole MetaDraw window area.

The aspect ratio may not be preserved (the image may be stretched more in one direction than the other)
	The picture is resized to the control but the aspect ratio is preserved.

The area that is not covered by the picture will fill with color specified in the PicBorderColor property.

Data Type

BTIS.MetaDraw.AutoScaleMode
See also

Zooming and Scrolling pictures, PicXSize, PicYSize, and ZoomFactor properties

BackColor Propertyxe "Properties:BackColor"

XE "BackColor Property"

xe "BTIS.MetaDraw.MetaDraw.BackColor"
Description

This property determines the background color of objects other than bitmaps.

The BackColor property also defines a transparent color for transparent bitmap objects.

Usage

[Visual Basic]
Public Property BackColor As System.Drawing.Color
[C#]
public System.Drawing.Color BackColor {get; set;}

Example

MetaDraw1.BackColor = Color.Blue

Remarks

The BackColor property applies to whichever object within the MetaDraw picture is currently pointed to by the .Current property (not to the entire control) . To set a default background color for future objects, set .Current to ObjHandle.Default before setting the BackColor property.

The BackColor setting is used:

 (a) as a background for text where the BackStyle is opaque,

 (b) to color the space between hatch lines where the FillStyle property has been set

 (c) to color the gaps in non-solid lines where the BackStyle is opaque

 (d) to specify the interpretation of a color as transparent for embedded raster image objects (bitmaps) where the BackStyle property for the image has been set to BackStyle.Transparent.

 (e) to specify an ending color when a Gradient FillStyle is applied

To fill a Solid shape set the FillStyle and FillColor properties.

Data Type

System.Drawing.Color
See also

Changing object’s attributes, FillColor property, BackStyle property

BackPicture, BackPictureAlignment Properties xe "Properties:BackPicture"

xe "Properties:BackPictureAlignment"

xe "BackPicture property"

xe "BackPictureAlignment property"

xe "Background"

xe "BTIS.MetaDraw.MetaDraw.BackPicture"

xe "BTIS.MetaDraw.MetaDraw.BackPictureAlignment"
Description
The BackPicture property determines what graphic will be displayed on MetaDraw’s background (behind the main picture / drawing / annotation layer..

The BackPictureAlignment property specifies how the picture specified in the BackPicture property will be displayed on the background.

The Background picture is distinct from the Picture being edited (it can not be selected, resized, dragged or modified by the end-user regardless of the setting of the EditMode property.

Syntax

[Visual Basic]
Public Property BackPicture As BTIS.MetaDraw.MDPicture
Public Property BackPictureAlignment As BTIS.MetaDraw.BackPictureAlignments
[C#]
public BTIS.MetaDraw.MDPicture BackPicture {get; set;}
public BTIS.MetaDraw.BackPictureAlignments BackPictureAlignment
Settings

Settings of the BackPictureAlignment property are determined by the BackPictureAlignments enumeration.

BTIS.MetaDraw.BackPictureAlignments enumerationxe "Enumerations:BackPictureAlignments"

XE "BackPictureAlignments Enumeration"

xe "BTIS.MetaDraw.BackPictureAlignments"
	Constant
	Description

	LeftTopxe "BTIS.MetaDraw.BackPictureAlignments.LeftTop
	Image is left/top aligned.

	LeftMiddlexe "BTIS.MetaDraw.BackPictureAlignments.LeftMiddle
	Image is left/middle aligned.

	LeftBottomxe "BTIS.MetaDraw.BackPictureAlignments.LeftBottom
	Image is left/bottom aligned.

	CenterTopxe "BTIS.MetaDraw.BackPictureAlignments.CenterTop
	Image is right/top aligned.

	CenterMiddlexe "BTIS.MetaDraw.BackPictureAlignments.CenterMiddle
	Image is right/middle aligned.

	CenterBottomxe "BTIS.MetaDraw.BackPictureAlignments.CenterBottom
	Image is right/bottom aligned.

	RightTopxe "BTIS.MetaDraw.BackPictureAlignments.RightTop
	Image is center/top aligned.

	RightMiddlexe "BTIS.MetaDraw.BackPictureAlignments.RightMiddle
	Image is center/middle aligned.

	RightBottomxe "BTIS.MetaDraw.BackPictureAlignments.RightBottom
	Image is center/bottom aligned.

	Stretchxe "BTIS.MetaDraw.BackPictureAlignments.Stretch
	Image is stretched to fit the drawing area.

	Tilexe "BTIS.MetaDraw.BackPictureAlignments.Tile
	Image is tiled in the drawing area.

Example

1) Load background with image from standard Picturebox

 MetaDraw1.BackPicture = New MDPicture(PictureBox1.Image)

2) Load Background from a file

 a) first method – set backPicture property directly

 MetaDraw1.BackPicture = New MDPicture("c:\tmp\1.wmf")

 b) second method – set BackPicture property using LoadPicture method

 MetaDraw1.LoadPicture ("c:\tmp\1.wmf", PictureSource.BackPicture)

3) Initialize the drawing area with some picture

 (setting the drawing area size)

 and then move the picture from the drawing area into the background

 lastly tell MetaDraw to scroll and zoom background with drawing area

 MetaDraw1.Picture = New MDPicture("c:\tmp\1.wmf")

 MetaDraw1.BackPicture = MetaDraw1.Picture

 MetaDraw1.Clear ' clears drawing area but background is not affected

 MetaDraw1.PictureOptions = MetaDraw1.PictureOptions _

Or PictureFlags.PicBackground
4) Tell MetaDraw to tile the background image

 MetaDraw1.BackPictureAlignment = BackPictureAlignments.Tile

5) Clear the Background

 MetaDraw1.BackPicture = Nothing
 Remarks

In all alignment modes, except BackPictureAlignments.Stretch, MetaDraw draws the background image with its original size which may be larger or smaller than the drawing area.

The background set with the BackPicture property does NOT normally zoom or scroll with the main MetaDraw picture (the drawing area). In order to scroll and zoom background with the drawing area set the PictureFlags.PicBackground flag in the PictureOptions property. There are several flags in the PictureOptions property that can affect the use of the background picture (see the PictureOptions property description).

The background set with the BackPicture property is not exported (will not Save, Print, or be included as part of Picture read by Picture property) unless the ExportFlags.Background flag is included in the ExportOptions property.

Supported picture types that can be assigned to the BackPicture property are: BMP, ICO, WMF, EMF, JPG, PNG, MDP. (for information on supporting other image types contact Bannet-Tec support)

Calling MetaDraw's LoadPicture method, with a destination parameter of PictureSource.BackPicture, can be also used to assign a picture as a background picture – this is equivalent to setting the property directly

The standard BackPicture is not subject to clipping or zooming when exporting the image to a printer or other device context.

Data Type

	BTIS.MetaDraw.MDPicture
	for BackPicture

	BTIS.MetaDraw.BackPictureAlignments
	for BackPictureAlignment

See also

LoadPicture method, PictureOptions property

BackStyle Propertyxe "Properties:BackStyle"

XE "BackStyle Property"

xe "BTIS.MetaDraw.MetaDraw.BackStyle"
Description

The BackStyle property determines whether the background of an object within the MetaDraw picture is transparent or opaque.

Usage

[Visual Basic]
Public Property BackStyle As BTIS.MetaDraw.BackStyle
[C#]
public BTIS.MetaDraw.BackStyle BackStyle {get; set;}

Settings

Settings of the BackStyle property are determined by the BTIS.MetaDraw.BackStyle enumeration.

BTIS.MetaDraw.BackStyle enumerationxe "Enumerations:BackStyle"

XE "BackStyle Enumeration"

xe "BTIS.MetaDraw.BackStyle"
	Setting
	Description

	Transparentxe "BTIS.MetaDraw.BackStyle.Transparent
	Background is not changed.

	Opaquexe "BTIS.MetaDraw.BackStyle.Opaque
	The color specified by the BackColor property is used to fill in the background of a text object's, gaps in non-solid lines, and the space between hatches in a hatched brush.

Example

MetaDraw1.BackStyle = Backstyle.Opaque
Remarks

The BackStyle property applies to whichever object within the MetaDraw picture is currently pointed to by the .Current property (not to the entire control) . To set a default style, set .Current to ObjHandle.Default before setting the BackStyle property.

This property may also be applied to bitmaps to draw a bitmap with transparent color. In that case the BackColor property determines the color which will be interpreted as a transparent area.

Data Type

BTIS.MetaDraw.BackStyle

See also

Changing object’s attributes, BackColor property

BorderStyle Propertyxe "Properties:BorderStyle"

XE "BorderStyle Property"
Description

This standard property determines the border style for the MetaDraw control.

Usage

[Visual Basic]
Public Property BorderStyle As System.Windows.Forms.BorderStyle

[C#]
public System.Windows.Forms.BorderStyle BorderStyle {get; set;}

Settings

Settings of the BorderStyle property are determined by the System.Windows.Forms.BorderStyle enumeration.

BorderStyle enumerationxe "Enumerations:BorderStyle"

XE "BorderStyle Enumeration"

xe "BTIS.MetaDraw.BorderStyle"
	Setting
	Description

	Fixed3Dxe "BTIS.MetaDraw.BorderStyle.Fixed3D
	A three-dimensional border.

	FixedSinglexe "BTIS.MetaDraw.BorderStyle.FixedSingle
	A single-line border.

	Nonexe "BTIS.MetaDraw.BorderStyle.None
	No border.

Example

MetaDraw1.BackStyle = BorderStyle.Fixed3D
Data Type

System.Windows.Forms.BorderStyle

See also

BorderStyle property in the .NET Framework Class Library Reference.

Change Eventxe "Events:Change"

XE "Change Event"

xe "BTIS.MetaDraw.MetaDraw.Change"
Description

This event occurs when the picture in the MetaDraw box is changed by adding objects, moving objects, deleting objects, changing properties or number of objects selected.

Syntax

[Visual Basic]
Public Event Change As ChangeEventHandler
Public Delegate Sub ChangeEventHandler (ByVal sender As Object, ByVal e ChangeEventArgs)

[C#]
public event ChangeEventHandler Change;
public delegate void ChangeEventHandler (object sender, ChangeEventArgs e);

Remarks

The Change event occurs after any change was performed or after last group operation. For example, if you click the mouse on an unselected object, that object become selected, the previously selected objects are dropped from selection, and the Change event occurs with the ChangeType parameter set to ChangeType.Selection.

Only one event will be triggered for each action, regardless of how many objects were affected – for instance if multiple objects are deselected at one time, or a container / group holding multiple objects is deleted.

The type of change is passed in the Type member of the ChangeEventArgs parameter.

After entering this event, the Current property contains the handle of the added object (if the ChangeEventArgs.Type parameter is ChangeType.Added) or the handle of the object whose parameters were changed. If changes were applied on several selected objects, the Current property is ObjHandle.Selected.

It is recommend to avoid any manipulations of the MetaDraw picture within the Change event, as such changes may lead to recursive calls of this event and turn the application into infinite looping.

If a user is adding object with the mouse, the Change event is first triggered with ChangeType = ChangeType.Added as soon as the editing begins – so final size may not yet be determined . In this case the object may be cancelled before completion such as when user hits ESC or Enter before typing any text in Text Editing mode - Cancelling will trigger Change event with ChangeType.Canceled following which the cancelled object will be removed. If the adding is not cancelled, The Change Event will be triggered again with ChangeType.Completed value when the user has completed adding the object.

If ChangeEventArgs.Type is ChangeType.Deleted the Current property is ObjHandle.Null.

	Note:
	The triggering of this event for different actions may be enabled or disabled using the EventMask property. Disabling the triggering for actions which do not need to be handled will improve application performance speed.

ChangeEventArgs Event objectxe "Event objects:ChangeEventArgs"

XE "ChangeEventArgs Event object"

xe "BTIS.MetaDraw.ChangeEventArgs"
The type of change is passed in the Type member of the ChangeEventArgs parameter:

Syntax

[Visual Basic]
Public Class ChangeEventArgs Inherits EventArgs

[C#]
public class ChangeEventArgs : EventArgs

Properties

This object has the following properties that provide information specific to the event:

	Property
	Type
	Description

	Type
	BTIS.MetaDraw.ChangeType
	Determines the type of last change in the MetaDraw picture.

Remarks

The Type property determines the type of last change in MetaDraw picture. The type of changes is determined by the BTIS.MetaDraw.ChangeType enumeration.

ChangeType enumerationxe "Enumerations:ChangeType"

XE "ChangeType Enumeration"

xe "BTIS.MetaDraw.ChangeType"
	Value
	Description

	Nonexe "BTIS.MetaDraw.ChangeType.None"
	Nothing was changed.

	Selectionxe "BTIS.MetaDraw.ChangeType.Selection"
	Selection was changed for one or more objects.

	Addedxe "BTIS.MetaDraw.ChangeType.Added"
	An object is being added. Change event will be triggered again with Completed or Cancelled value when user is done.

	Completedxe "BTIS.MetaDraw.ChangeType.Completed"
	Adding operation has been compreted (object was fully added). The Current property contains handle of the added object.

	Canceledxe "BTIS.MetaDraw.ChangeType.Canceled"
	The Add operation was canceled. The change event is fired in this case as notification that the editing operation is canceled. This will be triggered BEFORE the cancelled object is removed, so the Current property contains handle of the object which had been in the process of being edited.

	Movedxe "BTIS.MetaDraw.ChangeType.Moved"
	One or more objects were moved.

	Resizedxe "BTIS.MetaDraw.ChangeType.Resized"
	An object was resized.

	Openxe "BTIS.MetaDraw.ChangeType.Open"
	An object or container was opened.

	Changedxe "BTIS.MetaDraw.ChangeType.Changed"
	Object’s attributes were changed.

	Deletedxe "BTIS.MetaDraw.ChangeType.Deleted"
	One or more objects were deleted.

	Groupedxe "BTIS.MetaDraw.ChangeType.Grouped"
	Objects were grouped.

	Ungroupedxe "BTIS.MetaDraw.ChangeType.Ungrouped"
	Container(s) was (were) ungrouped.

	Rotatedxe "BTIS.MetaDraw.ChangeType.Rotated"
	An object was rotated.

	Editedxe "BTIS.MetaDraw.ChangeType.Edited"
	Editing operation upon the object has been finished (e.g. after editing characters of a text object).

Example

The following example shows how to prevent the selection of Ellipse objects:

Private Sub MetaDraw1_Change(ByVal sender As Object, _
 ByVal e As BTIS.MetaDraw.ChangeEventArgs) _
 Handles MetaDraw1.Change
 If e.Type = ChangeType.Selection Then
 With MetaDraw1
 .ObjMove(ObjMove.FirstSelected)
 While .Current > ObjHandle.Valid
 If .ObjType = ObjectTypes.Ellipse Then
 .ObjSelected = False
 End If
 .ObjMove(ObjMove.NextSelected)
 End While
 End With
 End If
End Sub
See also

Editing objects, Selecting objects, Current property, EventMask property

ChangeLogicalCoords Methodxe "Methods:ChangeLogicalCoords"

XE "ChangeLogicalCoords Method"

xe "Coordinate System"

xe "BTIS.MetaDraw.MetaDraw.ChangeLogicalCoords"
Description
This method changes the range of the logical coordinate system for the main picture / drawing area (and optionally the size of the picture), while retaining the coordinate locations of existing objects.

Syntax

[Visual Basic]
Overloads Public Function ChangeLogicalCoords (bounds As Rectangle, crdType As ChangeCoordsFlags) As Integer
Overloads Public Function ChangeLogicalCoords (left As Integer, top As Integer, width As Integer, height As Integer, crdType As ChangeCoordsFlags) As Integer

[C#]
public int ChangeLogicalCoords (Rectangle bounds, ChangeCoordsFlags crdType);
public int ChangeLogicalCoords (int left, int top, int width, int height, ChangeCoordsFlags crdType);

Parameters

	Parameter
	Description

	Bounds
	Specifies bounding rectangle of new picture in logical coordinates

	left, top
	Specify the left-top corner of new picture in logical coordinates

	width, height
	Specify sizes of new picture in logical coordinates

	CrdType
	Determines the measurement units for previous parameters and action flags. It may be set by combining (Logical OR) values from the ChangeCoordsFlags enumeration

ChangeCoordsFlags enumerationxe "Enumerations:ChangeCoordsFlags"

XE "ChangeCoordsFlags Enumeration"

xe "BTIS.MetaDraw.ChangeCoordsFlags"
	Member
	Value
	Description

	Logicalxe "BTIS.MetaDraw.ChangeCoordsFlags.Logical"
	0
	Set this flag to specify coordinates in pixels

	Pixelsxe "BTIS.MetaDraw.ChangeCoordsFlags.Pixels"
	4
	Set this flag to retain objects located outside the new coordinate system (outside the new boundaries of the picture). If this flag is not set, such objects are automatically removed.
This setting is NOT recommended for most applications.

	DontRemovexe "BTIS.MetaDraw.ChangeCoordsFlags.DontRemove"
	0x1000
	Set this flag to retain objects which lay fully outside new picture boundaries.
 This is setting is NOT recommended for most applications.

	Partlyxe "BTIS.MetaDraw.ChangeCoordsFlags.Partly"
	0x2000
	Set this flag to remove objects if any part extends beyond the new boundaries.

This is a recommended setting for most applications

	SameOriginxe "BTIS.MetaDraw.ChangeCoordsFlags.SameOrigin"
	0x4000
	Set this flag to retain the existing image size. In this case only the Logical Coordinate System is changed and the OrigWidth and OrigHeight settings are unchanged.
If this flag is NOT set, the actual unzoomed size of the picture will be increased/decreased in proportion to the changes in PicWidth and PicHeight.

Returns

The ChangeLogicalCoords method returns the number of objects that have been removed (or which would be removed if ChangeCoordsFlags.DontRemove is specified).

Remarks

The ChangeLogicalCoords method may be used to change the range of logical coordinates, and optionally the size, of a picture without destroying the objects which already exist. Objects inside the picture retain the same coordinates, but you can add additional space or remove unused drawing space without recreating the whole picture.

If either the width or height parameters are zero, MetaDraw calculates these values automatically to maintain the picture’s current aspect ratio.

If the ChangeCoordsFlags.DontRemove flag is set in the crdType parameter, all objects that are not inside new picture boundaries will be removed.

Objects partly located in new picture boundaries will be kept unless the ChangeCoordsFlags.Partly flag is set.

	Note:
	When ChangeCoordsFlags.SameOrigin is set, picture may become non-proportional (resolution by X- and Y- direction are not the same). This can result in undesirable presentation – especially of Text objects. When using this flag, try to increase PicWidth and PicHeight by the same proportion in order to avoid such problems.

Example

' Increase the width of the image by 25 %
Removed = MDraw.ChangeLogicalCoords (MDraw.PicLeft, MDraw.PicTop, _
 1.25 * MDraw.PicWidth, 1.25 * MDraw.PicHeight, 0)

' Change the range of coordinate system without changing
' the actual size of the image
Removed = MDraw.ChangeLogicalCoords (0, 0, 1000, 1000, ChangeCoordsFlags.SameOrigin)

See Also

Picture coordinates

Clear Methodxe "Methods:Clear"

XE "Clear Method"

xe "BTIS.MetaDraw.MetaDraw.Clear"
Description

Destroy (erase) the current picture in the MetaDraw control box.

Syntax

[Visual Basic]
Public Sub Clear ()

[C#]
public void Clear ();

Remarks

After this method is invoked, all objects in the current picture will be deleted, but the picture coordinate properties do not change. To fully destroy the picture, use the following code:

[form].MDraw.PicWidth = 0 ' or
[form].MDraw.PicHeight = 0

Calling this method also resets the .Current property to ObjHandle.Default at which point setting object attributes (such as LineColor etc) will set defaults for objects added later.

See also

Creating a New picture, .Picture property

Click Eventxe "Events:Click"

XE "Click Event"

xe "BTIS.MetaDraw.MetaDraw.Click"
Description

This standard event occurs when the user presses then releases a mouse button over a MetaDraw control.

Syntax

[Visual Basic]
Public Event Click As EventHandler

[C#]
public event EventHandler Click;

Remarks

The Click event is triggered after MouseDown event, but before MouseUp event.

To trap events over specific elements of the picture set the ObjStatus property (or the ObjHotSpot.Click flag in the .ObjHotSpot property for MetaDraw) for that element, and then trap the HitObject event. Alternatively trap the MouseDown or MouseUp events and call the ObjectsHitTest method to see what is under the mouse.

See also

Click event in the .NET Framework Class Library Reference

ClientHeight, ClientWidth Propertiesxe "Properties:ClientHeight"

xe "Properties:ClientWidth"

XE "ClientHeight Property"

XE "ClientWidth Property"

xe "BTIS.MetaDraw.MetaDraw.ClientWidth"

xe "BTIS.MetaDraw.MetaDraw.ClientHeight"
Description [image: image57.wmf] [image: image58.wmf]
These properties return the dimensions of the visible area inside the MetaDraw box, in units specified either by the ScaleUnits property.

Usage

[Visual Basic]
Public Property ClientHeight As Single
Public Property ClientHeight (flags As BTIS.MetaDraw.ClientFlags) As Single
Public Property ClientWidth As Single
Public Property ClientWidth (flags As BTIS.MetaDraw.ClientFlags) As Single

[C#]
public float ClientHeight {get;}
public float ClientHeight (float flags) {get;}
public float ClientWidth {get;}
public float ClientWidth (float flags) {get;

Remarks

The visible area is actually the client area of the MetaDraw’s window. If both the border and the scroll bars are disabled on the control, the ClientHeight and ClientWidth properties have the same values as Size.Height and Size.Width. Otherwise, they will be less by the dimensions of the scroll bars and/or the control’s border.

These properties have an optional parameter that determines units of the returned value and whether to incude scrollbars size or not. It can be a combination of values determined by the BTIS.MetaDraw.ClientFlags enumeration.

BTIS.MetaDraw.ClientFlags enumerationxe "Enumerations:ClientFlags"

XE "ClientFlags Enumeration"

xe "BTIS.MetaDraw.ClientFlags"
	Flag
	Value
	Description

	Defaultxe "BTIS.MetaDraw.ClientFlags.Default"
	0
	Returns the corresponding size of the visible area of the MetaDraw window. This value is used when the parameter is omitted.

	NoScrollbarsxe "BTIS.MetaDraw.ClientFlags.NoScrollbars"
	1
	Add the size of the corresponding scrollbar (if it is visible) to the returned value. This is useful when you want to set the visible size of the MetaDraw picture exactly to the size of the MetaDraw control box to avoid appearance of the scrollbar.

	Pixelsxe "BTIS.MetaDraw.ClientFlags.Pixels"
	2
	Always return value in pixels regardless of the user scaling mode. If this flag is not specified returned value is measured in units specified by the ScaleUnits property.

Data Type

Single
See also

Coordinate properties of MetaDraw, ScaleUnits property

ClientToLogic, ClientToLogicX, ClientToLogicY Methodsxe "Methods:ClientToLigic"

xe "Methods:ClientToLigicX"

xe "Methods:ClientToLigicY"

XE "ClientToLogic Method"

XE "ClientToLogicX Method"

XE "ClientToLogicY Method"

xe "Coordinate Transform"

xe "BTIS.MetaDraw.MetaDraw.ClientToLogic"

xe "BTIS.MetaDraw.MetaDraw.ClientToLogicX"

xe "BTIS.MetaDraw.MetaDraw.ClientToLogicY"
Description [image: image59.wmf]
The MetaDraw control has several methods to convert between the client coordinates (given in pixels) and logical picture coordinates (as determined by the PicLeft, PicTop, PicWidth and PicHeight properties).

Usage

[Visual Basic]
Public Function ClientToLogic (pos As Point) As Point
Public Function ClientToLogicX (pix As Integer) As Integer
Public Function ClientToLogicY (pix As Integer) As Integer

[C#]
public Point ClientToLogic (Point pos)
public int ClientToLogicX (int pix)
public int ClientToLogicY (int pix)

Remarks

All of these methods convert client coordinate(s) given in pixels to the corresponding logical coordinates.

	Note:
	The client window coordinates are always measured in screen pixels regardless of the units specified by the ScaleUnits property.

Example

1) ' Update Label captions with the current mouse position
Private Sub MetaDraw1_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MetaDraw1.MouseMove
 Dim LogicX As Integer, LogicY As Integer
 LogicX = MetaDraw1.ClientToLogicX(e.X)
 LogicY = MetaDraw1.ClientToLogicY(e.Y)
 Label1.Text = "Client X = " & X & ", Y = " & Y
 Label2.Text = "Logical X = " & LogicX & ", Y =" & LogicY
End Sub

2) ' Add text object on MouseUp event at the current position
Private Sub MetaDraw1_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MetaDraw1.MouseUp
 Dim pos As Point
 With MetaDraw1
 pos = .ClientToLogic(New Point(e.X, e.Y))
 .AddObject(ObjectTypes.Text, pos)
 .TextHAlign = TextHAlign.Center
 .TextVAlign = TextVAlign.Center
 .Text = "(" & e.X & "," & e.Y & ")"
 End With
End Sub

See also

Coordinate properties of MetaDraw, LogicToClientX, LogicToClientY properties

ClipLeft, ClipTop, ClipWidth, ClipHeight Propertiesxe "Properties:ClipLeft"

xe "Properties:ClipTop"

xe "Properties:ClipWidth"

xe "Properties:ClipHeight"

xe "ClipLeft, ClipTop, ClipWidth, ClipHeight Properties"

xe "Clipping"

xe "Cropping"

xe "BTIS.MetaDraw.MetaDraw.ClipLeft"

xe "BTIS.MetaDraw.MetaDraw.ClipTop"

xe "BTIS.MetaDraw.MetaDraw.ClipWidth"

xe "BTIS.MetaDraw.MetaDraw.ClipHeight"
Description [image: image60.wmf]
These properties specify a clipping area - in units specified by the ScaleUnits property.

This may be used to crop the picture when exporting (reading, saving or printing) using the Picture, PictureClip properties or SavePicture, ExportDC methods.

Remarks

By default the entire picture is exported.

These properties are applied only when the ExportFlags.Clipping flag is specified in the .ExportOptions property. Otherwise they are ignored.

Only that portion of the picture within the rectangle specified by the ClipLeft, ClipTop, ClipWidth, ClipHeight properties will be exported when the ExportOptions flag is set

If one of the ClipWidth, ClipHeight properties is set to 0, MetaDraw calculates this property automatically according to the picture aspect ratio. If both of these properties are 0, values of the PicXSize, PicYSize properties are used correspondingly.

These properties are measured in units that determined by the ScaleUnits property (similar to the PicXSize, PicYSize properties).

Example

' This example prints only visible area of MetaDraw
Sub cmdPrint_Click()
 With MetaDraw
 .ExportOptions = ExportFlags.Zoom Or ExportFlags.Clipping
 .ClipLeft = .PicXOfs
 .ClipTop = .PicYOfs
 .ClipWidth = .ClientWidth
 .ClipHeight = .ClientHeight
 .Current = ObjHandle.MainContainer
 .ExportDC(-2)
 End With
End Sub
See also

Printing with MetaDraw, ExportOptions property, ExportDC property

CopyToClipboard Method xe "Methods:CopyToClipboard"

xe "CopyToClipboard Method"

xe "Clipboard"

xe "BTIS.MetaDraw.MetaDraw.CopyToClipboard"
Description

The CopyToClipboard method copies MetaDraw’s entire picture, or a set of objects from the picture, to the clipboard.

Usage

[Visual Basic]
Public Function CopyToClipboard (ClbMask As BTIS.MetaDraw.ClipboardFormat) As BTIS.MetaDraw.ClipboardFormat
Public Function CopyToClipboard (ClbMask As BTIS.MetaDraw.ClipboardFormat, PicSrc As BTIS.MetaDraw.PictureSource) As BTIS.MetaDraw.ClipboardFormat
[C#]
public BTIS.MetaDraw.ClipboardFormat CopyToClipboard

(BTIS.MetaDraw.ClipboardFormat ClbMask);
public BTIS.MetaDraw.ClipboardFormat CopyToClipboard (BTIS.MetaDraw.ClipboardFormat ClbMask, BTIS.MetaDraw.PictureSource PicSrc);

Parameters

The CopyToClipboard method uses these arguments:

	Argument
	Description

	ClbMask
	Determines which data formats are storied to the clipboard.

Also whether to clear existing clipboard content

	PicSrc
	Specifies which picture should be copied to the clipboard (determined by the BTIS.MetaDraw.PictureSource enumeration).

Multiple formats can be stored into the clipboard at one time, and the clipboard may also be simultaneously cleared, by setting the ClbMask parameter with an OR combination of the desired values from the BTIS.MetaDraw.ClipboardFormat enumeration.

BTIS.MetaDraw.ClipboardFormat enumerationxe "Enumerations:ClipboardFormat"

XE "ClipboardFormat Enumeration"

xe "BTIS.MetaDraw.ClipboardFormat"
	Constant
	Value
	Description

	Nonexe "BTIS.MetaDraw.ClipboardFormat.None"
	0x00
	Nothing

	MetaDrawxe "BTIS.MetaDraw.ClipboardFormat.MetaDraw"
	0x01
	Store picture in MetaDraw internal format

	Bitmapxe "BTIS.MetaDraw.ClipboardFormat.Bitmap"
	0x02
	Store as bitmap

	Dibxe "BTIS.MetaDraw.ClipboardFormat.Dib"
	0x04
	Store as DIB

	Palettexe "BTIS.MetaDraw.ClipboardFormat.Palette"
	0x08
	Store MetaDraw’s picture palette

	Metafilexe "BTIS.MetaDraw.ClipboardFormat.Metafile"
	0x10
	Store as metafile

	EnhMetafilexe "BTIS.MetaDraw.ClipboardFormat.EnhMetafile"
	0x20
	Store as enhanced metafile

	Clearxe "BTIS.MetaDraw.ClipboardFormat.Clear"
	0x100
	Clear old clipboard contents before storing data

Returns

Bitwise mask of data formats (see BTIS.MetaDraw.ClipboardFormat enumeration), specifying which formats have successfully been copied to the clipboard. If no format could be copied to the clipboard, the function returns zero.

Remarks

Before calling this method using a picSrc setting of PictureSource.PictureClip, you should select the objects you want copied to the clipboard.

	Note:
	It is not possible to copy a Link object without the objects being linked in MetaDraw internal format.

Example

1) ’ The following line copies the main MetaDraw picture
 ’ to the clipboard in MetaDraw internal format
MetaDraw.CopyToClipboard (ClipboardFormat.MetaDraw)

2) ’ The following line clears the old clipboard contents
 ’ and copies objects from the open container to
 ’ the clipboard in both Metafile and DIB formats
MetaDraw.Current = ObjHandle.Container
ClbMask = ClipboardFormat.DIB Or ClipboardFormat.Metafile _

 Or ClipboardFormat.Clear

MetaDraw.CopyToClipboard (clbMask, PictureSource.ByCurrent)

See Also

PasteFromClipboard method, PictureClip property

CreateImageMap Methodxe "Methods:CreateImageMap"

XE "CreateImageMap Method"
Description

Requires Subscription License Option
The CreateImageMap method creates an HTML Client Side ImageMap as a string representing HotSpot areas in MetaDraw.

Syntax

[Visual Basic]
Overloads Public Function CreateImageMap (mapName As String) As String
Overloads Public Function CreateImageMap (mapName As String,

picDst As BTIS.MetaDraw.PictureSource) As String
[C#]
public string CreateImageMap (string mapName);
public string CreateImageMap (string mapName, BTIS.MetaDraw.PictureSource picDst);

Parameters

This method accepts the following parameters:

	Parameter
	Description

	MapName
	Name to be assigned for the MAP section.
It should be used in tag as usemap="#<MapName>"

	picSrc (optional)
	Identifies whether ImageMap is created based on entire image or only on selected objects. It may be one of the following values:

PictureSource.Picture - The whole picture (default value)

PictureSource.PictureClip - The selected objects.
Note that all coordinates are counted from top-left corner of the bounding rectangle of selected objects.

Returns

a String containing a Client Side HTML ImageMap representing the HotSpot areas in MetaDraw which have associated URL's.

Remarks

The CreateImageMap method supports the creation of ClientSide Image Maps only. Server Side maps are not supported. For further information on ImageMap standards refer to "Image Map Conversion".

The returned ImageMap string will be of the following form:

** Spacing and Carriage returns are here for documentation visibility and are not necessarily reflected in the actual output string
<MAP name="<MapName>">
 <AREA href="ObjURL" alt="ToolTipText1" shape="...>
 <AREA href="ObjURL2" alt="ToolTipText2"
 shape="rect" coords="86, 47, 234, 65" >
 <AREA href="http://www.btis.com" alt="Bennet-Tec IS, Inc."
 shape="poly" cords=126, 129, 126, 127, 126, 125">
</MAP>

The exported MAP section will consist of RECT, CIRCLE, and POLY areas according to the following rules:

	MetaDraw
Object Type
	ImageMap Representation

	Text, Rectangle, Rounded Rectangle, Solid Picture, Bitmap, Container.
	The HotSpot area will be a Rectangle
(or a Polygon if the object is rotated).

	Ellipse
	Circle if original ellipse is circular and not rotated,

 or Polygon if non-circular or if rotated.

	Polyline, Polygon
	Polygon.

	Other (Chord, Pie, Arc, Bezier, Line, DimLine, Link, …)
	Not currently supported and will be ignored.

ImageMap elements will only be taken from objects with a defined (non-empty) ObjURL property setting and having the WebURL flag set in the ObjStatus property.

Tooltips may be assigned to each hotspot element using the ObjTags property with tag name "TOOLTIP" (NOTE that tag names are case sensitive – the tag name “TOOLTIP” must be all Caps). These tooltips will be included in the ImageMap and will show up within the web browser when the mouse hovers over the tagged area.

The CreateImageMap method does not create the HTML File, just the ImageMap string. This can then be added to an HTML by the developer's code building the HTML File. Also developers should include an tag with reference to the corresponding <MAP> section into the HTML file by themselves.

Example

With MetaDraw
 ' Load Some Initial Picture
 MetaDraw.LoadPicture FileName, Pic_Picture
 ' Add the HotSpot Areas
 .AddObject OT_Rectangle, 100,100, 150, 150
 .ObjURL = "http://www.Bennet-Tec.Com/MetaDraw.htm"
 .ObjStatus = OS_WEBURL Or OS_CURSOR Or OS_HOTSPOT
 .ObjVisible = False
 ' or = True depending on whether the object itself

 ' should be shown as part of the picture

 ' or only be used for its boundaries as an invisible hotspot area.
 .ObjTags("TOOLTIP") = "click on me for information on MetaDraw"
 .AddObject OT_Ellipse, 50,50, 100, 100
 .ObjURL = "http://www.Bennet-Tec.Com/Order.htm"
 .ObjStatus = OS_WEBURL Or OS_CURSOR Or OS_HOTSPOT
 .ObjVisible = False
 .ObjTags("TOOLTIP") = "click on me for a good time"
 ' Save the overall Image (excluding Hidden elements)
 .ExportOptions = .ExportOptions OR EXOPT_VISIBLE
 .SavePicture "ImageMap.jpg", PIC_PICTURE, PICTYPE_JPGFILE
 ' Create a simple HTML file with IamgeMap section
 FlNum = FreeFile()

 Open "ImageMap.htm" For Output As FlNum

 Print #FlNum, "<HTML> <BODY>" & vbCrLf

 Print #FlNum, .CreateImageMap("ImageMap", PIC_PICTURE)

 Print #FlNum, vbCrLf _

 & "" _
 & vbCrLf & vbCrLf & "</BODY></HTML>" & vbCrLf

 Close #FlNum
End With
See Also

ReadImageMap method

CreateLink Methodxe "Methods:CreateLink"

xe "CreateLink method"

xe "Links"

xe "BTIS.MetaDraw.MetaDraw.CreateLink"
Description

The CreateLink method creates a new diagram link joining the specified objects.

Usage

[Visual Basic]
Public Sub CreateLink (hndSrc As BTIS.MetaDraw.ObjHandle,

hndDst As BTIS.MetaDraw.ObjHandle,

lnkType As BTIS.MetaDraw.LinkType)

[C#]
public void CreateLink (BTIS.MetaDraw.ObjHandle hndSrc,

BTIS.MetaDraw.ObjHandle hndDst,

BTIS.MetaDraw.LinkType lnkType);

Parameters

The CreateLink method uses these arguments:

	Argument
	Description

	HndSrc,

HndDst
	Specify the objects to be linked

 HndSrc -Specifies the object handle of the starting object from which link will be drawn

 HndDst - Specifies the object handle of the ending object to which the link will be drawn

	lnkType
	Determines link style (BTIS.MetaDraw.LinkType enumeration)

	
	Value
	Description

	
	LinkType.Straight
	Create a straight link;

	
	LinkType.Segmented
	Create a multi-segmented link.

BTIS.MetaDraw.LinkType enumerationxe "Enumerations:LinkType"

XE "LinkType Enumeration"

xe "BTIS.MetaDraw.LinkType"
	Value
	Description

	Straightxe "BTIS.MetaDraw.LinkType.Straight"
	Create a straight link;

	Segmentedxe "BTIS.MetaDraw.LinkType.Segmented"
	Create a multi-segmented link.

Returns

Upon return this method sets the .Current property to either:

· The handle of the newly created link.

· ObjHandle.Selected if multiple links have been created.

· ObjHandle.Null if no link was created.

Remarks

The hndSrc, hndDst parameters may be specific object handles pointing to a specific object, or the special reserved handle ObjHandle.Selected may be used to specify either or both the starting and ending objects. Specifying ObjHandle.Selected may result in drawing multiple links at one time.

If ObjHandle.Selected is used as the source (hndSrc) parameter, links will start at each of the currently selected objects and will end at the object whose handle is specified by the hndDst parameter.

If ObjHandle.Selected is used as the destination (hndDst) parameter, links will be drawn starting from the object specifed by hndSrc to each of the currently selected objects.

If ObjHandle.Selected is used as both source and destination, the first (closest to bottom layer) selected object will be as source object and links will be drawn from this object to each of the remaining selected objects.
When LinkType.straight is specified as link type, MetaDraw will draw a straight line link from the source object to the destination.

When LinkType.Segmented is specified as link type, MetaDraw will create a default segmented link (link that contains three segments). The ObjSetParams method may then be used to change the position of link segments and/or to add new segments.

Parameters of the new link (LinkFlags, LinkStyle LinkLength, LinkWidth, Line Color, Line style) are initially set to default values (as previously specified when .Current is set to ObjHandle.Default). These may be changed for the individual link after link creation.

All new links are automatically connected to the edges of the corresponding objects. Use the SetLinkPoint method after creating the link in order to change link’s connection points.

After calling the CreateLink method, any previously selected objects become unselected, and the new link itself is selected. The .Current property will point to the new link, or if multiple link objects are created .Current will be set to ObjHandle.Selected.
Remarks

’ This code creates two objects and make a link between them
Dim ObjectA As ObjHandle, ObjectB as ObjHandle
With MetaDraw1
 .AddObject(ObjectTypes.Rectangle, 100, 100, 300, 300)
 ObjectA = .Current
 .AddObject(ObjectTypes.Ellipse, 400, 500, 600, 800)
 ObjectB = .Current
 .CreateLink(ObjectA, ObjectB, LinkType.Straight)
End With

See Also

Link Attributes, SetLinkPoint method

Current Propertyxe "Properties:Current"

XE "Current Property"

xe "BTIS.MetaDraw.MetaDraw.Current"
Description [image: image61.wmf]
Each object in a MetaDraw image has a “handle” used to point to that object

The Current property returns, or is set, to a handle pointing to the object or objects which are currently being used, referenced or affected by a specified action (change objects attributes, move, group objects, etc.).

Reading the Current property returns the Handle of the current object or group of objects.

Setting .Current property with an object handle points MetaDraw to a specified object or objects and makes that object or set of objects current (ready to be acted upon)

Usage

[Visual Basic]
Public Property Current As BTIS.MetaDraw.ObjHandle
[C#]
public BTIS.MetaDraw.ObjHandle Current {get; set;}

Remarks

All object-related properties apply to the .Current object (which may be one graphic element or a reference to a group of elements). You should assign a specific object handle or one of the predefined scope constants (see table below) to this property before performing any manipulations with the object(s).

After AddObject or CreateLink methods call, the Current property is automatically set to the handle of the graphic element just added.

After RemoveObject method or function call, the Current property is automatically reset to ObjHandle.Null, if an object handle was specified for deleting. * The value of the Current property will not be changed if a reserved handle had been specified as a function or method parameter or in the Current property.

MetaDraw automatically sets the Current property to a proper value before firing an event.

There is a set of reserved object handles have special meaning determined by the BTIS.MetaDraw.ObjHandle enumeration.

BTIS.MetaDraw.ObjHandle enumeration

This table defines the set of reserved object handles which have special meaning in MetaDraw.xe "Enumerations:ObjHandle"

XE "ObjHandle Enumeration"

xe "BTIS.MetaDraw.ObjHandle"
	Constant
	Value
	Description

	Nullxe "BTIS.MetaDraw.ObjHandle.Null"
	0
	No object is current – Current may return this value after an action has failed

	Containerxe "BTIS.MetaDraw.ObjHandle.Container"
	1
	Points to the current open container

	Selectedxe "BTIS.MetaDraw.ObjHandle.Selected"
	2
	Points to the set of all selected objects

	SelAttrxe "BTIS.MetaDraw.ObjHandle.SelAttr"
	3
	Points to the set of all selected objects and global MetaDraw object’s attributes for getting/setting attribute operations

	Defaultxe "BTIS.MetaDraw.ObjHandle.Default"
	4
	Used to set default attributes.
Attributes set while .Current = ObjHandle.Default will be automatically applied when creating any new objects.

	CurrAttrxe "BTIS.MetaDraw.ObjHandle.CurrAttr"
	4
	(same as ObjHandle.Default - for backward compatibility)

	MainContainerxe "BTIS.MetaDraw.ObjHandle.MainContainer"
	5
	Points to the Main Container (the overall picture – but not including the background)

The handles, ObjHandle.SellAttr and ObjHandle.Default are valid only for getting/setting attributes of an object (like LineColor, Text, BackStyle, DrawMode). ObjHandle.Default can be used to change default object attributes (text styles, font styles, colors, line width, link attributes, shadows, …) prior to creation of new graphic objects.

When the Current property is ObjHandle.SellAttr, an action of setting attributes will set the corresponding attribute for the global MetaDraw object (default attributes) as well as for all selected objects.

When the Current property is set to ObjHandle.SellAttr and an action of reading an attribute property has failed (for example, the user tries to read the FillColor property for selected objects and the selected objects have different colors) MetaDraw returns the default value for this attribute.

Data Type

BTIS.MetaDraw.ObjHandle

See also

Changing object’s attributes, Object Handles

DoubleClick Eventxe "Events:DoubleClick"

XE "DoubleClick Event"

xe "BTIS.MetaDraw.MetaDraw.DoubleClick"
Description

This standard event occurs when the user double-clicks a mouse button over a MetaDraw control.

Syntax

[Visual Basic]
Public Event DoubleClick As EventHandler

[C#]

public event EventHandler DoubleClick;

See also

DoubleClick event in the .NET Framework Class Library Reference

DrawMode Propertyxe "Properties:DrawMode"

XE "DrawMode Property"

xe "BTIS.MetaDraw.MetaDraw.DrawMode"
Description

The DrawMode property specifies the way in which an object’s attributes (pen, brush or characters) are combined with the colors already on the display surface. The DrawMode property can accept one of the 16 standard modes of the Windows SetROP2() function.

Usage

[Visual Basic]
Public Property DrawMode As BTIS.MetaDraw.DrawMode
[C#]
public BTIS.MetaDraw.DrawMode DrawMode {get; set;}

Settings

The DrawMode property settings are determined by the BTIS.MetaDraw.DrawMode enumeration.

DrawMode enumerationxe "Enumerations:DrawMode"

XE "DrawMode Enumeration"

xe "BTIS.MetaDraw.DrawMode"
	Constant
	Value
	Formula
	Calculate

	Defaultxe "BTIS.MetaDraw.DrawMode.Default"
	0
	
	Default

	Blacknessxe "BTIS.MetaDraw.DrawMode.Blackness"
	1
	0
	Blackness

	NotMergePenxe "BTIS.MetaDraw.DrawMode.NotMergePen"
	2
	~(PaD)
	Not Merge Pen

	MaskNotPenxe "BTIS.MetaDraw.DrawMode.MaskNotPen"
	3
	(~P)oD
	Mask Not Pen

	NotCopyPenxe "BTIS.MetaDraw.DrawMode.NotCopyPen"
	4
	~P
	Not Copy Pen

	MaskPenNotxe "BTIS.MetaDraw.DrawMode.MaskPenNot"
	5
	Pa(~D)
	Mask Pen Not

	Invertxe "BTIS.MetaDraw.DrawMode.Invert"
	6
	~D
	Invert

	XorPenxe "BTIS.MetaDraw.DrawMode.XorPen"
	7
	PxD
	Xor Pen

	NotMaskPenxe "BTIS.MetaDraw.DrawMode.NotMaskPen"
	8
	~(PaD)
	Not Mask Pen

	MaskPenxe "BTIS.MetaDraw.DrawMode.MaskPen"
	9
	PaD
	Mask Pen

	NotXorPenxe "BTIS.MetaDraw.DrawMode.NotXorPen"
	10
	~(PxD)
	Not Xor Pen

	Nopxe "BTIS.MetaDraw.DrawMode.Nop"
	11
	D
	Nop

	MergeNotPenxe "BTIS.MetaDraw.DrawMode.MergeNotPen"
	12
	(~P)oD
	Merge Not Pen

	CopyPenxe "BTIS.MetaDraw.DrawMode.CopyPen"
	13
	P
	Copy Pen

	MergePenNotxe "BTIS.MetaDraw.DrawMode.MergePenNot"
	14
	Po(~D)
	Merge Pen Not

	MergePenxe "BTIS.MetaDraw.DrawMode.MergePen"
	15
	PoD
	Merge Pen

	Whitenessxe "BTIS.MetaDraw.DrawMode.Whiteness"
	16
	1
	Whiteness

Remarks

The Formula column of the above list contains the expression of the bitwise logical operation to be performed on the pen and the pixels of the destination DC. ‘D’ means the destination DC, ‘P’ means the pen, ‘a, x, o, ~’ - logical operators ‘and, xor, or, not’ accordingly. For example, ‘(~P)oD’ means

Result = (not Pen) or Dest

	Note:
	Objects are displayed according to their stacking order, so all operations are performed from the bottom-most object to the topmost one.

Data Type

BTIS.MetaDraw.DrawMode
See also

Object stacking order, Changing object’s attributes, Windows API function SetROP2().

EditFlags Propertyxe "Properties:EditFlags"

XE "EditFlags Property"

xe "BTIS.MetaDraw.MetaDraw.EditFlags"
Description

This property determines which mouse actions are available to the end-user when the EditMode property is set to EditMode.Select.

Usage

[Visual Basic]
Public Property EditFlags As BTIS.MetaDraw.EditFlags
[C#]
public BTIS.MetaDraw.EditFlags EditFlags {get; set;}

Settings

The EditFlags property is a collection of 1-bit flags. It may be set by OR’g the desired Flags from the values determined by the BTIS.MetaDraw.EditFlags enumeration.

EditFlags enumerationxe "Enumerations:EditFlags"

XE "EditFlags Enumeration"

xe "BTIS.MetaDraw.EditFlags"
	Constant
	Value
	Description

	Nonexe "BTIS.MetaDraw.EditFlags.None"
	0
	Nothing

	Selectxe "BTIS.MetaDraw.EditFlags.Select"
	1
	If this bit is set, a Left mouse button click selects an object.

	SelShiftxe "BTIS.MetaDraw.EditFlags.SelShift"
	2
	If this bit is set, a Left mouse button click while holding the SHIFT key toggles the selection status of underlying object. This allows the end-user to select multiple objects.

	SelGroupxe "BTIS.MetaDraw.EditFlags.SelGroup"
	4
	If this bit is set, then all objects located inside the selection rectangle will be marked as “selected.”

	DrawSceletonxe "BTIS.MetaDraw.EditFlags.DrawSceleton"
	8
	Determines how an object will be drawn while it is being dragged. If this bit is set, only the outline of the moving object will be drawn. Otherwise the whole object will be drawn while mouse is dragging.

	Movexe "BTIS.MetaDraw.EditFlags.Move"
	16
	If this bit is set, Object(s) can be moved by the end-user dragging on them with the left mouse button.

	Resizexe "BTIS.MetaDraw.EditFlags.Resize"
	32
	If this bit is set, an end-user can resize an object by dragging one of the border markers using the mouse.

	Openxe "BTIS.MetaDraw.EditFlags.Open"
	64
	If this bit is set, a double-click of the left mouse button opens an underlying object (container, text, or Poly Object.) for editing / manipulation.

	KeepRatioxe "BTIS.MetaDraw.EditFlags.KeepRatio"
	128
	If this bit is set, MetaDraw will try to keep the aspect ratio of an object as it is being resized by a user dragging on its corner marker.

	KeepObjectxe "BTIS.MetaDraw.EditFlags.KeepObject"
	256
	When this bit is set, the object’s aspect ratio will only be kept for complex objects (container, pictures and bitmaps). Otherwise, with KeepRatio bit set MetaDraw keeps the ratio for all objects. This flag is ignored if KeepRatio is not set.

	EditShapexe "BTIS.MetaDraw.EditFlags.EditShape"
	512
	 If this bit is set selecting Arc, Sector, Chord or RoundRectangle will display yellow markers for end-user to edit shapes

	DontScrollxe "BTIS.MetaDraw.EditFlags.DontScroll"
	1024
	When this bit is set the picture is not scrolled when moving an object. Otherwise dragging an image element beyond the client window will cause MetaDraw to scroll

	PolyFreeHandxe "BTIS.MetaDraw.EditFlags.PolyFreeHand"
	2048
	Determines polygons and polylines drawing method. When the bit is set each click of mouse draws a straight segment, and a double-click completes the shape.
When NOT set lifting the mouse completes the drawing of the shape - use <Shift> key to draw line sections of polygon.

* For Freehand drawing as with pen and paper turn OFF this bit.

	AutoLinkxe "BTIS.MetaDraw.EditFlags.AutoLink"
	4096
	Determines whether link connection points are calculated automatically (when flag is set) or link points to fixed point relative to the center of the corresponding object (when flag is cleared). When this flag is not set the link connection point is determined by position of mouse click when link creation was started or ended.

	FreeLinkxe "BTIS.MetaDraw.EditFlags.FreeLink"
	8192
	Determines whether it is possible to draw a link that is connects to an object on only one end. When this flag is set link can start from an object and point to no object. If this flag is dropped such a link is not allowed and it will be removed.

	NoNullLinkxe "BTIS.MetaDraw.EditFlags.NoNullLink"
	16384
	When this flag is set (default) link cannot be created if it does not point to at least one object. When it is dropped such a link can be drawn by user, but it is replaced with the corresponding DimLine object

	Allxe "BTIS.MetaDraw.EditFlags.All"
	-1
	All listed flags are set.

Remarks

By default all flags are set in this property.

Flags SelShift and SelGroup should be set only with the Select flag.

The KeepObject flag is ignored when KeepRatio is not set.

Data Type

BTIS.MetaDraw.EditFlags

Example

' Turn on auto scrolling in response to user dragging of objects,
' and turn on Freehand mode

MetaDraw.EditFlags = MetaDraw.EditFlags _
And Not (EditFlags.DontScroll Or EditFlags.PolyFreeHand)

See also

Editing objects, EditMode property.

EditMode Propertyxe "Properties:EditMode"

XE "EditMode Property"

xe "BTIS.MetaDraw.MetaDraw.EditMode"
Description

The EditMode property determines the effect of mouse actions in the MetaDraw control window.

Usage

[Visual Basic]
Public Property EditMode As BTIS.MetaDraw.EditMode
[C#]
public BTIS.MetaDraw.EditMode EditMode {get; set;}

Settings

The EditMode property settings are determined by the BTIS.MetaDraw.EditMode enumeration.

EditMode enumerationxe "Enumerations:EditMode"

XE "EditMode Enumeration"

xe "BTIS.MetaDraw.EditMode"
	Constant
	Value
	Description

	Viewxe "BTIS.MetaDraw.EditMode.View"
	0
	No mouse edit action

	Linexe "BTIS.MetaDraw.EditMode.Line"
	1
	Add line mode

	Rectanglexe "BTIS.MetaDraw.EditMode.Rectangle"
	2
	Add rectangle mode

	RoundRectxe "BTIS.MetaDraw.EditMode.RoundRect"
	3
	Add rounded rectangle mode

	Ellipsexe "BTIS.MetaDraw.EditMode.Ellipse"
	4
	Add ellipse mode

	Arcxe "BTIS.MetaDraw.EditMode.Arc"
	5
	Add arc mode

	Piexe "BTIS.MetaDraw.EditMode.Pie"
	6
	Add pie mode

	Chordxe "BTIS.MetaDraw.EditMode.Chord"
	7
	Add chord mode

	Polylinexe "BTIS.MetaDraw.EditMode.Polyline"
	8
	Add polyline mode

	Polygonxe "BTIS.MetaDraw.EditMode.Polygon"
	9
	Add polygon mode

	Textxe "BTIS.MetaDraw.EditMode.Text"
	10
	Add text mode

	Selectxe "BTIS.MetaDraw.EditMode.Select"
	11
	Select and Edit object(s) mode

	Imagexe "BTIS.MetaDraw.EditMode.Image"
	12
	Add image mode

	Rotatexe "BTIS.MetaDraw.EditMode.Rotate"
	13
	Mouse Drags and Rotates objects

	Bezierxe "BTIS.MetaDraw.EditMode.Bezier"
	14
	Add Bezier curve mode

	DimLinexe "BTIS.MetaDraw.EditMode.DimLine"
	22
	Add dimension line mode

	LinkLinexe "BTIS.MetaDraw.EditMode.LinkLine"
	23
	Add/Draw Link Lines between other elements

	Zoomxe "BTIS.MetaDraw.EditMode.Zoom"
	24
	Zoom / UnZoom by clicking

	LinkPolyxe "BTIS.MetaDraw.EditMode.LinkPoly"
	25
	Create segmented link between other elements

Example

MetaDraw.EditMode = EditMode.Select

Remarks

Newly created objects will be assigned default attributes (such as color, line style or font name). Defaults may be set before creation by setting the .Current property to ObjHandle.Default and then setting the desired atrribute properties.

The .Current property will be automatically set to the value of the handle pointing to the new object immediately upon creation of the object.

The Change event will be triggered with a parameter value of ChangeType.Added when the user begins to draw the new shape and again with a parameter value of ChangeType.Completed when the drawing of the new object is completed.

The mouse cursor within the MetaDraw control box has a specific appearance for each edit mode. In the view mode (EditMode.View value), the mouse is the standard arrow cursor or that cursor specified by the MousePointer property.

In Selection/Edit mode (EditMode.Select) the end-user can select, move or resize objects using the mouse. Any or all of the editing actions can be disabled by appropriately setting the EditFlags property.

In View mode (EditMode.View), no edit action is performed, but events dependent upon the Hotspots, EventMask properties will be triggered.

In Rotate mode (EditMode.Rotate) users may rotate objects by dragging corner markers.

In Arc, Chord, and Pie edit modes (EditMode.Arc, EditMode.Chord, EditMode.Pie) the user will be able to create initial objects having a 90(span (¼ ellipse). The object can then be further edited for the desired angular extent after double clicking on the object in the editing mode EditMode.Select.

In Link Edit Mode (EditMode.LinkLine or EditMode.LinkPoly) users can click on one object and then another to draw a link between the objects. The link may then be edited by double clicking on the link in editing mode EditMode.Select, or in EditMode.LinkLine mode if the object is programmatically opened using .ObjOpened = True

In Zoom edit mode (EditMode.Zoom) user can zoom in on some portion of the image by drawing the bounding rectangle of the zoom region. Simple clicking will also zoom the image by a fixed percentage. Holding the <CTRL> key while clicking in this mode will unzoom (shrink) the image.

Refer to the EditFlags .PolyFreeHand bit for control over the drawing method when drawing Polylines and Polygons

Data Type

BTIS.MetaDraw.EditMode

See also

Objects selecting, Objects editing, Add object using mouse, EditFlags property

EventMask Propertyxe "Properties:EventMask"

XE "EventMask Property"

xe "BTIS.MetaDraw.MetaDraw.EventMask"
Description

This property determines which events can be triggered.

Usage

[Visual Basic]
Public Property EventMask As BTIS.MetaDraw.EventMasks

[C#]
public BTIS.MetaDraw.EventMasks EventMask {get; set;}

Settings

The EventMask property can be a combination of the following values determined by the BTIS.MetaDraw.EventMasks enumeration.

EventMasks enumerationxe "Enumerations:EventMasks"

XE "EventMasks Enumeration"

xe "BTIS.MetaDraw.EventMasks"
	Constant
	Value
	Description

	Nonexe "BTIS.MetaDraw.EventMasks.None"
	0
	Nothing

	HitObjectxe "BTIS.MetaDraw.EventMasks.HitObject"
	1
	Enable HitObject Event.

	OnHotspotxe "BTIS.MetaDraw.EventMasks.OnHotspot"
	2
	Enable OnHotSpot Event.

	Selectxe "BTIS.MetaDraw.EventMasks.Select"
	16
	Invoke Change event when object(s) selection is changed.

	ObjectAddedxe "BTIS.MetaDraw.EventMasks.ObjectAdded"
	32
	Invoke Change event when new object is added.

	ObjectMovedxe "BTIS.MetaDraw.EventMasks.ObjectMoved"
	64
	Invoke Change event when an object is moved.

	ObjectResizedxe "BTIS.MetaDraw.EventMasks.ObjectResized"
	128
	Invoke Change event when a marker is moved.

	ObjectOpenxe "BTIS.MetaDraw.EventMasks.ObjectOpen"
	256
	Invoke Change event when an object or a container is opened.

	ObjectChangedxe "BTIS.MetaDraw.EventMasks.ObjectChanged"
	512
	Invoke Change event when an object’s attribute is moved.

	ObjectDeletedxe "BTIS.MetaDraw.EventMasks.ObjectDeleted"
	1024
	Invoke Change event when an object is deleted.

	ObjectGroupedxe "BTIS.MetaDraw.EventMasks.ObjectGrouped"
	2048
	Invoke Change event when objects are grouped.

	ObjectUngroupedxe "BTIS.MetaDraw.EventMasks.ObjectUngrouped"
	4096
	Invoke Change event when a container is ungrouped.

	ObjectRotatedxe "BTIS.MetaDraw.EventMasks.ObjectRotated"
	8192
	Invoke Change event when an object is rotated.

	ObjectCompletedxe "BTIS.MetaDraw.EventMasks.ObjectCompleted"
	16384
	Invoke Change event when object adding is completed.

	ObjectEditedxe "BTIS.MetaDraw.EventMasks.ObjectEdited"
	32768
	Invoke Change event when an object is edited.

	ObjectCanceledxe "BTIS.MetaDraw.EventMasks.ObjectCanceled"
	65536
	Invoke Change event when object adding is canceled.

	Allxe "BTIS.MetaDraw.EventMasks.All"
	-1
	All the events will be triggered

Example

' Add triggering of Change Event with Object Added trigger

' Disable triggering of HitObjectEvent

' Leave other events as already set

MetaDraw.EventMask = MetaDraw.EventMask _

 AND NOT EventMasks.Select _

 OR EventMasks.ObjectAdded

Remarks

The Change event can be disabled by clearing all the bits (setting EventFlags.None)

By default, all events are enabled. You can disable any unneeded events for better performance.

Data Type

BTIS.MetaDraw.EventFlags

See also

Change event, HitObject event, OnHotSpot event.

Export Eventxe "Events:Export"

XE "Export Event"

xe "Printing"

xe "BTIS.MetaDraw.MetaDraw.Export"
Description

This event occurs when objects are exported to another device context (after setting the ExportDC method).

Syntax

[Visual Basic]
Public Event Export As ExportEventHandler
Public Delegate Sub ExportEventHandler (ByVal sender As Object, ByVal e ExportEventArgs)

[C#]
public event ExportEventHandler Export;
public delegate void ExportEventHandler (object sender, ExportEventArgs e);

Remarks

The event will be called repeatedly, once at the start of exporting, once for each object being exported, and once to indicate completion.

Before triggering this event, MetaDraw resets the Current property to the handle of object currently being exported.

This event is triggered before exporting an object, making it possible to skip this object (do not export it) by the ExportEventArgs.State parameter to ExportState.Skip before exit. The user can interrupt exporting (printing) all objects by assigning the ExportEventArgs.State parameter to ExportState.Finish.

ExportEventArgs Event objectxe "Event objects:ExportEventArgs"

XE "ExportEventArgs Event object"

xe "BTIS.MetaDraw.ExportEventArgs"
Determines the phase of objects exporting process.

Syntax

[Visual Basic]
Public Class ExportEventArgs Inherits EventArgs

[C#]
public class ExportEventArgs : EventArgs

Properties

This object has the following properties that provide information specific to the event:

	Property
	Type
	Description

	Number
	Integer
	This parameter depends on the value of the State property:

· If State is ExportState.Process, this parameter specifies the number of the currently exported object (number for first object is 1).

· If State parameter is ExportState.Start or ExportState.Finish this parameter specifies the total number of exported objects.

	State
	BTIS.MetaDraw.ExportState
	Determines the phase of exporting. Values of this parameter are determined by the BTIS.MetaDraw.ExportState enumeration.

ExportState enumerationxe "Enumerations:ExportState"

XE "ExportState Enumeration"

xe "BTIS.MetaDraw.ExportState"
	Constant
	Value
	Description

	Finishxe "BTIS.MetaDraw.ExportState.Finish"
	0
	Finish the exporting of objects.

	Startxe "BTIS.MetaDraw.ExportState.Start"
	1
	Starting the exporting of objects.

	Processxe "BTIS.MetaDraw.ExportState.Process"
	2
	Now Exporting for current object.

	Skipxe "BTIS.MetaDraw.ExportState.Skip"
	3
	Skip the current object.

See also

Printing with MetaDraw, ExportDC property, ExportLeft, ExportTop properties, ExportWidth, ExportHeight properties.

ExportDC Methodxe "Methods:ExportDC"

XE "ExportDC Method"

xe "Printing"

xe "BTIS.MetaDraw.MetaDraw.ExportDC"
Description [image: image62.wmf]
Calling the ExportDC method initiates Printing on a specified device context or printer.

Syntax

[Visual Basic]
Public Sub ExportDC (hDC As IntPtr)
Public Sub ExportDC (graphics As System.Drawing.Graphics)

[C#]
public void ExportDC (IntPtr hDC);
public void ExportDC (System.Drawing.Graphics graphics);

Values

Setting ExportDC to a specified Device Context causes MetaDraw to begin printing to that device context (for example a specified printer or even to an on-screen device context such as a picturebox).

A setting of -1 as hDC parameter instructs MetaDraw to prints to the default printer as one page.
A setting of -2 as hDC parameter instructs MetaDraw to present a Printer Selection dialog, allowing the end-user to choose the printer, the page settings and the number of copies. When the "OK" button is pressed, MetaDraw prints the specified number of pages on the chosen printer.

Remarks

After the assignment of a valid device context, the MetaDraw control starts drawing objects on specified device context (given by hDC or graphics parameter).

Objects which should be exported are specified in the Current property. Typically the .Current property would be first set to one of the reserved handles ObjHandle.MainContainer (to print the entire image), or ObjHandle.Selected (to print selected objects)

The MetaDraw control always fires the Export event with the ExportEventArgs.State property set to ExportState.Start (before exporting), ExportState.Process for each exported object and ExportState.Finish after exporting the last object. You can interrupt exporting at any time by setting the ExportEventArgs.State property to ExportState.Finish in the Export event.

The ExportLeft, ExportTop and ExportWidth, ExportHeight properties determine the size and position of the exporting picture if ExportOptions includes the ExportFlags.ExportRect flag

The ClipLeft, ClipTop, ClipWidth, ClipHeight properties specify the clipping area of the exported picture if ExportOptions includes the ExportFlags.Clipping flag

When setting ExportDC to either -1 or -2, MetaDraw initializes the printer, prints, and then ends the print job directly. In this case there is no need to initialize the printer or to call EndDOC statements or any other code. The limitation is that in this case MetaDraw can only print a single copy, and it is not possible to add additional information to the page (from print statements outside of MetaDraw) before it is ejected.

Additional printing options may be specified with the ExportOptions property.

Example

Example 1
' Print the entire picture to printer chosen by end user
 MDraw.Current = ObjHandle.MainContainer
 MDraw.ExportDC = -2 ' Chosen printer
Example 2
' This code prints only selected objects to the form background
Sub cmdPrint_Click()
 With MetaDraw1
 .ExportOptions = ExportFlags.ExportRect
 .ExportLeft = 720 ' a half of inch from left
 .ExportTop = 720 ' a half of inch from top
 .ExportWidth = 2880 ' Two inches in width
 .ExportHeight = 0 ' Calculate automatically
 .Current = ObjHandle.Selected
 .ExportDC(Me.CreateGraphics())
 End With
End Sub
Data Type

IntPtr (The Device Context)
System.Drawing.Graphics
See also

Printing with MetaDraw,
ClipTop, ClipLeft, ClipHeight, ClipWidth properties.
Export event, ExportLeft, ExportTop properties,
ExportWidth, ExportHeight properties, ExportOptions property

ExportLeft, ExportTop, ExportHeight, ExportWidth Propertiesxe "Properties:ExportLeft"

xe "Properties:ExportTop"

XE "ExportLeft Property"

XE "ExportTop Property"

xe "Properties:ExportHeight"

xe "Properties:ExportWidth"

XE "ExportHeight Property"

XE "ExportWidth Property"

xe "Printing"

xe "BTIS.MetaDraw.MetaDraw.ExportLeft"

xe "BTIS.MetaDraw.MetaDraw.ExportTop"

xe "BTIS.MetaDraw.MetaDraw.ExportHeight"

xe "BTIS.MetaDraw.MetaDraw.ExportWidth"
Description [image: image63.wmf]
These properties determine the placement (margin offsets) and the width and height of the exported (printed) picture.

The ExportHeight, ExportWidth properties are also used to determine the dimensions of a bitmap which will be returned by Picture, PictureImage and PictureClip properties when the PictureType property is set to PictureType.Bitmap.

Usage

[Visual Basic]
Public Property ExportLeft As Integer
Public Property ExportTop As Integer
Public Property ExportWidth As Integer
Public Property ExportHeight As Integer

[C#]
public int ExportLeft {get; set;}
public int ExportTop {get; set;}
public int ExportWidth {get; set;}
public int ExportHeight {get; set;}

Remarks

If one of the ExportHeight, ExportWidth properties is set to zero before exporting, MetaDraw will automatically calculate the appropriate value for that property in order to preserve the picture aspect ratio.

These properties may be specified in either twips or pixels, as determined by the ExportFlags.Pixels flag of the ExportOptions property.

These properties are applied only when the ExportOptions property contains the flag bit ExportFlags.ExportRect. Otherwise the physical picture size is used to calculate the destination rectangle.

Data Type

Integer
See also

Printing with MetaDraw, ExportDC method

ExportOptions Property xe "Properties:ExportOptions"

XE "ExportOptions Property"

xe "Printing"

xe "Cropping"

xe "BTIS.MetaDraw.MetaDraw.ExportOptions"
Description [image: image64.wmf]
This property specifies how to export objects when printing (ExportDC method), or when reading the Picture and PictureClip properties.

Usage

[Visual Basic]
Public Property ExportOptions As BTIS.MetaDraw.ExportFlags
[C#]
public BTIS.MetaDraw.ExportFlags ExportOptions {get; set;}

Remarks

This is a bitwise value based on a combination of the BTIS.MetaDraw.ExportFlags flags.

ExportFlags enumerationxe "Enumerations:ExportFlags"

XE "ExportFlags Enumeration"

xe "BTIS.MetaDraw.ExportFlags"
	Constant
	Value
	Description

	Defaultxe "BTIS.MetaDraw.ExportFlags.Default"
	0x000
	Use defaults.

	Clippingxe "BTIS.MetaDraw.ExportFlags.Clipping"
	0x001
	Crop the exported image. Only that portion of the picture within the rectangle specified by the ClipLeft, ClipTop, ClipWidth, ClipHeight properties will be exported. By default, the entire picture is exported.

	ExportRectxe "BTIS.MetaDraw.ExportFlags.ExportRect"
	0x002
	Specify coordinates of destination rectangle within export graphics. The ExportLeft, ExportTop, ExportWidth, ExportHeight properties determine the destination rectangle. By default, offset is always (0,0) and size is calculated according to physical picture sizes.

	Zoomxe "BTIS.MetaDraw.ExportFlags.Zoom"
	0x008
	Determines whether the clipping region is taken from the visible picture (in its zoomed state) or from the original picture.

	Transparentxe "BTIS.MetaDraw.ExportFlags.Transparent"
	0x010
	Do NOT include picture background when exporting objects.

	Pixelsxe "BTIS.MetaDraw.ExportFlags.Pixels"
	0x020
	The ExportLeft, ExportTop, ExportWidth, ExportHeight are specified in device pixels. By default, they are in twips.

	Bitmapxe "BTIS.MetaDraw.ExportFlags.Bitmap"
	0x080
	Draw objects on a temporary bitmap and then draw it on the specified DC. Setting this flag may be useful when the printer driver does not support some kind of raster operations. (for example some printers do not support transparent colors in a bitmap)

	Visiblexe "BTIS.MetaDraw.ExportFlags.Visible"
	0x100
	Include only objects whose Visible flag is set. If this flag is NOT set MetaDraw exports ALL objects regardless of visibility

	Backgroundxe "BTIS.MetaDraw.ExportFlags.Background"
	0x200
	The background determined by the BackPicture and GradientStyle properties is included as part of any exported pictures (using ExportDC, SavePicture or SaveToClipboard methods).

(This setting is Ignored if ExportFlags.Transparent is Set.)

Data Type

BTIS.MetaDraw.ExportFlags

See also

PrintSize properties: ExportLeft, ExportTop, ExportWidth, ExportHeight
Clipping rectangle properties: ClipLeft, ClipTop, ClipWidth, ClipHeight
ExportDC method

FillColor Propertyxe "Properties:FillColor"

XE "FillColor Property"

xe "BTIS.MetaDraw.MetaDraw.FillColor"
Description

Determines the color used to fill in objects

Usage

[Visual Basic]
Public Property FillColor As System.Drawing.Color

[C#]
public System.Drawing.Color FillColor {get; set;}

Remarks

The FillColor property determines a color for solid fill style or for hatch lines in hatched styles.

This color is also used for the background of the FillPattern picture (metafiles or icon) when it is converted to a brush (bitmap).

The BackColor property determines the color of areas between lines fill style

The FillColor is also used as a starting color for gradients applied to objects other than text objects.
	Note:
	FillColor is ignored when the FillStyle property is set to FillStyle.Pattern or FillStyle.Transparent.

Data Type

System.Drawing.Color

See also

Changing object’s attributes, BackStyle property, BackColor property

FillPattern Propertyxe "Properties:FillPattern"

XE "FillPattern Property"

xe "BTIS.MetaDraw.MetaDraw.FillPattern"
Description

Specifies the picture (bitmap) to be used as a fill pattern for an object.

Usage

[Visual Basic]
Public Property FillPattern As BTIS.MetaDraw.MDPicture
[C#]
public BTIS.MetaDraw.MDPicture FillPattern {get; set;}

Remarks

The fill pattern may be set by directly setting the property, or by calling the LoadPicture method with a second parameter of PictureSource.FillPattern.

If the assigned picture is not a Bitmap, it will be converted to a proper bitmap brush, and the value specified in the FillColor property will be used to fill the background of this picture.

Under Windows NT platform, the entire picture can be used as a brush pattern.

MetaDraw is also able to stretch a given picture to a 8x8 brush pattern (instead of using its top-left corner), if the PictureFlags.StretchBrush flag is set in the PictureOptions property.

After the FillPattern property is assigned successfully, the FillStyle property is set to FillStyle.Pattern and the FillColor property is ignored.

The typical bitmap for FillPattern should look like a piece of a large regular picture (e.g. a brick in the wall ‘[image: image65.png]

’).

	Note:
	If FillStyle is not FillStyle.Pattern (e.g. was set to FillStyle.Solid), then FillPattern returns NULL picture.

Data Type

BTIS.MetaDraw.MDPicture
Example

' Create a Rectangle with a fill pattern
.AddObject(ObjectTypes.Rectangle, 100, 100, 2000, 2000)
.LoadPicture("c:\tmp\pat.bmp", PictureSource.FillPattern)
' the FillStyle property is automatically set by setting the fill Pattern

See also

Changing object’s attributes, FillStyle property, PictureOptions property

FillStyle Propertyxe "Properties:FillStyle"

XE "FillStyle Property"

xe "BTIS.MetaDraw.MetaDraw.FillStyle"
Description

Determines the method used to fill object.

Usage

[Visual Basic]
Public Property FillStyle As BTIS.MetaDraw.FillStyle

[C#]
public BTIS.MetaDraw.FillStyle FillStyle {get; set;}

Settings

The FillStyle property settings are determined by the BTIS.MetaDraw.FillStyle enumeration.

FillStyle enumerationxe "Enumerations:FillStyle"

XE "FillStyle Enumeration"

xe "BTIS.MetaDraw.FillStyle"
	Constant
	Value
	View

	Solidxe "BTIS.MetaDraw.FillStyle.Solid"
	0
	Solid

	Transparentxe "BTIS.MetaDraw.FillStyle.Transparent"
	1
	transparent

	Horizontalxe "BTIS.MetaDraw.FillStyle.Horizontal"
	2
	=====

	Verticalxe "BTIS.MetaDraw.FillStyle.Vertical"
	3
	| | | | |

	FDiagonalxe "BTIS.MetaDraw.FillStyle.FDiagonal"
	4
	\ \ \ \ \

	BDiagonalxe "BTIS.MetaDraw.FillStyle.BDiagonal"
	5
	/ / / / /

	Crossxe "BTIS.MetaDraw.FillStyle.Cross"
	6
	+++++

	DiagCrossxe "BTIS.MetaDraw.FillStyle.DiagCross"
	7
	xxxxx

	Patternxe "BTIS.MetaDraw.FillStyle.Pattern"
	8
	use bitmap pattern

	Gradientxe "BTIS.MetaDraw.FillStyle.Gradient"
	9
	Gradient Fill

The following additional FillStyle property settings may be combined (Logical OR) with the above:

	Constant
	Value
	Description

	Filledxe "BTIS.MetaDraw.FillStyle.Filled"
	256
	Fill open curve.

When applied to an Arc, a Bezier or a Polyline object, the non-closed figure will be filled. When applied to a Text (Standard or Bound) text object, a frame will be drawn around the text and the background will be filled.

This flag can also be used to draw a frame around text objects (Standard or Bounded) and fill the background.

Remarks

The FillStyle.Gradient applies a horizontal color gradient to the object(s) specified by .Current property. Objects can have only horizontal gradients. For text objects the gradient changes from TextColor to BackColor. For all other objects, the gradient changes from FillColor to BackColor.

When FillStyle is FillStyle.Transparent, the FillColor property is ignored.

The FillStyle property can’t be set to FillStyle.Pattern, because a bitmap pattern must be specified. The property is set to FillStyle.Pattern automatically when the FillPattern property changes.

When the LinkFlags property for a link is set to LinkFlags.Filled the FillStyle property determines the fill style of the link terminators.

Example:

' Create a Rectangle with a fill pattern
.AddObject(ObjectTypes.Rectangle, 100, 100, 300, 200)
.LoadPicture("c:\tmp\pat.bmp", PictureSource.FillPattern)
' FillStyle is automatically set by setting the fill Pattern

' Create an Arc with a Diagonal Fill
.AddObject(ObjectTypes.Arc, 100, 100, 200, 200)
.FillStyle = FillStyle.DiagCross Or FillStyle.Filled
.FillColor = Color.Blue

' Create a Rectangle and a Text object with Gradient Fill
With MetaDraw1
 .AddObject(ObjectTypes.Rectangle, 10, 10, 600, 100)
 .FillColor = Color.Red
 .BackColor = Color.Green
 .FillStyle = FillStyle.Gradient
 .AddObject(ObjectTypes.Text, 10, 110, 10, 110)
 .FontSize = 25
 .Text = "G R A D I E N T"
 .TextColor = Color.Blue
 .BackColor = Color.Yellow
 .FillStyle = FillStyle.Gradient
End With

Data Type

BTIS.MetaDraw.FillStyle
See also

Changing object’s attributes, BackStyle property, BackColor property, FillColor property, FillPattern property

FindObjectTags Method xe "Methods:FindObjectTags"

XE "FindObjectTags Method"

xe "BTIS.MetaDraw.MetaDraw.FindObjectTags"
Description
This method finds objects that have the specified tags, and characteristics.

Syntax

[Visual Basic]
Public Function FindObjectTags (tagName As String, tagValue As Object, options As BTIS.MetaDraw.FindTagsFlags) As Integer

[C#]
public int FindObjectTags (string tagName, object tagValue, BTIS.MetaDraw.FindTagsFlags options);

Parameters

The FindObjectTags method uses these arguments:

	Argument
	Description

	tagName
	Name of the tag to find, or ”*” string

	tagValue
	Tag value to find

	options
	Combination of searching flags.

The Options parameters can be a combination (OR) of the BTIS.MetaDraw.FindTagsFlags values.

FindTagsFlags enumerationxe "Enumerations:FindTagsFlags"

XE "FindTagsFlags Enumeration"

xe "BTIS.MetaDraw.FindTagsFlags"
	Constant
	Value
	Description

	Cursorxe "BTIS.MetaDraw.FindTagsFlags.Cursor"
	0x0001
	Find only objects which have the “Cursor” status flag.

	HotSpotxe "BTIS.MetaDraw.FindTagsFlags.HotSpot"
	0x0002
	Find only objects which have the “HotSpot” status flag.

	Clickxe "BTIS.MetaDraw.FindTagsFlags.Click"
	0x0004
	Find only objects which have the “Click” status flag.

	WebURLxe "BTIS.MetaDraw.FindTagsFlags.WebURL"
	0x0008
	Find only objects which have the “WebURL” status flag.

	Selectedxe "BTIS.MetaDraw.FindTagsFlags.Selected"
	0x0010
	Search only among selected objects.

	Visiblexe "BTIS.MetaDraw.FindTagsFlags.Visible"
	0x0020
	Search only among visible objects.

	Firstxe "BTIS.MetaDraw.FindTagsFlags.First"
	0x0000
	Start searching from the first object in container.

	Nextxe "BTIS.MetaDraw.FindTagsFlags.Next"
	0x0100
	Find next object meeting search criteria. The Current property determines an object from which the search begins.

	Currentxe "BTIS.MetaDraw.FindTagsFlags.Current"
	0x0200
	The function attempts to start searching at the object whose handle specified in the Current property. The Current property may contain a reserved handle:

	
	
	Constant
	Meaning

	
	
	Selected
	looking in all selected objects.

	
	
	Container
	Start from the first object in the open container.

	
	
	MainContainer
	Start from main container (used together with FindTagsFlags.Recurse flag to search for all picture’s objects).

	Recursexe "BTIS.MetaDraw.FindTagsFlags.Recurse"
	0x0400
	Use recursive search (looking in containers also).

	Invertxe "BTIS.MetaDraw.FindTagsFlags.Invert"
	0x0800
	Invert the condition.

	Exactxe "BTIS.MetaDraw.FindTagsFlags.Exact"
	0x1000
	Compare full strings.

	MatchCasexe "BTIS.MetaDraw.FindTagsFlags.MatchCase"
	0x2000
	Use case-sensitive search for strings.

	Selectxe "BTIS.MetaDraw.FindTagsFlags.Select"
	0x4000
	Select all found objects.

	Deselectxe "BTIS.MetaDraw.FindTagsFlags.Deselect"
	0x4010
	Deselect all found objects.

Returns

The number of objects found by the search.
Zero, if there are no objects matching the specified criteria: tagName and tagValue.

Upon return the Current property is set by MetaDraw to either:

· ObjHandle.Null if no object is found at the specified location.

· The handle of an object matching the search criteria.

· ObjHandle.Selected if multiple objects have been found and selected (when the FindTagsFlags.Select, FindTagsFlags.Deselect or FindTagsFlags.Inver flag was specified in the Options parameter).

Remarks

The function searches for objects (within the specified container) which have a tag specified by the tagName parameter and where the value for the named tag matches the tagValue parameter. Specifying a tagName parameter of ”*” instructs MetaDraw to ignore tag names and use only the tagValue value as a search criteria. Specifying an empty string as tagValue parameter instructs MetaDraw to ignore tags completely – this may be useful in searching for objects based on their status flags.

Normally the function finds first object whose tag matches the specified values (FindTagsFlags.First value is specified in the Options parameter). To find the next matching object, include FindTagsFlags.Next in the Options flag parameter. In this case, the Current property must contain the valid object handle (e.g. handle of previously found object).

If the FindTagsFlags.Invert flag is specified in the Options parameter, the searching condition will be inverted. That is the function searches for objects whose tags don’t match the tagValue parameter.

The function should be called only once when specifying FindTagsFlags.Select or FindTagsFlags.Deselect flags in the Options parameter. In that case, all matching objects will be selected (or deselected) and the method returns the number of matching objects.

Example

' Example 1:
' The following sample finds all objects, which have a tag
' named “URL” and set to “http://www.bennet-tec.com” and
' changes the HotSpot flag for them.
With MetaDraw1
 Dim Opt As FindTagsFlags
 Opt = FindTagsFlags.First
 While .FindObjectTags("URL", "http://www.bennet-tec.com", Opt) > 0
 ' The Current property contains handle of the last found object
 .ObjHotSpot = ObjHotSpot.All
 .ObjURL = .ObjTags("URL")
 Opt = FindTagsFlags.Next ' Find next object
 End While
End With
' Example 2:
' Find the first object whose OS_WEBURL flag is set
MetaDraw1.FindObjectTags("*", "", _
 FindTagsFlags.First Or FindTagsFlags.WebURL)

See Also

How to search for objects, ObjTag, ObjTags properties

FontBold, FontItalic, FontStrikethru, FontUnderline Propertiesxe "Properties:FontBold"

xe "Properties:FontItalic"

xe "Properties:FontStrikethru"

xe "Properties:FontUnderline"

XE "FontBold Property"

XE "FontItalic Property"

XE "FontStrikethru Property"

XE "FontUnderline Property"

xe "BTIS.MetaDraw.MetaDraw.FontItalic"

xe "BTIS.MetaDraw.MetaDraw.FontBold"

xe "BTIS.MetaDraw.MetaDraw.FontStrikethru"

xe "BTIS.MetaDraw.MetaDraw.FontUnderline"
Description

Determines the font style for a text object in the following formats: FontBold, FontItalic, FontStrikethru, FontUnderline.

Usage

[Visual Basic]
Public Property FontBold As Boolean
Public Property FontItalic As Boolean
Public Property FontStrikethru As Boolean
Public Property FontUnderline As Boolean
[C#]
public bool FontBold {get; set;}
public bool FontItalic {get; set;}
public bool FontStrikethru {get; set;}
public bool FontUnderline {get; set;}

Settings

The settings for these properties are:

	Setting
	Description

	True
	Turns on the formatting in corresponding style.

	False
	Turns off the formatting in corresponding style.

Remarks

These properties apply only to text objects.

Data Type

Boolean

See also

Changing object’s attributes, FontName property, FontStyle property

FontCharSet Propertyxe "Properties:FontCharSet"

XE "FontCharSet Property"

xe "BTIS.MetaDraw.MetaDraw.FontCharSet"
Description

This property sets or returns a value determining the character set used to display text in the corresponding text object.

Usage

[Visual Basic]
Public Property FontCharSet As Integer

[C#]
public int FontCharSet {get; set;}

Settings

The FontCharSet property usual settings are:

	Constant
	Value

	ANSI_CHARSET
	0

	DEFAULT_CHARSET
	1

	SYMBOL_CHARSET
	2

	SHIFTJIS_CHARSET
	128

	HANGEUL_CHARSET
	129

	HANGUL_CHARSET
	129

	GB2312_CHARSET
	134

	CHINESEBIG5_CHARSET
	136

	OEM_CHARSET
	255

	JOHAB_CHARSET
	130

	HEBREW_CHARSET
	177

	ARABIC_CHARSET
	178

	GREEK_CHARSET
	161

	TURKISH_CHARSET
	162

	VIETNAMESE_CHARSET
	163

	THAI_CHARSET
	222

	EASTEUROPE_CHARSET
	238

	RUSSIAN_CHARSET
	204

	MAC_CHARSET
	77

	BALTIC_CHARSET
	186

Other values may depend on fonts exist in the operating system.

Remarks

The FontCharSet property applies a character set to the object(s) whose handle is specified in .Current property.

The default for this property is determined by the system.

	Note:
	Not all fonts support character sets. If the font does not support the specified character set this setting will be ignored without any errors.

Example

With MetaDraw
 ' Add text object with characters in Russian
 .AddObject(ObjectTypes.Text, 100, 100, 100, 100)

 .FontName = "Arial"

 .FontCharSet = 204

 .Text = "Да здравствует MetaDraw!!!"
End With
See Also

Font… properties, Text Property

FontName Propertyxe "Properties:FontName"

XE "FontName Property"

xe "BTIS.MetaDraw.MetaDraw.FontName"
Description

Determines the font name for a text object.

Usage

[Visual Basic]
Public Property FontName As String

[C#]
public string FontName {get; set;}

Remarks

This property applies only to text objects.

Data Type

String
See also

Changing object’s attributes, FontSize property

FontOrient Propertyxe "Properties:FontOrient"

XE "FontOrient Property"

xe "BTIS.MetaDraw.MetaDraw.FontOrient"
Description

Specifies the angle, in degrees, between the base line of the characters of the text object and the x-axis.

Usage

[Visual Basic]
Public Property FontOrient As Single

[C#]
public float FontOrient {get; set;}

Remarks

The angle is generally measured counterclockwise from the x-axis. The user can assign negative values to this property. In this case, the angle is measured in a clockwise direction.

For text objects which have been associated as LinkLabels on Lines, Links, or Dimension Lines, the ObjStatus.LabelAngle flag in the ObjStatus property determines whether the angle is relative to the x-axis, or to the angle of the associated Line, Link or Dimension Line

The point around that the text object is rotated depends on the current text alignments that are determined by the TextHAlign and TextHAlign properties.

The FontOrient applies only to TrueType fonts. If the font specified by the FontName property is not TrueType, then this property is ignored and text is painted horizontally.

This property is affected only for a text object.

This property always returns a normalized value in the following range: from ‑180 upto 180.

	Note:
	The ObjRotation property can be used instead of this property.

Data Type

Single
See also

Changing object’s attributes, FontName property, ObjRotation property

FontSize Propertyxe "Properties:FontSize"

XE "FontSize Property"

xe "BTIS.MetaDraw.MetaDraw.FontSize"
Description

Determines the font size for a text object.

Usage

[Visual Basic]
Public Property FontSize As Single

[C#]
public float FontSize {get; set;}

Remarks

This property is measured in points (1/72 inch) if the value supplied is positive. If the value is negative, then its absolute value is used to specify the font size in picture logical coordinates.

This property applies only to text objects.

Data Type

Single
See also

Changing object’s attributes, TextStyle property, FontName property, FontWidth property

FontWidth Propertyxe "Properties:FontWidth"

XE "FontWidth Property"

xe "BTIS.MetaDraw.MetaDraw.FontWidth"
Description

The FontWidth property sets the fixed width for Text objects so it is independent of the Height of the text as specified by FontSize property

Usage

[Visual Basic]
Public Property FontWidth As Single

[C#]
public float FontWidth {get; set;}

Remarks

Setting the FontWidth property to 0 tells that the width of text characters will be calculated automatically according to Font aspect ratio.

Data Type

Single
See also

FontName property, FontSize property

GradientStyle Propertyxe "Properties:GradientStyle"

XE "GradientStyle Property"

xe "Background"

xe "BTIS.MetaDraw.MetaDraw.GradientStyle"
Description

This property specifies a gradient style to show gradually changing color in the background of the control.

Usage

[Visual Basic]
Public Property GradientStyle As BTIS.MetaDraw.GradientStyle

[C#]
public BTIS.MetaDraw.GradientStyle GradientStyle {get; set;}

Remarks

The initial color (left, top or center) is determined by the PicBackColor property. Right, bottom and edges colors are determined by the PicBorderColor property.

For non-zero GradientStyle settings, MetaDraw fills all client area of the MetaDraw window independently of visible picture sizes.

The GradientStyle property settings are determined by the BTIS.MetaDraw.GradientStyle enumeration.

GradientStyle enumerationxe "Enumerations:GradientStyle"

XE "GradientStyle Enumeration"

xe "BTIS.MetaDraw.GradientStyle"
	Constant
	Description

	Nonexe "BTIS.MetaDraw.GradientStyle.None"
	(Default) Do not paint gradient background.

	LeftToRightxe "BTIS.MetaDraw.GradientStyle.LeftToRight"
	Colors gradually change from the left to right.

	TopToBottomxe "BTIS.MetaDraw.GradientStyle.TopToBottom"
	Colors gradually change from the top to the bottom.

	CenterHorzxe "BTIS.MetaDraw.GradientStyle.CenterHorz"
	Colors gradually change horizontally from the center.

	CenterVertxe "BTIS.MetaDraw.GradientStyle.CenterVert"
	Colors gradually change vertically from the center.

Data Type

BTIS.MetaDraw.GradientStyle

See also

PicBackGolor, PicBorderColor properties

GridAlign Propertyxe "Properties:GridAlign"

XE "GridAlign Property"

xe "BTIS.MetaDraw.MetaDraw.GridAlign"
Description

This property determines whether or not to align object coordinates to the grid while editing.

Usage

[Visual Basic]
Public Property GridAlign As Boolean

[C#]
public bool GridAlign {get; set;}

Remarks

The grid allows the user to align and place objects precisely with the mouse.

When GridAlign is True and you create, move or resize any objects or containers the mouse coordinates will snap to the nearest grid marker.

	Note:
	Alignment to grid can be toggled (enable or disabled) by pressing the CTRL key while dragging the mouse.

Data Type

Boolean

See also

Add object using mouse, GridWidth, GridHeight properties, EditMode property

GridColor Propertyxe "Properties:GridColor"

XE "GridColor Property"

xe "BTIS.MetaDraw.MetaDraw.GridColor"
Description
This property specifies the color of the alignment grid within MetaDraw.

Syntax

[Visual Basic]
Public Property GridColor As System.Drawing.Color

[C#]
public System.Drawing.Color GridColor {get; set;}

See also

GridHeight, GridWidth, GridStyle, GridAlign properties

GridHeight, GridWidth Propertiesxe "Properties:GridHeight"

xe "Properties:GridWidth"

XE "GridHeight Property"

XE "GridWidth Property"

xe "BTIS.MetaDraw.MetaDraw.GridHeight"

xe "BTIS.MetaDraw.MetaDraw.GridWidth"
Description

These properties determine the distance between grid markers in picture logical units.

Usage

[Visual Basic]
Public Property GridHeight As Integer
Public Property GridWidth As Integer

[C#]
public int GridHeight {get; set;}
public int GridWidth {get; set;}

Remarks

The GridWidth and GridHeight properties determine the distance between two neighboring grid markers. They can be assigned values from 1 to PicWidth (x) or PicHeight (y).

	Note:
	The grid may not be displayed when GridWidth or GridHeight is set to such values that the visible distance between two neighboring grid markers less than the size of a resize handle specified by the MarkerSize property.

Data Type

Long
See also

Add object using mouse, GridAlign, GridShow, GridColor, GridStyle properties

GridShow Propertyxe "Properties:GridShow"

XE "GridShow Property"

xe "BTIS.MetaDraw.MetaDraw.GridShow"
Description

This property determines whether or not to display a grid of regularly spaced points for aligning graphic objects in editing modes.

Usage

[Visual Basic]
Public Property GridShow As BTIS.MetaDraw.GridView
[C#]
public BTIS.MetaDraw.GridView GridHeight {get; set;}

Settings

The GridView property settings are determined by the BTIS.MetaDraw.GridView enumeration.

GridView enumerationxe "Enumerations:GridView"

XE "GridView Enumeration"

xe "BTIS.MetaDraw.GridView"
	Constant
	Description

	Nonexe "BTIS.MetaDraw.GridView.None"
	No grid is shown

	Underxe "BTIS.MetaDraw.GridView.Under"
	The grid is shown beneath all other objects and will not be seen behind opaque objects

	Abovexe "BTIS.MetaDraw.GridView.Above"
	The grid is shown above all objects and will not be hidden by opaque objects.

Remarks

The grid is a set of regularly spaced points, one black screen pixel each. The GridWidth and GridHeight properties specify the distance between these points.

The grid is shown only if the distance between two neighboring grid markers is greater than 5 screen pixels on the x-axis or y-axis. Along with GridWidth and GridHeight, the screen distance between grid points depends upon the current scaling mode (PicXSize, PicYSize and PicWidth, PicHeight properties).

The grid is never shown regardless of the ShowGrid setting if the EditMode property is set to EditMode.View.

Data Type

BTIS.MetaDraw.GridView
See also

Adding an object using mouse, GridAlign, GridShow, GridColor, GridStyle properties

GridStyle Propertyxe "Properties:GridStyle"

XE "GridStyle Property"

xe "BTIS.MetaDraw.MetaDraw.GridStyle"
Description
This property controls the presentation style of a Grid within MetaDraw.

Usage

[Visual Basic]
Public Property GridStyle As BTIS.MetaDraw.GridStyle
[C#]
public BTIS.MetaDraw.GridStyle GridStyle {get; set;}

Settings

The GridStyle property settings are determined by the BTIS.MetaDraw.GridStyle enumeration.

GridStyle enumerationxe "Enumerations:GridStyle"

XE "GridStyle Enumeration"

xe "BTIS.MetaDraw.GridStyle"
	Constant
	Display Mode

	Dotsxe "BTIS.MetaDraw.GridStyle.Dots"
	Only the dots at the grid points are shown

	Solidxe "BTIS.MetaDraw.GridStyle.Solid"
	The grid is drawn as solid lines

	Dottedxe "BTIS.MetaDraw.GridStyle.Dotted"
	The grid is drawn as dotted lines

	Dashedxe "BTIS.MetaDraw.GridStyle.Dashed"
	The grid is drawn as dashed lines

Data Type

BTIS.MetaDraw.GridStyle
See also

GridHeight, GridWidth, GridColor, GridAlign properties

HitObject, HitObjectDouble Eventsxe "Events:HitObject, HitObjectDouble"

XE "HitObject Event"

XE "HitObjectDouble Event"

xe "BTIS.MetaDraw.MetaDraw.HitObject"

xe "BTIS.MetaDraw.MetaDraw.HitObjectDouble"
Description

These events are triggered when the mouse is clicked upon a Hitable object

Syntax

[Visual Basic]
Public Event HitObject As HitObjectEventHandler
Public Event HitObjectDouble As HitObjectEventHandler
Public Delegate Sub HitObjectEventHandler (sender As Object, e HitObjectEventArgs)

Public Delegate Sub HitObjectEventHandler (sender As Object, e HitObjectEventArgs)

[C#]
public event HitObjectEventHandler HitObject;
public event HitObjectEventHandler HitObjectDouble;
public delegate void HitObjectEventHandler (object sender, HitObjectEventArgs e);
public delegate void HitObjectEventHandler (object sender, HitObjectEventArgs e);

Remarks

These events are triggered for Hitable objects when:

· The EditMode property is set to EditMode.View
· The left mouse button is clicked on or near the object border or on top of the object fill area (if FillStyle is not FillStyle.Transparent).

A Hittable object is an object for which the ObjHotSpot property includes the ObjHotSpot.Click flag (can trigger HitObject event) or the ObjHotSpot.DblClick flag (can trigger HitObjectDouble event).

When the HitObject or HitObjectDouble event is triggered, the .Current property contains handle of the topmost “hitable” object in object stacking order and any properties (such as .ObjTag) pertaining to that object may then be read.

To retrieve the Next object under the specified object at the given X/Y Mouse coordinates use the ObjectsHitTest method.

The Modifications property flag ModificationFlags.HitThrough determines how hotspots are recognized for containers and objects within containers. With this bit flag set, MetaDraw reacts to the hotspot status of individual objects under the mouse whether the objects are grouped in a container or not. When the ModificationFlags.HitThrough flag bit is clear, the hotspot status of objects within a container group are ignored and MetaDraw will react instead to the hotspot settings of the container object. Objects outside of a container are not affected by this Modifications flag setting.

The X, Y properties of the HitObjectEventArgs parameter contain mouse pointer coordinates in the MetaDraw client window in pixels.

HitObjectEventArgs Event objectxe "Event objects:HitObjectEventArgs"

XE "HitObjectEventArgs Event object"

xe "BTIS.MetaDraw.HitObjectEventArgs"
The HitObjectEventArgs parameter determines mouse pointer coordinates in the MetaDraw client window in pixels.

Syntax

[Visual Basic]
Public Class HitObjectEventArgs Inherits EventArgs

[C#]
public class HitObjectEventArgs : EventArgs

Properties

This object has the following properties that provide information specific to the event:

	Property
	Type
	Description

	X
	Integer
	X coordinate of the mouse pointer.

	Y
	Integer
	Y coordinate of the mouse pointer.

Example:

Private Sub MetaDraw1_HitObject(ByVal sender As Object, _
 ByVal e As BTIS.MetaDraw.HitObjectEventArgs) _
 Handles MetaDraw1.HitObject
 ' Read the Tag of the hit object and present
 ' some information or take some action
 MsgBox MetaDraw1.ObjTag
End Sub
See also

ObjStatus property, ObjHotSpot property, Current property

HitSensitivity Propertyxe "Properties:HitSensitivity"

XE "HitSensitivity Property"

xe "BTIS.MetaDraw.MetaDraw.HitSensitivity"
Description

This property determines the sensitivity or precision to be applied when clicking with the mouse, or when calling the ObjectsHitTests method.

Usage

[Visual Basic]
Public Property HitSensitivity As Integer
[C#]
public Integer HitSensitivity {get; set;}

Remarks

The default value for this property is 3 (pixels).

Setting the HitSensitivity to a larger value allows the user to select without being as precise when he clicks (for instance it is not necessary to click exactly on a one-pixel wide line to select it). Setting the HitSensitivity to a smaller value allows the user to more precisely control what he clicks on (useful when lines are very close together).

Data Type

Integer
See also

HotSpot property, HitObject event, ObjectsHitTests method

HotSpots Propertyxe "Properties:HotSpots"

XE "HotSpots Property"

xe "BTIS.MetaDraw.MetaDraw.HotSpots"
Description

This property determines whether MetaDraw changes the mouse cursor and triggers the OnHotSpot event when over a hotspot in EditMode = EditMode.View.

Usage

[Visual Basic]
Public Property HotSpots As Boolean
[C#]
public bool HotSpots {get; set;}

Settings

The HotSpots property settings are:

	Setting
	Description

	False
	Disable hotspots abilities.

	True
	Enable hotspots abilities. (Changing of the mouse pointer and triggering of the OnHotSpot event for Object's where ObjHotSpot is set.

Remarks

The actions specified by the ObjHotSpot property are enabled only in the MetaDraw view mode (when the EditMode property is set to EditMode.View).

The cursor is changed and the OnHotSpot event is triggered only when:

· The EditMode property is set to EditMode.View
· The HotSpots property is True
· The mouse is over an object with flags ObjHotSpot.HotSpot or ObjHotSpot.Cursor set in the ObjHotSpot property.

The Modifications property flag ModificationFlags.HitThrough determines how hotspots are recognized for containers and objects within containers. With this bit flag set, MetaDraw reacts to the hotspot status of individual objects under the mouse whether the objects are grouped in a container or not. When the ModificationFlags.HitThrough flag bit is clear, the hotspot status of objects within a container group are ignored and MetaDraw will react instead to the hotspot settings of the container object. Objects outside of a container are not affected by this Modifications flag setting.

Data Type

Boolean

See also

OnHotSpot event, ObjHotSpot property

LineColor Propertyxe "Properties:LineColor"

XE "LineColor Property"

xe "BTIS.MetaDraw.MetaDraw.LineColor"
Description

Determines the color of a line or of an object’s border.

Usage

[Visual Basic]
Public Property LineColor As System.Drawing.Color
[C#]
public System.Drawing.Color LineColor {get; set;}

Data Type

System.Drawing.Color
See also

Changing object’s attributes, LineStyle property

LineStyle Propertyxe "Properties:LineStyle"

XE "LineStyle Property"

xe "BTIS.MetaDraw.MetaDraw.LineStyle"
Description

Determines the line style for line and polyline objects or the border style for other objects.

Usage

[Visual Basic]
Public Property LineStyle As BTIS.MetaDraw.LineStyle
[C#]
public BTIS.MetaDraw.LineStyle LineStyle {get; set;}

Settings

The LineStyle property settings are determined by the BTIS.MetaDraw.LineStyle enumeration.

LineStyle enumerationxe "Enumerations:LineStyle"

XE "LineStyle Enumeration"

xe "BTIS.MetaDraw.LineStyle"
	Constant
	Value
	View

	Solidxe "BTIS.MetaDraw.LineStyle.Solid"
	0

	Dashxe "BTIS.MetaDraw.LineStyle.Dash"
	1
	_ _ _ _

	Dotxe "BTIS.MetaDraw.LineStyle.Dot"
	2

	DashDotxe "BTIS.MetaDraw.LineStyle.DashDot"
	3
	_ . _ . _

	DashDotDotxe "BTIS.MetaDraw.LineStyle.DashDotDot"
	4
	_ . . _ . . _

	Nullxe "BTIS.MetaDraw.LineStyle.Null"
	5
	Ignore border

	InsideFramexe "BTIS.MetaDraw.LineStyle.InsideFrame"
	6
	Inside Solid. The outer edge of the border is the outer edge of the object. Like LineStyle.Solid for line, polyline and polygon objects.

The following additional BTIS.MetaDraw.LineStyle enumeration settings may be combined (Logical OR) with the above:

	Constant
	Value
	View

	fClosedxe "BTIS.MetaDraw.LineStyle.fClosed"
	16
	When applied to a Bezier or Polyline object, closes the curve – connecting the starting and ending points.

	fEndCapSquarexe "BTIS.MetaDraw.LineStyle.fEndCapSquare"
	256
	Use square endings instead of rounded ones for lines and dotted/dashed border segments

	fEndCapFlatxe "BTIS.MetaDraw.LineStyle.fEndCapFlat"
	512
	The same as LineStyle.fCornerSquare but applied to line ends at the ending point

	fCornerBevelxe "BTIS.MetaDraw.LineStyle.fCornerBevel"
	4096
	Bevel corners of Rectangle borders & polyline/polygon segments corners

	fCornerSquarexe "BTIS.MetaDraw.LineStyle.fCornerSquare"
	8192
	Use square corners in rectangle borders & polyline/polygon segments corners

Remarks

If LineStyle is LineStyle.InsideFrame, the border is drawn inside the object’s boundaries (this value is valid only for ‘shape’ objects: rectangles, ellipse, sectors). If LineStyle is LineStyle.Solid, the border is centered around the object’s boundaries.

RESTRICTION - Flags LineStyle.fEndCapXXX and LineStyle.fEndCornerXXX settings work under Win NT, 2000, XP only, they are ignored in Win95, Win98 & WinMe.

RESTRICTION - Non-solid line styles are supported for visible width > 1 pixel only on Windows 2000 and XP. For older versions of Windows thick lines (visible width > 1 pixel) are drawn as SOLID. To guarantee that the line is non-solid, specify LineWidth = 0, which means a pixel width of 1 on a display of any resolution.
Data Type

BTIS.MetaDraw.LineStyle
See also

Changing object’s attributes, LineWidth property

LineWidth Propertyxe "Properties:LineWidth"

XE "LineWidth Property"

xe "BTIS.MetaDraw.MetaDraw.LineWidth"
Description

Determines the width of the line or the object border width.

Usage

[Visual Basic]
Public Property LineWidth As Single
[C#]
public float LineWidth {get; set;}

Remarks

The LineWidth property is measured in points (1/72 inch). You can specify the line width in logical picture units if you assign this property a negative value (the absolute value is taken as the width).

To get lines of minimal size on the given device (one pixel), use LineWidth = 0.

Data Type

Single
See also

Changing object’s attributes, LineStyle property

LinkColor Propertyxe "Properties:LinkColor"

XE "LinkColor Property"

xe "BTIS.MetaDraw.MetaDraw.LinkColor"
Description

Determines the color of link endings.

Usage

[Visual Basic]
Public Property LineColor (index As BTIS.MetaDraw.LinkIndex
) As System.Drawing.Color
[C#]
public System.Drawing.Color LineColor (BTIS.MetaDraw.LinkIndex
 index) {get; set;}

Remarks

The index parameter identifies which link ending is being described (determined by the BTIS.MetaDraw.LinkIndex
 enumeration). It is possible to change both starting and ending symbol colors at one time (LinkIndex.Both value).

Data Type

System.Drawing.Color
See also

Changing object’s attributes, LineStyle property

LinkIndex enumerationxe "Enumerations:LinkIndex"

XE "LinkIndex Enumeration"

xe "BTIS.MetaDraw.LinkIndex"
This enumeration determine the link endings the selected action will be applied to.

	Constant
	Value
	Description

	Startxe "BTIS.MetaDraw.LinkIndex.Start"
	0
	Starting link point

	Endxe "BTIS.MetaDraw.LinkIndex.End"
	1
	Ending link point

	Labelxe "BTIS.MetaDraw.LinkIndex.Label"
	2
	Link label

	Bothxe "BTIS.MetaDraw.LinkIndex.Both"
	3
	Both starting & ending points (for assignment)

	Centerxe "BTIS.MetaDraw.LinkIndex.Both"
	4
	Center Symbol

LinkFlags Property xe "Properties:LinkFlags"

XE "LinkFlags Property"

xe "Links"

xe "BTIS.MetaDraw.MetaDraw.LinkFlags"
Description [image: image66.wmf]
In combination with the LinkStyle property, determines how to draw link endings.

Usage

[Visual Basic]
Public Property LinkFlags (index As BTIS.MetaDraw.LinkIndex
) As BTIS.MetaDraw.LinkFlags

[C#]
public BTIS.MetaDraw.LinkFlags
 LinkFlags (BTIS.MetaDraw.LinkIndex
 index) {get; set;}

Remarks

The index parameter identifies which link ending is being described (determined by the BTIS.MetaDraw.LinkIndex
 enumeration).

The values assigned to this property can be a combination (OR) of flags determined by the BTIS.MetaDraw.LinkFlags
 enumeration.

LinkFlags enumerationxe "Enumerations:LinkFlags"

XE "LinkFlags Enumeration"

xe "BTIS.MetaDraw.LinkFlags"
	Constant
	Value
	Description

	Nonexe "BTIS.MetaDraw.LinkFlags.None"
	0
	If Set, the link termination is set short of the linked object.

	Shortxe "BTIS.MetaDraw.LinkFlags.Short"
	2
	If Set, the link termination is set short of the linked object.

	Filledxe "BTIS.MetaDraw.LinkFlags.Filled"
	4
	If Set, the FillStyle property setting of the link object determines the fill style of the link terminator, otherwise the link terminators are transparent.

	Invertedxe "BTIS.MetaDraw.LinkFlags.Inverted"
	8
	Determines the direction for arrow styles

Data Type

BTIS.MetaDraw.LinkFlags

See also

Changing object’s attributes, Current property

LinkLabel Propertyxe "Properties:LinkLabel"

XE "LinkLabel Property"

xe "Labels"

xe "Captions"

xe "BTIS.MetaDraw.MetaDraw.LinkLabel"
Description [image: image67.wmf]
Assigns or retrieves a text label to/from the Link, Line, or Dimension Line object whose handle is specified in the Current property.

Setting the LinkLabel with the handle of a text object associates that text object with the Link Label or Dimension Line and automatically moves the text object to the link, and continue to maintain the relative positioning when the line, link or dimension line is moved - for instance for a link if one of the linked objects is moved both the link line and the associated text will be moved automatically.

Reading the LinkLabel returns the handle of the associated text object.

Usage

[Visual Basic]
Public Property LinkLabel As BTIS.MetaDraw.ObjHandle

[C#]
public BTIS.MetaDraw.ObjHandle
 LinkFlags (BTIS.MetaDraw.LinkIndex
 index) {get; set;}

Remarks

The Current property must contain the handle of the link, line, or dimension line whose label is being assigned or retrieved.

Any text object can be assigned as a label (including multiline and boxed text). Text will be displayed in the middle of Link, Line or Dimension Line according to text object’s alignments.

Link label objects cannot be moved using mouse or the ObjSetBounds method. They are bound to the labeled object.

The ObjStatus.LabelAngle flag in the ObjStatus property determines whether the display angle of the text object is relative to the link line or to the parent container.

After associating a text object as a LinkLabel, the text object will be automatically deleted if the associated Line, Link or Dimension Line is deleted.

Example

' Example 1:
' The following code creates a link between selected objects
' and assigns to this link a text label.
With MetaDraw1
 Dim LabHnd As ObjHandle

 .AddObject(ObjectTypes.Text)

 .TextStyle = TextStyle.Multiline

 .TextVAlign = TextVAlign.Center

 .TextHAlign = TextHAlign.Center

 .Text = "Text label for a link"

 LabHnd = .Current ' Save label handle
 ' Assume that there are two selected object

 .CreateLink(ObjHandle.Selected, ObjHandle.Selected, 0)

 .LinkLabel = LabHnd ' Assign label
End With
' Example 2:
' The following code reads the text associated with a selected link
With MetaDraw1
 Dim LabHnd As ObjHandle
 LabHnd = .LinkLabel
 If LabHnd > ObjHandle.Valid Then
 .Current = LabHnd ' point to the link label object
 MsgBox("The text associated with this link is '" & .Text & "'")
 End If
End With
Data Type

BTIS.MetaDraw.ObjHandle

See also

CreateLink method, ObjStatus property,
Changing object’s attributes, How to create and manipulate diagram links
LinkLength, LinkWidth Propertiesxe "Properties:LinkLength"

xe "Properties:LinkWidth"

XE "LinkLength Property"

XE "LinkWidth property"

xe "Links"

xe "BTIS.MetaDraw.MetaDraw.LinkLength"

xe "BTIS.MetaDraw.MetaDraw.LinkWidth"
Description [image: image68.wmf]
Determines length and width of the link endings.

Usage

[Visual Basic]
Public Property LinkLength (index As BTIS.MetaDraw.LinkIndex
) As Single
Public Property LinkWidth (index As BTIS.MetaDraw.LinkIndex) As Single
[C#]
public Single LinkLength (BTIS.MetaDraw.LinkIndex index) {get; set;}
public Single LinkWidth (BTIS.MetaDraw.LinkIndex index) {get; set;}

Remarks

The assigned values for these properties are measured in points.

The index parameter identifies which link ending is being set or read and determined by the BTIS.MetaDraw.LinkIndex enumeration.

Data Type

Single
See also

Changing object’s attributes, Current property

LinkObject Propertyxe "Properties:LinkObject"

XE "LinkObject Property"

xe "BTIS.MetaDraw.MetaDraw.LinkObject"
Description [image: image69.wmf]
Determines which object a link ending is connected to.

Usage

[Visual Basic]
Public Property LinkObject (index As BTIS.MetaDraw.LinkIndex
) As BTIS.MetaDraw.ObjHandle

[C#]
public BTIS.MetaDraw.ObjHandle LinkObject (BTIS.MetaDraw.LinkIndex
 index) {get; set;}

Remarks

The index% parameter determines which link ending is described (determined by the BTIS.MetaDraw.LinkIndex
 enumeration). Only the following two values are valid for this property.

	Constant
	Value
	Description

	Startxe "BTIS.MetaDraw.LinkIndex.Start"
	0
	Object the link begins from

	Endxe "BTIS.MetaDraw.LinkIndex.End"
	1
	Object the link points to

Data Type

BTIS.MetaDraw.ObjHandle

See also

Changing object’s attributes, Current property

LinkStyle Propertyxe "Properties:LinkStyle"

xe "LinkStyle property"

xe "Links"

xe "BTIS.MetaDraw.MetaDraw.LinkStyle"
Description [image: image70.wmf]
Determines whether to draw arrow heads or other markers at the connection points and/or center of a link.

The LinkStyle property may also be applied to an Arc, Line, PolyLine or Dimension Line, but center markers can only be drawn on links and dimension lines (not arcs, lines, polylines)

Usage

[Visual Basic]
Public Property LinkStyle (index As BTIS.MetaDraw.LinkIndex
) As BTIS.MetaDraw.LinkStyle
[C#]
public BTIS.MetaDraw.LinkStyle LinkStyle (BTIS.MetaDraw.LinkIndex
 index) {get; set;}

Remarks

The index% parameter identifies which link ending is being set or read and determined by the BTIS.MetaDraw.LinkIndex
 enumeration.

Values which may be assigned to the LinkStyle property are determined by the BTIS.MetaDraw.LinkStyle enumeration.

LinkStyle enumerationxe "Enumerations:LinkStyle"

XE "LinkStyle Enumeration"

xe "BTIS.MetaDraw.LinkStyle"
	Constant
	Value
	Description

	Nonexe "BTIS.MetaDraw.LinkStyle.None"
	0
	no shape defined for the corresponding link endings.

	Rectanglexe "BTIS.MetaDraw.LinkStyle.Rectangle"
	1
	[image: image71.wmf]

	Diamondxe "BTIS.MetaDraw.LinkStyle.Diamond"
	2
	[image: image72.wmf]

	Octagonxe "BTIS.MetaDraw.LinkStyle.Octagon"
	3
	[image: image73.wmf]

	Ellipsexe "BTIS.MetaDraw.LinkStyle.Ellipse"
	4
	[image: image74.wmf]

	OpenArrowxe "BTIS.MetaDraw.LinkStyle.OpenArrow"
	5
	[image: image75.wmf]

	StealthArrowxe "BTIS.MetaDraw.LinkStyle.StealthArrow"
	6
	[image: image76.wmf]

	FillArrowxe "BTIS.MetaDraw.LinkStyle.FillArrow"
	7
	
[image: image77.wmf]

	PerLinexe "BTIS.MetaDraw.LinkStyle.PerLine"
	8
	
[image: image78.wmf]

	PerArrowxe "BTIS.MetaDraw.LinkStyle.PerArrow"
	9
	
[image: image79.wmf]

	Crossxe "BTIS.MetaDraw.LinkStyle.Cross"
	10
	––X––

Data Type

BTIS.MetaDraw.LinkStyle
Example

' create a link between selected objects and set characteristics
MetaDraw.CreateLink ObjHandle.Selected, ObjHandle.Selected, 0
MetaDraw.LinkStyle(LinkIndex.Both) = LinkStyle.PerLine
MetaDraw.LinkStyle (LinkIndex.Center) = LinkStyle.Cross

See Also

Changing object’s attributes, Current property

LoadData Methodxe "Methods:LoadData"

XE "LoadData Method"

xe "MetaDraw Control Data Format"

xe "BTIS.MetaDraw.MetaDraw.LoadData"
Description
Loads MetaDraw contents from a file.

Syntax

[Visual Basic]
Overloads Public Sub LoadData (source As Object)

[C#]
public void LoadData (object source);

Remarks

This function loads all MetaDraw data from the specified file (.MDR format) produced by previous call to the SaveData method, including control window sizes, attributes, all pictures, hotspot definitions, etc.

See Also

SaveData property

LoadPicture Methodxe "Methods:LoadPicture"

XE "LoadPicture Method"

xe "BTIS.MetaDraw.MetaDraw.LoadPicture"
Description [image: image80.wmf]
Loads a picture from a specified source (file, database, URL, byte array).

Syntax

[Visual Basic]
Overloads Public Function LoadPicture (source As Object, picDst As BTIS.MetaDraw.PictureSource) As Integer
Overloads Public Function LoadPicture (source As Object, picDst As BTIS.MetaDraw.PictureSource, picType As BTIS.MetaDraw.PictureType) As Integer

[C#]
public int LoadPicture (object source, BTIS.MetaDraw.PictureSource picDst, BTIS.MetaDraw.PictureType picType);

Parameters

The LoadPicture method uses these arguments:

	Parameter
	Description

	source
	Specifies a source from which picture will be loaded. This is an object and it may be one of the following types:

	
	Source
	Type

	
	String
	A local file name or an URL.

	
	Integer (IntPtr)
	A valid windows file handle

	
	Image
	An System.Drawing.Image object.

	
	Stream
	A Stream object that contains a picture.

	
	ByteArray
	A memory byte array that contains binary data of a picture

	
	See comments in remark section.

	picDst
	Determines destination to which the picture should be assigned. This parameter can take on the values determined by the BTIS.MetaDraw.PictureSource enumeration.

	picType
	Determines type of loaded picture. It may be one of the values determined by the BTIS.MetaDraw.PictureType enumeration. If this parameter is omitted MetaDraw will try to determine the file format automatically.

Returns

This method returns the type of loaded picture,
 or causes a trappable run-time error in case of problems.

Remarks

The LoadPicture method supports the following file formats: .BMP, .DIB, .WMF, .EMF, .DXF, .MDP (MetaDraw internal picture format) and other formats supported by the System.Drawing.Image object. DXF format is supported for developers with the DXF License option. For support of other file formats, Bennet-Tec can recommend the use of other 3rd party components which work with MetaDraw, or can take on paid support projects to add file formats to meet your needs.

Generally a picType setting of PictureType.Default is most appropriate, allowing MetaDraw to identify the image type automatically.

	Note:
	The File Extension portion of the file name does not affect how Metadraw loads an image. When loading a picture, you can force interpretation of the picture according to a desired format using the picType parameter, or allow MetaDraw to recognize the file type automatically according to the internal format (if picType is omitted or equal to PictureType.Default).

Specifying an empty string or unassigned variant as the first parameter of the LoadPicture method will clear the target picture.
Loading From an Image File

To load from an image file simply specify the FileName as the first parameter of the LoadPicture Method. It is also possible to pass an existent Image object (e.g. created by New operator or the FromFile method).

Loading from an Open Sequential File

Specifying a valid open windows file handle as the source parameter loads a picture from the current position of the opened file. This technique is useful to load pictures from picture libraries (several pictures saved in one file).

Loading from an Stream

Specifying an open Steram object as the source parameter loads a picture from the current position of the stream. This technique is useful to load pictures from picture libraries (several pictures saved in one strean sequentially).

Loading from a URL

The picture source file can be located on local disk or on a remote server. The LoadPicture method does not accept direct URL to a picture placed on a remote server. You may use the WebClient object to access such a resource. To load a picture given by a URL to MetaDraw first create the WebClient object, then open the corresponding Stream object that points to the URL and pass it into the LoadPicture method (as the first parameter).

Example

1) Insert picture from a file into the open container
MDraw.LoadPicture (”c:\tmp\testfile.bmp”, PictureSource.PictureClip)

2) Change fill pattern for the current object
MDraw.LoadPicture (”e:\Patterns\cross.bmp”, PictureSource.FillPattern)
3)Assign picture to the temporary image and
 then add that image into current open container
MDraw.LoadPicture (”e:\Pict\object.mdp”, _
 PictureSource.PictureImage, PictureType.MetaDraw)
MDraw.AddObject (ObjectTypes.Image, New Point(100, 100))
4) Load picture given by the URL from a remote server
Dim client As New WebClient(), stm As System.IO.Stream
stm = client.OpenRead("http://domain.com/Images/Image.gif")
MetaDraw1.LoadPicture(stm, BTIS.MetaDraw.PictureSource.Picture)

5) Load picture from a file to a Byte Array and
 then read byte array into MetaDraw
 Read data from file to Byte array
Dim oFS As FileStream = New FileStream("..\test.bmp", FileMode.Open)

Dim oBR As BinaryReader = New BinaryReader(oFS)

Dim iLength As Integer = oFS.Length()

Dim BArray() As Byte = oBR.ReadBytes(iLength)

MetaDraw1.LoadPicture(BArray, PictureSource.Picture, PictureType.Default)

See Also

Loading pictures, SavePicture method

LogicToClientX, LogicToClientY Propertiesxe "Properties:LogicToClient"

xe "Properties:LogicToClientY"

xe "Properties:LogicToClientX"

XE "LogicToClientX Property"

XE "LogicToClientY Property"

XE "LogicToClient Property"

xe "BTIS.MetaDraw.MetaDraw.LogicToClient"

xe "BTIS.MetaDraw.MetaDraw.LogicToClientX"

xe "BTIS.MetaDraw.MetaDraw.LogicToClientY"
Description [image: image81.wmf]
These methods provide a way to convert a point from logical picture coordinates of the picture in the MetaDraw control to the client area coordinates of the control (in pixels).

Usage

[Visual Basic]
Public Function LogicToClient (pos As Point) As Point
Public Function LogicToClientX (crd As Integer) As Integer
Public Function LogicToClientY (crd As Integer) As Integer

[C#]
public Point LogicToClient (Point pos)
public int LogicToClientX (int crd)
public int LogicToClientY (int crd)

Remarks

Refer to ClientToLogicX, ClientToLogicY properties for more information.

MarkerColor Propertyxe "Properties: MarkerColor"

XE "MarkerColor Property"

xe "BTIS.MetaDraw.MetaDraw.MarkerColor"
Description

The MarkerColor property determines the colors used by MetaDraw to set indication markers as used in indicating Selection, Polyline and Link Vertices and Link Connection Points.

Usage

[Visual Basic]
Public Property MarkerColor (index As BTIS.MetaDraw.MarkerType) As System.Drawing.Color
[C#]
public System.Drawing.Color MarkerColor (BTIS.MetaDraw.MarkerType index) {get; set;}

Parameters

The index parameter identifies which type of marker is being set or read.

The values for index are determined by the BTIS.MetaDraw.MarkerType enumeration and they are shown below along with the Marker Type each specifies and the default color for each marker type.

MarkerType enumerationxe "Enumerations:MarkerType"

XE "MarkerType Enumeration"

xe "BTIS.MetaDraw.MarkerType"
	Constant
	Marker Type
	Default Color

	Selectionxe "BTIS.MetaDraw.MarkerType.Selection"
	Single selection markers
	[image: image82.wmf]

	White

	MultiSelectionxe "BTIS.MetaDraw.MarkerType.MultiSelection"
	Multiple object selection markers
(used when multiple objects are selected)
	[image: image83.wmf]

	Light Gray

	Pointsxe "BTIS.MetaDraw.MarkerType.Points"
	Special object points
(used for polyline vertex points, sector endings, round rect ellipses, text alignment, rotation points)
	[image: image84.wmf]

	Yellow

	FixedLinkxe "BTIS.MetaDraw.MarkerType.FixedLink"
	Fixed link connection point.
This color is also used for rotation center marker.
	[image: image85.wmf]

	Green

	AutoLinkxe "BTIS.MetaDraw.MarkerType.AutoLink"
	Automatic link connection points
	[image: image86.wmf]

	Blue

Data Type

System.Drawing.Color
See also

MarkerSize property, Editing modes

MarkerSize Propertyxe "Properties:MarkerSize"

XE "MarkerSize Property"

xe "BTIS.MetaDraw.MetaDraw.MarkerSize"
Description

This property determines the size of selection markers in pixels (or in points in MetaDraw).

Usage

[Visual Basic]
Public Property MarkerSize As Single
[C#]
public Single MarkerSize {get; set;}

Remarks

If the MarkerSize property is set to zero, the markers would not be drawn, and mouse functions that use markers (like resize object) will not available.

MetaDraw allows users to set this property in points (when the value is positive). It is useful when you want to specify the marker size independent of the current screen resolution. You can specify the marker size in pixels if you assign this property a negative value (the absolute value is taken as the size).

The Setting of the MarkerSize also affects the minimum Grid spacing (Grids will not be show if the GridHeight or GridWidth is less than the MarkerSize in pixels)

	Note:
	Markers don’t change their sizes when the MetaDraw picture is zoomed.

Data Type

Single
See also

Editing objects

MetaDC Propertyxe "Properties:MetaDC"

XE "MetaDC Property"

xe "BTIS.MetaDraw.MetaDraw.MetaDC"
Description [image: image87.wmf]
This property specifies a handle provided by the Windows Environment to the device context of a MetaDraw picture box. You can use this handle as a parameter in Windows GDI function calls to paint (add) a new object to the picture.

Usage

[Visual Basic]
Public Property MetaDC As IntPtr
[C#]
public IntPtr MetaDC {get; set;}

Remarks

The first time this property is read, the MetaDraw control creates a DC for the metafile in memory and returns its handle. Each time thereafter, MetaDraw returns the handle of the previously created metafile DC. You can destroy a previously created DC assigning a value of False (0) to this property.

The first time a metafile DC is created , the origins and extents of the window associated with this device context are set to (PicLeft, PicTop) and (PicWidth, PicHeight) respectively. The mapping mode of DC is set to MM_ANISOTROPIC. In other words, the MetaDraw control adds the following metafile records to the metafile DC after it has been created:

SetMapMode(hDC, MM_ANISOTROPIC)
SetWindowOrg(hDC, .PicLeft, .PicTop)
SetWindowExt(hDC, .PicWidth, .PicHeight)

The MetaDraw control also sets the pen, brush and font according to the currently specified global attributes.

Setting this property to True finishes drawing and adds all the new objects to the open container. You can abort the drawing action by assigning False to this property.

	Note:
	This property gives you the unique ability to draw over the pictures of any of the VB-supported types - bitmaps, metafiles and icons. However, to use this possibility, you should understand how Windows GDI functions work. Remember that any technique involving the lower-level Windows APIs is more complex and less safe than the pure-VB programming!

Data Type

IntPtr (The Device Context handle)

See also

Creating a new object, ExportDC method

Modifications Propertyxe "Properties:Modifications"

XE "Modifications Property"

xe "BTIS.MetaDraw.MetaDraw.Modifications"
Description

This property is used to allow Bennet-Tec to make modifications to MetaDraw to resolve certain "problems" or enhance the behavior of MetaDraw without changing the behavior of existing (already compiled) MetaDraw applications.

Usage

[Visual Basic]
Public Property Modifications As Single
[C#]
public Single Modifications {get; set;}

Remarks

This is a BitFlag property - it should be set by OR combination of the flags determined by the BTIS.MetaDraw.ModificationFlags enumeration.

ModificationFlags enumerationxe "Enumerations:ModificationFlags"

XE "ModificationFlags Enumeration"

xe "BTIS.MetaDraw.ModificationFlags"
	Constant
	Value
	Description

	Defaultxe "BTIS.MetaDraw.ModificationFlags.Default"
	0
	Default behavior.

	DontUseBorderSizexe "BTIS.MetaDraw.ModificationFlags.DontUseBorderSize"
	1
	Don't use object's borders when calculating picture size while exporting/printing. E.g. you want to print one object with wide border, then if this flag is set MetaDraw will print only area determined by object's boundaries, so half of borders will be cut out. If this flag is not set the entire borders will be included in printed area.

	RealCoordsxe "BTIS.MetaDraw.ModificationFlags.RealCoords"
	2
	If this flag is set MetaDraw inserts new picture with its real physical size and the picture will not be squeezed even if its size is larger that current picture size. Otherwise inserted picture will be squeezed to fit to the current picture.

	NoTextClipxe "BTIS.MetaDraw.ModificationFlags.NoTextClip"
	4
	If this flag is set MetaDraw will not clip text on text object boundaries, so some characters can be outside the object boundaries.
Setting this bit resolves a problem with presentation of text having a Boxed Style - without this flag text is truncated at the last character

	GroupCurrentxe "BTIS.MetaDraw.ModificationFlags.GroupCurrent"
	8
	If this flag is set MetaDraw will group (Action = Actions.Group) objects whose handle is specified in the Current property. Otherwise all selected objects will be grouped. This allows you to create a new container with only one object inside.

	HitThroughxe "BTIS.MetaDraw.ModificationFlags.HitThrough"
	16
	If this flag is set MetaDraw will trigger OnHotSpot and HitObject even for objects grouped in containers. Otherwise these events will be triggered only if the whole container is a hotspot. This flag tells MetaDraw that all containers are transparent and the events will be triggered for non-container objects only.

	ResizeSinglexe "BTIS.MetaDraw.ModificationFlags.ResizeSingle"
	32
	If this flag is set, MetaDraw will prevent users from resizing objects that do not have the ObjStatus.Resizible flag set in the ObjStatus property. Normally (with this flag not set) users can resize any object.

Data Type

BTIS.MetaDraw.ModificationFlags
MouseCursor Propertyxe "Properties:MouseCursor"

XE "MouseCursor Property"

xe "BTIS.MetaDraw.MetaDraw.MouseCursor"
Description

Defines the mouse cursor shape when MousePointer property is MousePointer.User.

Usage

[Visual Basic]
Public Property MouseCursor As BTIS.MetaDraw.MDPicture
[C#]
public BTIS.MetaDraw.MDPicture MouseCursor {get; set;}

Remarks

Use this property to provide customized cursors.

When you load an icon from an .ICO file and then use it as a cursor, the icon image is converted to monochrome and the hot-spot is set to its default position at the middle of the image.

Data Type

BTIS.MetaDraw.MDPicture
See also

DragIcon property, MousePointer property

MousePointer Propertyxe "Properties:MousePointer"

XE "MousePointer Property"

xe "BTIS.MetaDraw.MetaDraw.MousePointer"
Description

Determines the type of mouse pointer, which will be used inside the MetaDraw control.

Usage

[Visual Basic]
Public Property MousePointer As BTIS.MetaDraw.MousePointer
[C#]
public BTIS.MetaDraw.MousePointer MousePointer {get; set;}

Settings

The MousePointer property settings are determined by the BTIS.MetaDraw.MousePointer enumeration.

MousePointer enumerationxe "Enumerations:MousePointer"

XE "MousePointer Enumeration"

xe "BTIS.MetaDraw.MousePointer"
	Constant
	Value
	Description

	Defaultxe "BTIS.MetaDraw.MousePointer.Default"
	0
	(default) Shape determined by the edit mode.

	Arrowxe "BTIS.MetaDraw.MousePointer.Arrow"
	1
	Arrow

	Crossxe "BTIS.MetaDraw.MousePointer.Cross"
	2
	Cross

	HBeamxe "BTIS.MetaDraw.MousePointer.HBeam"
	3
	I-Beam

	Iconxe "BTIS.MetaDraw.MousePointer.Icon"
	4
	Icon

	Sizexe "BTIS.MetaDraw.MousePointer.Size"
	5
	Size

	SizeNESWxe "BTIS.MetaDraw.MousePointer.SizeNESW"
	6
	Size NE SW

	SizeNSxe "BTIS.MetaDraw.MousePointer.SizeNS"
	7
	Size N S

	SizeNWSExe "BTIS.MetaDraw.MousePointer.SizeNWSE"
	8
	Size NW SE

	SizeWExe "BTIS.MetaDraw.MousePointer.SizeWE"
	9
	Size W E

	UpArrowxe "BTIS.MetaDraw.MousePointer.UpArrow"
	10
	Up arrow

	HourGlassxe "BTIS.MetaDraw.MousePointer.HourGlass"
	11
	Hourglass (wait)

	NoDropxe "BTIS.MetaDraw.MousePointer.NoDrop"
	12
	No drop

	Userxe "BTIS.MetaDraw.MousePointer.User"
	15
	The shape of the mouse pointer is determined by the MouseCursor property

	Movexe "BTIS.MetaDraw.MousePointer.Move"
	16
	Moving an object

	Scrollxe "BTIS.MetaDraw.MousePointer.Scroll"
	17
	Scrolling

	HotSpotxe "BTIS.MetaDraw.MousePointer.HotSpot"
	18
	HotSpot

	DrawPenxe "BTIS.MetaDraw.MousePointer.DrawPen"
	19
	Drawing freeform

	EdStartxe "BTIS.MetaDraw.MousePointer.EdStart"
	20…
	Shapes for different edit modes

	Editxe "BTIS.MetaDraw.MousePointer.Edit"
	31
	Object editing

	MoveObjxe "BTIS.MetaDraw.MousePointer.MoveObj"
	50
	Moving an object

	MovePointxe "BTIS.MetaDraw.MousePointer.MovePoint"
	51
	Moving an object point

	AddPointxe "BTIS.MetaDraw.MousePointer.AddPoint"
	52
	Rotating new object point

	RotateObjxe "BTIS.MetaDraw.MousePointer.RotateObj"
	53
	Rotating an object

Remarks

The MousePointer property controls the shape of the mouse pointer. This property is useful when you want to indicate changes in functionality as the mouse pointer passes over the control.

It is possible to change the shape of the mouse pointer to the cursor, that is shown for different edit modes, independent of the current edit mode. To do that, set the MousePointer property to
 EdStart (20) + EditMode.XXXX
where EditMode.XXXX the constant of the corresponding edit mode.

Example

’ This code sets the edit mode for MetaDraw to “view mode”,
’ but the cursor shape will be the same as for “edit mode”
MDraw.EditMode = EditMode.View

MDraw.MousePointer = MousePointer.EdStart + EditMode.Select

Data Type

BTIS.MetaDraw.MousePointer
See also

MouseCursor property

MoveObjects methodxe "Methods:MoveObjects"

XE "MoveObjects method"

xe "BTIS.MetaDraw.MetaDraw.MoveObjects"
Description

This method moves the object(s), referenced by the Current property, by specified offsets.

Syntax

[Visual Basic]
Overloads Public Sub MoveObjects (ofsX As Integer, ofsY As Integer, options As BTIS.MetaDraw.MoveFlags) As Point
Overloads Public Sub MoveObjects (offset As Point, options As BTIS.MetaDraw.MoveFlags) As Point
Overloads Public Sub MoveObjects (options As BTIS.MetaDraw.MoveFlags, ByRef ofs As Point) As Boolean

[C#]
public Point MoveObjects (int ofsX, int ofsY, BTIS.MetaDraw.MoveFlags options);
public Point MoveObjects (Point offset, BTIS.MetaDraw.MoveFlags options);
public bool MoveObjects (BTIS.MetaDraw.MoveFlags options, ref Point offset);

Parameters

The MoveObjects method uses these arguments:

	Argument
	Description

	ofsX, ofsY
	Specifies offset by which object(s) should be moved.

	offset
	Point that specifies offsets by which object(s) should be moved.

	options
	Specifies the type of coordinates for the ofsX and ofsY parameters.

Returns

A point that contains the maximum allowed value for the offsets.

True – Indicates object(s) can be moved (if options = MoveFlags.Check flag)
 or object(s) has (have) been moved (if options = MoveFlags.Set flag).
False – Indicates no object(s) can be moved.

Remarks

This method causes a run-time error in case of problems.

If the Current property points to several selected objects, all of them will be moved by the same offsets (specified in the ofsX, ofsY, offset parameters).

	Note:
	The offset variable MUST be initialized when it is passed by reference (third overload method) before calling this method.

The type of coordinates and other option flags can be specified in the options parameter and determined by the BTIS.MetaDraw.MoveFlags enumeration.

MoveFlags enumerationxe "Enumerations:MoveFlags"

XE "MoveFlags Enumeration"

xe "BTIS.MetaDraw.MoveFlags"
This enumeration determines measurement units for offsets in the MoveObjects method.

	Constant
	Value
	Description

	Logicalxe "BTIS.MetaDraw.MoveFlags.Logical"
	0
	Offsets are in global logical coordinates.

	LocalLogicxe "BTIS.MetaDraw.MoveFlags.LocalLogic"
	2
	Offsets are specified in local (container) logical units.

	Pixelsxe "BTIS.MetaDraw.MoveFlags.Pixels"
	4
	Offsets are specified in client pixels.

The type of coordinates can be combined with one of the following values:

	Constant
	Value
	Description

	Checkxe "BTIS.MetaDraw.MoveFlags.Check"
	512
	Check offsets while moving object. If this flag is specified, MetaDraw will check moved objects such as any part of objects should be inside the picture (inside the rectangle that is determined by the PicLeft, PicTop, PicWidth, PicHeight properties).

	Setxe "BTIS.MetaDraw.MoveFlags.Set"
	1024
	Set new boundaries after move object. If this flag is not set, objects are not really moved, just ofsX, ofsY, offset are filled with proper values.

	Changexe "BTIS.MetaDraw.MoveFlags.Change"
	1536
	Set new boundaries after move with checking (it is a combination of MoveFlags.Check and MoveFlags.Set flags).

Example

' This code inserts a picture from a file and moves
' it to the center of visible area.
Private Sub cmdInsert_Click()
 Dim ofsX As Integer, ofsY As Integer
 Dim cntX As Integer, cntY As Integer
 With MetaDraw1
 .PictureClip = New MDPicture("c:\tmp\1.wmf")
 ' The .Current property contains the handle of the inserted picture

 cntX = .ClientToLogicX(.ClientWidth(ClientFlags.Pixels) / 2)
 cntY = .ClientToLogicY(.ClientHeight(ClientFlags.Pixels) / 2)
 ' Calculate offsets
 ofsX = cntX - (.ObjLeft + .ObjRight) / 2
 ofsY = cntY - (.ObjTop + .ObjBottom) / 2
 ' Move the objects
 ofs = .MoveObjects(ofsX, ofsY, MoveFlags.Change)
 End With
End Sub

See Also

Logical coordinates, Current property, SetBounds method

ObjBottom, ObjLeft, ObjRight, ObjTop Propertiesxe "Properties:ObjBottom"

xe "Properties:ObjLeft"

xe "Properties:ObjRight"

xe "Properties:ObjTop"

XE "ObjBottom Property"

XE "ObjLeft Property"

XE "ObjRight Property"

XE "ObjTop Property"

xe "BTIS.MetaDraw.MetaDraw.ObjLeft"

xe "BTIS.MetaDraw.MetaDraw.ObjTop"

xe "BTIS.MetaDraw.MetaDraw.ObjRight"

xe "BTIS.MetaDraw.MetaDraw.ObjBottom"
Description [image: image88.wmf] [image: image89.wmf]
These properties determine the logical coordinates of the boundaries of an object or group of objects.

Usage

[Visual Basic]
Public Property ObjLeft As Integer
Public Property ObjRight As Integer
Public Property ObjTop As Integer
Public Property ObjBottom As Integer
[C#]
public int ObjLeft {get;}
public int ObjRight {get;}
public int ObjTop {get;}
public int ObjBottom {get;}

Remarks

These properties determine the bounding rectangle, in logical picture coordinates, for the object specified by the Current property. If Current specifies a group of objects (selected objects), the bounding rectangle is the smallest rectangle that contains all specified objects.

Use the MetaDraw control mouse editing tools to change object boundaries. Also, the user can receive the objects’ bounding rectangle using the ObjGetBounds() method.

Example

' This code draws a dotted frame around the selected objects
Private Sub cmdFrame_Click()
 ' Assume that some objects are selected at this point
 .Current = ObjHandle.Selected

 .AddObject(ObjectTypes.Rectangle, .ObjLeft, .ObjTop, .ObjRight, .ObjBottom)

 .FillStyle = FillStyle.Transparent

 .LineStyle = LineStyle.Dot
End Sub
Data Type

Integer
See also

Editing objects, Logical coordinates, ObjGetBounds() method, Current property

ObjCount Propertyxe "Properties:ObjCount"

XE "ObjCount Property"

xe "BTIS.MetaDraw.MetaDraw.ObjCount"
Description [image: image90.wmf] [image: image91.wmf]
This property returns the number of objects.

Usage

[Visual Basic]
Public Property ObjCount (index As BTIS.MetaDraw.ObjHandle) As Integer
[C#]
public int ObjCount (BTIS.MetaDraw.ObjHandle index) {get;}

Parameters

The parameter can be one of the following values which are determined by the BTIS.MetaDraw.ObjHandle enumeration.

	Constant
	Description

	Container
	Returns the number of objects within the open container.

	Selected
	Returns the number of selected objects.

	Current
	Use Current property for specified container for which Count function is applied.

	MainContainer
	Returns total number of objects in the picture including objects inside containers (containers are counted as a separate object).

Remarks

Except for the ObjHandle.MainContainer value, the ObjCount property returns the number of objects that are in the same object’s list (all containers are solid objects).

When index is equal to ObjHandle.Current and the Current property does not contain handle of a container this property returns 0.

Example

' This code shows a message box with the total number of objects
Private Sub cmdCount_Click()
 MsgBox("The total number of objects: " & _
 MetaDraw1.ObjCount(ObjHandle.MainContainer))
End Sub
Data Type

Integer
See also

Current property, ObjNumber property

ObjectHitMarker Methodxe "Methods:ObjectHitMarker"

xe "ObjectHitMarker method"

xe "Markers"

xe "BTIS.MetaDraw.MetaDraw.ObjectHitMarker"
Description

This method finds the first (topmost) selected object in currently opened container and finds out if any its markers lies at the specified coordinates.

Syntax

[Visual Basic]
Overloads Public Function ObjectHitMarker (posX As Integer, posY As Integer, flags As BTIS.MetaDraw.CoordType) As Integer
Overloads Public Function ObjectHitMarker (pos As Point, flags As BTIS.MetaDraw.CoordType) As Integer

[C#]
public int ObjectHitMarker (int posX, int posY, BTIS.MetaDraw.CoordType flags);
public int ObjectHitMarker (Point pos, BTIS.MetaDraw.CoordType flags);

Parameters

The ObjectHitMarker method has the following parameters:

	Argument
	Description

	posX, posY
pos
	Position of point or point to be tested.

	flags
	Specifies type of coordinates for posX, posY, pos, determined by the BTIS.MetaDraw.CoordType enumeration.

Returns

Returns the ordinal number of the marker at the specified position, or 0 if no markers lie at the specified point.

Remarks

Markers are numbered in the following order:

2 6 3
8 7
4 5 1

Any additional markers (e.g. starting and ending points of sector object) are numbered starting from 9.

This method tests markers of the first selected object only.

See Also

ObjectsHitTest method, ObjectsInRect method, ObjectsOverlappedBy method

ObjectsInRect Methodxe "Methods:ObjectsInRect"

XE "ObjectsInRect method"

xe "Overlap"

xe "BTIS.MetaDraw.MetaDraw.ObjectsInRect"
Description

The ObjectsInRect method finds all the objects in current open container that lie in the specified rectangle and returns the number of such objects.

Syntax

[Visual Basic]
Public Function ObjectsInRect (bounds As Rectangle, flags As BTIS.MetaDraw.InRectFlags) As Integer

[C#]
public int ObjectsInRect (Rectangle bounds, BTIS.MetaDraw.InRectFlags flags);

Parameters

The ObjectsInRect method has the following parameters:

	Argument
	Description

	bounds
	Coordinates of bounding rectangle.

	flags
	Specifies coordinates type and additional flags. This is a BitFlag value formed by OR combination from the values determined by the BTIS.MetaDraw.InRectFlags enumeration.

InRectFlags enumerationxe "Enumerations:InRectFlags"

XE "InRectFlags Enumeration"

xe "BTIS.MetaDraw.InRectFlags"
	Constant
	Value
	Description

	Logicalxe "BTIS.MetaDraw.InRectFlags.Logical"
	0
	Offsets are in global logical coordinates.

	Localxe "BTIS.MetaDraw.InRectFlags.Local"
	2
	Offsets are specified in local (container) logical units.

	Pixelsxe "BTIS.MetaDraw.InRectFlags.Pixels"
	4
	Offsets are specified in client pixels.

	Selectxe "BTIS.MetaDraw.InRectFlags.Select"
	4096
	Selects all objects within the specified rectangle

	Partlyxe "BTIS.MetaDraw.InRectFlags.Partly"
	8192
	Specifies that any part of an object may be within the specified rectangle, otherwise the whole object must be within the specified boundary

Returns

Returns the number of objects in the current open container which are within the specified boundary.

	Note
	This method uses the bounding rectangle of objects (for rotated objects, ellipses), NOT their real shapes.

See Also

ObjectsHitTest method, ObjectsOverlappedBy method

ObjectsHitTest Methodxe "Methods:ObjectsHitTest"

XE "ObjectsHitTest method"

xe "Hot Spots"

xe "BTIS.MetaDraw.MetaDraw.ObjectsHitTest"
Description

This method identifies the object(s) located at the specified coordinates.

Syntax

[Visual Basic]
Overloads Public Function ObjectsHitTest (posX As Integer, posY As Integer, flags As BTIS.MetaDraw.HitTestFlags) As Integer
Overloads Public Function ObjectsHitTest (pos As Point, flags As BTIS.MetaDraw.HitTestFlags) As Integer

[C#]
public int ObjectsHitTest (int posX, int posY, BTIS.MetaDraw.HitTestFlags flags);
public int ObjectsHitTest (Point pos, BTIS.MetaDraw.HitTestFlags flags);

Parameters

The ObjectsHitTest has the following parameters:

	Argument
	Description

	posX, posY
pos
	Coordinates of the test point.

	flags
	Additional object criteria to determine a Hit and the type of coordinates determined by the BTIS.MetaDraw.HitTestFlags enumeration.

HitTestFlags enumerationxe "Enumerations:HitTestFlags"

XE "HitTestFlags Enumeration"

xe "BTIS.MetaDraw.HitTestFlags"
	Constant
	Value
	Description

	Cursorxe "BTIS.MetaDraw.HitTestFlags.Cursor"
	0x0001
	Find only objects which have the “Cursor” status flag.

	HotSpotxe "BTIS.MetaDraw.HitTestFlags.HotSpot"
	0x0002
	Find only objects which have the “HotSpot” status flag.

	Clickxe "BTIS.MetaDraw.HitTestFlags.Click"
	0x0004
	Find only objects which have the “Click” status flag.

	WebURLxe "BTIS.MetaDraw.HitTestFlags.WebURL"
	0x0008
	Find only objects which have the “WebURL” status flag.

	Selectedxe "BTIS.MetaDraw.HitTestFlags.Selected"
	0x0010
	Search only among selected objects.

	Visiblexe "BTIS.MetaDraw.HitTestFlags.Visible"
	0x0020
	Search only among visible objects.

	Firstxe "BTIS.MetaDraw.HitTestFlags.First"
	0x0000
	Start searching from the first object in container.

	Nextxe "BTIS.MetaDraw.HitTestFlags.Next"
	0x0100
	Find next object meeting search criteria (lied under the specified position and has the specified flags). The Current property determines an object from which the search begins.

	Currentxe "BTIS.MetaDraw.HitTestFlags.Current"
	0x0200
	The function attempts to start searching at the object whose handle specified in the Current property. The Current property may contain a reserved handle:

	
	
	Constant
	Meaning

	
	
	ObjHandle.Selected
	looking in all selected objects.

	
	
	ObjHandle.Container
	Start from the first object in the open container.

	
	
	ObjHandle.MainContainer
	Start from main.

	Recursexe "BTIS.MetaDraw.HitTestFlags.Recurse"
	0x0400
	Search recursively through all the containers (hit test objects inside containers). This flag can not be specified together with HitTestFlags.Select and HitTestFlags.Deselect flags.

	Invertxe "BTIS.MetaDraw.HitTestFlags.Invert"
	0x0800
	Invert the condition.

	Logicalxe "BTIS.MetaDraw.HitTestFlags.Logical"
	0x1000
	Hit test point is specified in logical coordinates if this flag is set. Otherwise all coordinates are in pixels.

	Selectxe "BTIS.MetaDraw.HitTestFlags.Select"
	0x4000
	Select all found objects.

	Deselectxe "BTIS.MetaDraw.HitTestFlags.Deselect"
	0x4010
	Deselect all found objects.

Returns

Returns the number of objects, which have been found during the hit test or zero it there are no more objects (the function may be called more than once) at the specified position.

Upon return the Current property is set by MetaDraw to either:

· ObjHandle.Null if no object is found at the specified location.

· The handle of an object at the specified coordinates, if such an object exists.

· ObjHandle.Selected if multiple objects have been found and selected (when the HitTestFlags.Select flag was specified in the flags parameter).

Remarks
MetaDraw uses the flags parameter to determine a Hit and also to determine which if any objects at the specified location are identified. The flags parameter can be a combination of the values determined by the BTIS.MetaDraw.HitTestFlags enumeration.

Normally the function starts searching from the topmost object inside the open container (HitTestFlags.First value is specified in the flags parameter). To find the next object at the specified location, include the HitTestFlags.Next flag in the flags parameter. In this case, the Current property must contain the handle of previous found object.

The function should be called only once when specifying HitTestFlags.Select or HitTestFlags.Deselect flags in the flags parameter. In this case, all objects located at the specified coordinates will be selected (or deselected) and the function returns the number of found objects.

By default, the posX, posY, and pos parameters are in client pixels. Add the HitTestFlags.Logical value to the flags parameter, if values passed as the posX, posY, and pos parameters are in logical picture coordinates.

Example

' This code prevents selection of any object except ellipse
Private Sub MetaDraw1_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MetaDraw1.MouseDown
 With MetaDraw1
 If .ObjectsHitTest(e.X, e.Y, HitTestFlags.First) > 0 Then
 If .ObjType <> ObjectTypes.Ellipse Then
 .ObjSelected = False
 End If
 End If
 End With
End Sub

' This code selects all the objects that are lied under the mouse cursor
Private Sub MetaDraw1_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MetaDraw1.MouseDown

 MetaDraw1.ObjectsHitTest(e.X, e.Y, HitTestFlags.Select)

End Sub

See Also

ObjectsInRect method, ObjectsOverlappedBy method, Logical coordinates, Layering order of objects, Current property

ObjectsOverlappedBy Methodxe "Methods:ObjectsOverlappedBy"

xe "ObjectsOverlappedBy Method"

xe "Overlap"

xe "BTIS.MetaDraw.MetaDraw.ObjectsOverlappedBy"
Description

The ObjectsOverlappedBy method finds all objects in current open container that are overlapped by the specified object (their bounding rectangles overlap).

Syntax

[Visual Basic]
Public Function ObjectsOverlappedBy (handle As BTIS.MetaDraw.ObjHandle, flags As BTIS.MetaDraw.OverlappedFlags) As Integer

[C#]
public int ObjectsOverlappedBy (BTIS.MetaDraw.ObjHandle handle, BTIS.MetaDraw.OverlappedFlags flags);

Parameters

The ObjectsHitTest has the following parameters:

	Argument
	Description

	handle
	Object to test

	flags
	A bit flag value composed by OR combination from the values determined by the BTIS.MetaDraw.OverlappedFlags enumeration.

OverlappedFlags enumerationxe "Enumerations:OverlappedFlags"

XE "OverlappedFlags Enumeration"

xe "BTIS.MetaDraw.OverlappedFlags"
	Constant
	Value
	Description

	Borderxe "BTIS.MetaDraw.OverlappedFlags.Border"
	0x0010
	Uses objects border. If this flag is set object bounding rectangles will be increased by half of their border width for overlap testing.

	Selectxe "BTIS.MetaDraw.OverlappedFlags.Select"
	0x1000
	Selects all the found objects.

	Partlyxe "BTIS.MetaDraw.OverlappedFlags.Partly"
	0x2000
	Any part of the object may be under the object. Otherwise the whole object must be under the specified object (default).

	AllObjectsxe "BTIS.MetaDraw.OverlappedFlags.AllObjects"
	0x4000
	Scans all the objects in the opened container. Otherwise only objects which are under the specified object will be checked.

Returns

Returns the number of objects found

Remarks

When set the OverlappedFlags.Border flag instructs MetaDraw to expand the object's bounding rectangle considered in ObjectOverlappedBy by half of the border width. So the chance to get non-overlapping objects will be decreased.

See Also

ObjectsHitTest method

ObjGetBounds Methodxe "Methods:ObjGetBounds"

XE "ObjGetBounds Method"

xe "Locate Boundries"

xe "BTIS.MetaDraw.MetaDraw.ObjGetBounds"
Description

This method returns the boundaries of the object (or selected objects) pointed to by the handle specified in the Current property.

Syntax

[Visual Basic]
Public Function ObjGetBounds (crdType As BTIS.MetaDraw.CoordType) As Rectangle
[C#]
public Rectangle ObjGetBounds (BTIS.MetaDraw.CoordType crdType);

Parameters

The ObjGetBounds method uses the following argument:

	Argument
	Description

	crdType
	Specifies the type of coordinates for the returned value.

Returns

Returns a rectangle that is bounding rectangle of the object(s) whose handle specified in the Current property.

This method causes a run-time error in case of problems.

Remarks

The type of coordinates in crdType can be the following values determined by the BTIS.MetaDraw.CoordType enumeration.

CoordType enumerationxe "Enumerations:CoordType"

XE "CoordType Enumeration"

xe "BTIS.MetaDraw.CoordType"
	Constant
	Value
	Description

	Logicxe "BTIS.MetaDraw.CoordType.Logic"
	0
	Return the object(s) boundaries in global logical coordinates.

	LogicLocalxe "BTIS.MetaDraw.CoordType.LogicLocal"
	2
	All object’s coordinates are specified in local (container) logical units.

	Pixelsxe "BTIS.MetaDraw.CoordType.Pixels"
	4
	All object’s coordinates are returned in client pixels.

	Rotatedxe "BTIS.MetaDraw.CoordType.Rotated"
	512
	Including this flag within the crdType parameter instructs MetaDraw to return boundaries of an object as it is shown rotated in the image. If this flag is not set the ObjGetBounds method will return data for the object in an non-rotated state).

If the Current property specifies a group of selected objects then the returned rectangle will be filled with the boundary which is the smallest rectangle that contains all the selected objects.

Example

' This code draws a dotted frame around the selected objects
Private Sub cmdFrame_Click()
 With MetaDraw1
 Dim bnd As Rectangle
 ' Assume that some objects are selected at this point
 .Current = ObjHandle.Selected
 bnd = .ObjGetBounds(CoordType.Logic)
 .AddObject(ObjectTypes.Rectangle, bnd)
 .FillStyle = FillStyle.Transparent
 .LineStyle = LineStyle.Dot
 End With
End Sub

See Also

Logical coordinates, ObjSetBounds method, Current property

ObjGetParams Methodsxe "Methods:ObjGetParams"

XE "ObjGetParams Method"

xe "BTIS.MetaDraw.MetaDraw.ObjGetParams"
Description

The ObjGetParams method returns an array of points filled with “Additional Point Parameters” describing the object whose handle is specified in the Current property.

“Additional Point Parameters” specify the:

· points of a polyline or a polygon

· rounded corners in a rounded rectangle

· starting or ending points of a sector, arc or chord

· Connection points of a link object

· Segment vertices of a segmented link

Syntax

[Visual Basic]
Public Function ObjGetParams (parFirst As Integer, parNumber As Integer, crdType As BTIS.MetaDraw.CoordType) As Object

[C#]
public object ObjGetParams (int parFirst, int parNumber, BTIS.MetaDraw.CoordType crdType);

Parameters

The ObjGetParams method uses these arguments:

	Argument
	Description

	parFirst
	Specifies the first parameter to be retrieved into PointArray.

Possible Values for this parameter depend on the object type for which parameters are to be retrieved.

	
	Line
	0, 1 (starting and ending points)

	
	RoundRect
	0 - width and height of corner ellipses in units according to the crdType% parameter, 1 - width and height of corner ellipses in 0.01 percent from rectangle width/height (the negative value, -10000, means the full rectangle width/height)

	
	Sector, Arc, Chord
	0, 1 - (starting and ending points),

	
	Polyline, Polygon
	>= 0, the starting point to be read; < 0, the starting point (counted from the endpoint) to be read.

	
	Link
	0, 1 - starting and ending connection points,
2, … - segment vertices (for multi-segmented link).

	parNumber
	Specifies the number of points to read into returned array:

	
	< 0,
	read the rest of the points (starting beginning from parFirst)

	
	= 0,
	the function returns the number of available points as Integer

	
	> 0,
	read this number of points (starting from parFirstPar)

	crdType
	Specifies the type of coordinates for the returned array of points (see values in the BTIS.MetaDraw.CoordType enumeration).

Returns

The ObjGetParams function returns the array of Points (the dimension of the array is the number of points actually placed in the returned array). When the object type is Polyline/Polygon and parNumber = 0, the function returns the total number of points in the polyline/polygon (as an Integer value).

Remarks

This method causes a run-time error if the parameters are invalid.

The Current property must contain a handle of a valid object when calling this method.

When this function is called for segmented link object with parNumber = 0, it returns an integer value that determines the number of segment vertices (not including connection points).

	Note:
	parNumber specifies the number of points (x and y coordinates). Therefore, the dimension of the returned array does not exceed the parNumber value, but can be less if there are not enough requested points in the object.

Example
' This example assumes the Current object is a polyline object
Dim len As Integer, points() As Point
' Get the number of points into ‘len’
len = .ObjGetParams(0, 0, CoordType.Logic)
' ‘points’ array contains coordinates of two last points
points = .ObjGetParams(len-3, 2, CoordType.Logic)
' offset points
points(0).X = points(0).X + 100
points(1).X = points(1).X + 100
' Set new points
.ObjSetParams(len-3, 2, points, CoordType.Logic)

See Also

ObjSetParams method, Current property

ObjHotSpot Propertyxe "Properties:ObjHotSpot"

XE "ObjHotSpot Property"

xe "Hot Spots"

xe "HyperGraphics"

xe "BTIS.MetaDraw.MetaDraw.ObjHotSpot"
Description [image: image92.wmf]
This property is used to test or set an object's HotSpot as well as Hittable, WebURL statuses.

Usage

[Visual Basic]
Public Property ObjHotSpot As BTIS.MetaDraw.ObjHotSpot
[C#]
public BTIS.MetaDraw.ObjHotSpot ObjHotSpot {get; set;}

Settings

The ObjHotSpot property setting is a combination of object’s flags determined by the BTIS.MetaDraw.ObjHotSpot enumeration.

ObjHotSpot enumerationxe "Enumerations:ObjHotSpot"

XE "ObjHotSpot Enumeration"

xe "BTIS.MetaDraw.ObjHotSpot"
	Setting
	Value
	Description

	Nonexe "BTIS.MetaDraw.ObjHotSpot.None"
	0
	No flags

	Cursorxe "BTIS.MetaDraw.ObjHotSpot.Cursor"
	1
	Mouse pointer is set to hand pointer when the mouse is over an object which has this flag set. *

	HotSpotxe "BTIS.MetaDraw.ObjHotSpot.HotSpot"
	2
	The OnHotSpot event is triggered when the mouse is over an object which has this flag set. *

	Clickxe "BTIS.MetaDraw.ObjHotSpot.Click"
	4
	The HitObject event is triggered when the mouse is clicked over an object which has this flag set.

	WebURLxe "BTIS.MetaDraw.ObjHotSpot.WebURL"
	8
	MetaDraw instructs the web browser to jump to the URL specified by the ObjURL property, when the left mouse button is clicked over an object which has this flag set.

	DblClickxe "BTIS.MetaDraw.ObjHotSpot.DblClick"
	1024
	The HitObjectDouble event is triggered when the mouse is Double Clicked over an object which has this flag set. **

	Allxe "BTIS.MetaDraw.ObjHotSpot.All"
	1039
	All the flag set

Remarks

* HyperGraphic responses to mouse movements (Cursor changes and triggering the OnHotSpot event) are enabled only while in EditMode is EditMode.View and while the HotSpots property is set to True.

If the ObjURL property is empty, the ObjHotSpot.WebURL flag is ignored.
** HyperGraphic responses to clicking (URL Jumps and Triggering the HitObject or HitObjectDouble event) are enabled only while in EditMode is EditMode.View.

When both ObjHotSpot.WebURL and ObjHotSpot.Click are set and the mouse is clicked over the object, MetaDraw fires the HitObject event first and then calls the web browser to jump to the URL. So, you can change the ObjURL property for the object in the HitObject event before calling the web browser.

The ObjHotSpot settings are saved within the image file when saved as a MetaDraw object (PictureType is PictureType.Internal) or as a metafile (PictureType.Metafile, PictureType.EnhMetafile).

The Modifications property flag ModificationFlags.Hitthrough determines how hotspots are recognized for containers and objects within containers. With this bit flag set, MetaDraw reacts to the hotspot status of individual objects under the mouse whether the objects are grouped in a container or not. When the ModificationFlags.Hitthrough flag bit is clear, the hotspot status of objects within a container group are ignored and MetaDraw will react instead to the hotspot settings of the container object. Objects outside of a container are not affected by this Modifications flag setting.

Data Type

BTIS.MetaDraw.ObjHotSpot
See also

Changing object’s attributes, Using Hot-Spot abilities, OnHotSpot event, ObjURL, ObjStatus, EditMode, and HotSpots properties

ObjMove Methodxe "Methods:ObjMove"

XE "ObjMove Method"

xe "BTIS.MetaDraw.MetaDraw.ObjMove"
Description [image: image93.wmf]
This is a method, moving MetaDraw's internal object reference pointer and setting .Current to the handle of that object.

Syntax

[Visual Basic]
Public Sub ObjMove (action As BTIS.MetaDraw.ObjMove)

[C#]
public void ObjMove (BTIS.MetaDraw.ObjMove action);

Parameters

The ObjMove method has the following parameter:

	Argument
	Description

	action
	Determines the action that should be performed on the .Current property. Actions are determined by the BTIS.MetaDraw.ObjMove enumeration.

ObjMove enumerationxe "Enumerations:ObjMove"

XE "ObjMove Enumeration"

xe "BTIS.MetaDraw.ObjMove"
	Constant
	Value
	Description

	Nextxe "BTIS.MetaDraw.ObjMove.Next"
	0
	Move to the next object in the list.

	Prevxe "BTIS.MetaDraw.ObjMove.Prev"
	1
	Move to the previous object.

	Firstxe "BTIS.MetaDraw.ObjMove.First"
	2
	Move to the first object in the list of objects.

	Lastxe "BTIS.MetaDraw.ObjMove.Last"
	3
	Move to the last object.

	Parentxe "BTIS.MetaDraw.ObjMove.Parent"
	4
	Move to the parent container.

	FirstChildxe "BTIS.MetaDraw.ObjMove.FirstChild"
	5
	Move to first child in container’s objects list. Prior to this call, Current must reference a valid container.

	LastChildxe "BTIS.MetaDraw.ObjMove.LastChild"
	6
	Move to the last child in container’s objects list. Prior to this call, Current must reference a valid container.

	NextSelectedxe "BTIS.MetaDraw.ObjMove.NextSelected"
	7
	Move to the next selected object.

	PrevSelectedxe "BTIS.MetaDraw.ObjMove.PrevSelected"
	8
	Move to the previous selected object.

	FirstSelectedxe "BTIS.MetaDraw.ObjMove.FirstSelected"
	10
	Move to first selected object.

	LastSelectedxe "BTIS.MetaDraw.ObjMove.LastSelected"
	11
	Move to last selected object.

	OpenContainerxe "BTIS.MetaDraw.ObjMove.OpenContainer"
	12
	Move to the currently open container.

	MainContainerxe "BTIS.MetaDraw.ObjMove.MainContainer"
	13
	Move to the handle of the main container.

	FirstInContxe "BTIS.MetaDraw.ObjMove.FirstInCont"
	14
	Move to the first object in the open container.

	LastInContxe "BTIS.MetaDraw.ObjMove.LastInCont"
	15
	Move to the last object in the open container.

	OpenObjectxe "BTIS.MetaDraw.ObjMove.OpenObject"
	16
	Move to the currently open object.

Remarks

If there is no object to move to, then Current is set to ObjHandle.Null. For example, if Current initially held the handle of the first selected object, setting ObjMove to ObjMove.PrevSelected will reset Current to ObjHandle.Null.

	Note:
	The Current property must reference a valid object handle before setting ObjMove to a value from ObjMove.Prev to ObjMove.PrevSelected.

Data Type

BTIS.MetaDraw.ObjMove
See also

Current property

ObjLinkCount Propertyxe "Properties:ObjLinkCount"

xe "ObjLinkCount Property"

xe "BTIS.MetaDraw.MetaDraw.ObjLinkCount"
Description [image: image94.wmf] [image: image95.wmf]
This property returns the number of links attached to the graphic object whose handle is specified in the Current property.

Usage

[Visual Basic]
Public Property ObjLinkCount As Integer
[C#]
public int ObjLinkCount {get;}

Remarks

The Current property must contain the handle of the graphic object whose links count is retrieved.

There can be several links attached to one object. This property returns the total number of links for the object whose handle is specified in the Current property. If object does not have any links the property returns 0.

Example

With MetaDraw1
 ' Add three selected objects
 .AddObject(ObjectTypes.Line, 100, 100, 400, 200)
 .ObjSelected = True
 .AddObject(ObjectTypes.Ellipse, 600, 100, 900, 200)
 .ObjSelected = True
 .AddObject(ObjectTypes.Rectangle, 400, 600, 600, 800)
 .ObjSelected = True
 ' Create links between selected objects
 .CreateLink(ObjHandle.Selected, ObjHandle.Selected, LinkType.Straight)
 ' move to first selected object
 .ObjMove(ObjMove.FirstSelected)
 ' Check how many links there are
 MsgBox("The number of links:" & .ObjLinkCount)
 '=> resulted value is 2
 '(In this example there are 2 links for 1st selected object)
End With
Data Type

Integer
See also

ObjLinks property, How to create and manipulate diagram links
ObjLinks Propertyxe "Properties:ObjLinks"

xe "ObjLinks Property"

xe "BTIS.MetaDraw.MetaDraw.ObjLinks"
Description [image: image96.wmf] [image: image97.wmf]
This property returns the corresponding link object attached to the object whose handle is specified in the Current property.

Usage

[Visual Basic]
Public Property ObjLinks (idx As Integer) As BTIS.MetaDraw.ObjHandle
[C#]
public BTIS.MetaDraw.ObjHandle ObjLinks (int idx) {get;}

Remarks

The Current property must contain the handle of the object whose links is retrieved.

The ObjLinks array is zero based – running from 0 to ObjLinkCount-1

Example

' The following code changes endings of all links
' connected to the current object
With MetaDraw1
 Dim CurObj As ObjHandle
 Dim NumLinks As Integer
 CurObj = .Current ' Save handle of current object
 NumLinks = .ObjLinkCount
 While NumLinks > 0
 NumLinks = NumLinks – 1
 .Current = .ObjLinks(NumLinks%)
 .LinkStyle(LinkIndex.Start) = LinkStyle.FillArrow
 .Current = CurObj ' Restore object's handle
 End While

End With
Data Type

BTIS.MetaDraw.ObjHandle
See also

ObjLinkCount property, How to create and manipulate diagram links
ObjNumber Propertyxe "Properties:ObjNumber"

XE "ObjNumber Property"

xe "BTIS.MetaDraw.MetaDraw.ObjNumber"
Description [image: image98.wmf]
This property is used to convert between an object’s order number and its handle.

Usage

[Visual Basic]
Public Property ObjNumber As Integer
[C#]
public int ObjNumber {get; set;}

Remarks

This property returns the order number within the container for the object whose handle is specified in the Current property. Object 1 is the first (bottom most) object within the container.

When a value is assigned to this property, MetaDraw sets the Current property to the handle of an object whose ordinal number is equal to the value.

As shown in the example below it is possible to use the ObjNumber property to move through the object list within the current container. This can also be done using the ObjMove method (which works faster).

	Note:
	This property does NOT loop through objects within a closed Container. The ObjNumber property only enumerates objects directly within the specified open container (a closed container is one solid object). For an example of looping through all objects in an image see "How to Count and Loop Through Objects in an Image"

Example

' Loop through all items inside the open container
' beginning at the bottommost object.
' List the object numbers, handles and object types
Dim i As Integer
With MetaDraw1
 For i = 1 To .ObjCount(ObjHandle.Container)
 .ObjNumber = i
 PrintObjectInfo(i, .Current, .ObjType)
 Next i
End With
' The following code does exactly the same as the previous one,
' but works faster
With MetaDraw1
 .ObjMove(ObjMove.FirstInCont)
 While .Current > ObjHandle.Valid
 PrintObjectInfo(.ObjNumber, .Current, .ObjType)
 .ObjMove(ObjMove.Next)
 End While
End With
Data Type

Integer
See also

Current property, ObjMove method

ObjOpened Propertyxe "Properties:ObjOpened"

XE "ObjOpened Property"

xe "BTIS.MetaDraw.MetaDraw.ObjOpened"
Description [image: image99.wmf]
This property is used to test or toggle an object’s “open” status.

Reading the property returns the “opened” status of an object whose handle is specified in the Current property.

Setting this property to TRUE or FALSE opens or closes the object pointed to by the Current property.

Usage

[Visual Basic]
Public Property ObjOpened As Boolean
[C#]
public bool ObjOpened {get; set;}

Remarks

Only certain objects can be opened: Containers, Polygons, PolyLines, and Text. An end-user may generally open/close such objects by double clicking on the object while in EditMode.Select . This action may be prevented with the EditFlags property.

The objects within a container may only be manipulated while the container is Open. In EditMode.Select, the end-user can then drag or resize those objects. Also you can add objects only into an open container, so you have to open the container where to you want to add objects.

The vertices of an open Polygon or Polyline are shown and may be dragged by the end-user when in EditMode.Select.
An Open Text object is modified by keyboard action. Of course the MetaDraw control must have the focus in order to receive keyboard access.

When you close an object (set the ObjOpened property to False), MetaDraw automatically opens its parent container. The main container (picture) can not be closed.

	Note:
	The Current property must contain a real object handle (not a reserved handle) when reading/writing the ObjOpened property.

Data Type

Boolean
See also

Current property

ObjResolution Propertyxe "Properties:ObjResolution"

XE "ObjResolution Property"

xe "Converting Object Types"

xe "BTIS.MetaDraw.MetaDraw.ObjResolution"
Description [image: image100.wmf]
This property is used to control the quality of the resulting object when converting objects to polylines/ polygons.

Usage

[Visual Basic]
Public Property ObjResolution As Integer
[C#]
public int ObjResolution {get; set;}

Remarks

This property defines number of twips per physical inch (unzoomed) used as the basis for coordinate transformation process during object type conversion. The greater the ObjResolution setting, the more accurately the new polygon or polyline will conform to the original shape or text object. The cost is that the higher the setting of ObjResolution, the more memory will be required to represent the object as a polygon/polyline, and also operations on the converted object will be slower.

When value of this property is 1440 we have the same resolution as original picture has. As a result - the polygon / polyline will match the original shape or text at a 1:1 zoom. Setting ObjResolution to a value greater than 1440 provides a reserve of extra accuracy so the converted object will resemble the original shape or text even when zoomed.

	Note:
	.ObjResolution applies to MetaDraw itself, not to the individual elements in MetaDraw.

Default

The default value of 120 is a balance of quality vs. performance.

Data Type

Integer
See also

ObjType property

ObjRotation Propertyxe "Properties:ObjRotation"

XE "ObjRotation Property"

xe "Properties:Rotation"

xe "BTIS.MetaDraw.MetaDraw.ObjRotation"
Description [image: image101.wmf]
This property determines the rotation angle for the object.

Usage

[Visual Basic]
Public Property ObjRotation As Single
[C#]
public float ObjRotation {get; set;}

Remarks

This property sets the rotation angle in degrees for the object. When the specified angle is not in the range from ‑180 to 180, MetaDraw will normalize this value so it belongs to such range.

All objects, except Standard Text Objects, are rotated around the center point of its bounded rectangle. The rotation point for Standard Text depends on the Text Alignment determined by the TextHAlign and TextVAlign properties.

For text objects which have been associated as LinkLabels on Lines, Links, or Dimension Lines, the ObjStatus.LinkLabel flag in the ObjStatus property determines whether the angle is relative to the horizontal axis, or to the angle of the associated Line, Link or Dimension Line.

Data Type

Single
See also

RotateObjects method, FontOrient property

ObjSelected Propertyxe "Properties:ObjSelected"

XE "ObjSelected Property"

xe "BTIS.MetaDraw.MetaDraw.ObjSelected"
Description [image: image102.wmf]
Using for testing or changing the object selection status.

Usage

[Visual Basic]
Public Property ObjSelected As Boolean
[C#]
public bool ObjSelected {get; set;}

Remarks

Using this property you can change or test the selection status for the object referenced by the Current property. If the Current property contains the reserved handle ObjHandle.Container, assigning True/False to this property sets/drops the selection flag for all objects inside the open container.

The Mouse can also be used to change object selection status (in EditMode.Select edit mode). See the section "Using the mouse to select/unselect objects" in Chapter 3, "Basic Programming Techniques".

You can also set/drop the selection flag using the ObjStatus property.

Example

’ The following code removes all containers
’ from the open container
With MetaDraw1
 .Current = ObjHandle.Container
 .ObjSelected = False ' Drop selection of all objects
 ' Select containers
 .ObjMove(ObjMove.FirstInCont)
 While .Current > ObjHandle.Valid
 If .ObjType = ObjectTypes.Container Then
 .ObjSelected = True
 End If
 .ObjMove(ObjMove.Next)
 End While
 .RemoveObject(ObjHandle.Selected)
End With
Data Type

Boolean
See also

Selecting objects, changing object’s attributes, Current property

ObjSetBounds Methodxe "Methods:ObjSetBounds"

XE "ObjSetBounds Method"

xe "BTIS.MetaDraw.MetaDraw.ObjSetBounds"
Description

This method sets new boundaries for the object referenced by the Current property.

Declaration

[Visual Basic]
Public Sub ObjSetBounds (bounds Rectangle, crdType As BTIS.MetaDraw.CoordType)

[C#]
public void ObjSetBounds (Rectangle bounds, BTIS.MetaDraw.CoordType crdType);

Parameters

The ObjSetBounds method uses these arguments:

	Argument
	Description

	bounds
	Specify new boundaries (bounding rectangle).

	crdType
	Specifies the type of coordinates for the bounds parameter.

crdType can be the following values determined by the BTIS.MetaDraw.CoordType enumeration:

	
	Constant
	Value
	Description

	
	CoordType.Logic
	0
	Use global logical coordinates

	
	CoordType.LogicLocal
	2
	Offsets are specified in local (container) logical units.

	
	CoordType.Pixels
	4
	Offsets are specified in client pixels

Remarks

This method causes a run-time error in case of errors.

When applied to Text objects, if the specified Height or Width is 0, MetaDraw will calculate the Height and Width according to the FontSize. Otherwise the FontSize may be adjusted according to the specified Height and Width.

The Current property MUST contain a valid object handle. You can only change boundaries of one object at a time.

	Note:
	This method does not check that the specified coordinates are inside the picture. Thus, the user can set object's boundaries such that it will be outside the picture.

See Also

Logical coordinates, MoveObjects method, ObjGetBounds method, Current property

ObjSetParams Methodxe "Methods:ObjSetParams"

XE "ObjSetParams Method"

xe "BTIS.MetaDraw.MetaDraw.ObjSetParams"
Description

This method sets/replaces the “additional parameters” of the object referenced by the Current property.

The "additional parameters" of an object specify the:

· points of a polyline or a polygon

· rounded corners in a rounded rectangle

· or starting or ending points of a section, arc or chord

· Connection points or bends in a Segmented Link

Syntax

[Visual Basic]
Public Function ObjSetParams (parFirst As Integer, parNumber As Integer, points() As Point, crdType As BTIS.MetaDraw.SetParamsFlags) As Integer
[C#]
public object ObjSetParams (int parFirst, int parNumber, Point[] points, BTIS.MetaDraw.SetParamsFlags crdType);

Parameters

The SetParams method uses these arguments:

	Argument
	Description

	parFirst
	Specifies the first parameter to be set. Possible values for this parameter depend on the object type for which parameters are to be set.

	
	Line:
	0, 1 (starting and ending points)

	
	RoundRect:
	0 - width and height of corner ellipses in units according to the crdType parameter,
1 - width and height of corner ellipses in 0.01 percent from rectangle width/height (the negative value, -10000, means the full rectangle width/height)

	
	Sector, Arc, Chord:
	0, 1 - (starting and ending points),

	
	Polyline, Polygon:
	>= 0, the starting point to be set;
< 0, the starting point (counted from the endpoint) to be set. –2 references the last point in a polygon,

-1 references an insertion point after the last point.

	
	Link
	0, 1 - starting and ending connection points.
2, … - bend points

	parNumber
	Specifies the number of points to set/deleted:

	
	< 0,
	the number of points to be deleted (starting from parFirst) - valid only for Polylines and Polygons

	
	> 0,
	Specifies the number of points passed in the points parameter to add to the object (if crdType includes SetParamsFlags.Add), or to replace points in the object, starting with the point identified by parFirst

	points
	An array of points.

	crdType
	Specifies the type of coordinates for the points parameter. crdType can be set with the values determined by the BTIS.MetaDraw.SetParamsFlags enumeration.

SetParamsFlags enumerationxe "Enumerations:SetParamsFlags"

XE "SetParamsFlags Enumeration"

xe "BTIS.MetaDraw.SetParamsFlags"
	Constant
	Value
	Description

	Logicxe "BTIS.MetaDraw.SetParamsFlags.Logic"
	0
	All point’s coordinates are specified in global logical coordinates.

	LogicLocalxe "BTIS.MetaDraw.SetParamsFlags.LogicLocal"
	2
	All point’s coordinates are specified in local (container) logical units.

	Pixelsxe "BTIS.MetaDraw.SetParamsFlags.Pixels"
	4
	All object’s coordinates are returned in client pixels.

	For a polyline or a polygon object, the type of coordinates in crdType can be combined (OR'd) with the following value:

	Addxe "BTIS.MetaDraw.SetParamsFlags.Add"
	16
	Add new points to a polyline or a polygon object. If this mask is not specified, points in a polyline or a polygon will be replaced beginning from the parFirst point.

Returns

The ObjSetParams function returns the number of points which remaining in the polygon after the operation.
(0 if there is an error).

Remarks

This method causes a run-time error in case of problems.

The Current property should contain a handle of an object prior to calling this function.

The ObjSetParams method can also be used to automatically remove unnecessary points in Polygons and PolyLines. If the ObjSetParams method is called for Polyline or Polygon object and the first two parameters are zero, then points that meet the following conditions will be removed:

a. The X/Y coordinates are the same as the previous point.

b. The Point lies on a line determined by two previous points.

The ObjSetParams method can be used to automatically adjust a segmented link to find an "optimal" path, with a minimal number of bends and attempting to pass around other objects without moving any objects. This is done by calling the ObjSetParams method, with a second parameter (num points) of 0 (zero points). In this case, the 1st parameter of the ObjSetParams method may be used for setting distance to objects being bypassed.

Segmented links can contains only vertical or horizontal segments, so when new points specified in the points array are not vertical or horizontal lines they will be automatically adjusted to make segments horizontal or vertical.

	Note:
	When modifying points, if the number of points exceeds the number available to be replaced, additional points will be added.

See Also

ObjGetParams method, Current property

ObjShadow Property xe "Properties:ObjShadow"

XE "ObjShadow Property"

xe "BTIS.MetaDraw.MetaDraw.ObjShadow"
Description [image: image103.wmf]
This property specifies the shadow style of an object whose handle is specified in the Current property.

Usage

[Visual Basic]
Public Property ObjShadow As BTIS.MetaDraw.ObjShadow
[C#]
public BTIS.MetaDraw.ObjShadow ObjShadow {get; set;}

Settings

Settings of this property are determined by the BTIS.MetaDraw.ObjShadow enumeration.

ObjShadow enumerationxe "Enumerations:ObjShadow"

XE "ObjShadow Enumeration"

xe "BTIS.MetaDraw.ObjShadow"
	Constant
	Description

	Nonexe "BTIS.MetaDraw.ObjShadow.None"
	No shadow

	Lightxe "BTIS.MetaDraw.ObjShadow.Light"
	Shadows as XOR combination of destination and shadow color

	Normalxe "BTIS.MetaDraw.ObjShadow.Normal"
	Shadows as solid shadow color

	Solidxe "BTIS.MetaDraw.ObjShadow.Solid"
	Shadows as solid shadow color

Remarks

The ObjShadow property can be used to present a colored shadow offset for specified objects: ObjShadowOfsX and ObjShadowOfsY specify the offset distance (in logical units) of the shadow from the object, ObjShadowColor specifies the shadow color.

Example

’ Add a shadow to all selected objects
MetaDraw.Current = ObjHandle.Selected

MetaDraw.ObjShadow = ObjShadow.Light

MetaDraw.ObjShadowOfsX = 50

MetaDraw.ObjShadowOfsY = 50

Data Type

Integer
See Also

ObjShadowColor property, ObjShadowOfsX, ObjShadowOfsY properties

ObjShadowColor Propertyxe "Properties:ObjShadowColor"

XE "ObjShadowColor Property"

xe "BTIS.MetaDraw.MetaDraw.ObjShadowColor"
Description [image: image104.wmf]
This property specifies the shadow color of object(s) whose handle is specified in the Current property.

Usage

[Visual Basic]
Public Property ObjShadowColor As System.Drawing.Color
[C#]
public System.Drawing.Color ObjShadowColor {get; set;}

Remarks

The ObjShadowColor property specifies the color that will be used for drawing objects shadow. If object’s ObjShadow property is ObjShadow.None this attribute is ignored.

Data Type

System.Drawing.Color
ObjShadowOfsX, ObjShadowOfsY Propertiesxe "Properties:ObjShadowOfsX"

xe "ObjShadowOfsX Property"

xe "Properties:ObjShadowOfsY"

xe "ObjShadowOfsY Property"

xe "Shadows"

xe "BTIS.MetaDraw.MetaDraw.ObjShadowOfsX"

xe "BTIS.MetaDraw.MetaDraw.ObjShadowOfsY"
Description [image: image105.wmf]
These properties specify the object shadow offsets.

Usage

[Visual Basic]
Public Property ObjShadowOfsX As Integer
Public Property ObjShadowOfsY As Integer
[C#]
public int ObjShadowOfsX {get; set;}
public int ObjShadowOfsY {get; set;}

Remarks

The ObjShadowOfsX and ObjShadowOfsY properties specify the offset distance (in global logical units) of the shadow from the object. Positive values determine bottom, right directions, Negative – top, left.

If object’s ObjShadow property is ObjShadow.None these attributes are ignored.

Data Type

Integer
ObjStatus Property xe "Properties:ObjStatus"

XE "ObjStatus Property"

xe "BTIS.MetaDraw.MetaDraw.ObjStatus"
Description [image: image106.wmf]
This property is used to test or toggle object’s status flags.

Usage

[Visual Basic]
Public Property ObjStatus As BTIS.MetaDraw.ObjStatus
[C#]
public BTIS.MetaDraw.ObjStatus ObjStatus {get; set;}

Remarks

The value of this property may be set as a combination (OR) of the flags determined by the BTIS.MetaDraw.ObjStatus enumeration.

ObjStatus enumerationxe "Enumerations:ObjStatus"

XE "ObjStatus Enumeration"

xe "BTIS.MetaDraw.ObjStatus"
	Constant
	Value
	Description

	Nonexe "BTIS.MetaDraw.ObjShadow.None"
	0
	No flags.

	Cursorxe "BTIS.MetaDraw.ObjShadow.Cursor"
	1
	The “Cursor” status flag. The mouse pointer changes its shape to “hand” cursor when over an object assigned this ObjStatus flag. *

	HotSpotxe "BTIS.MetaDraw.ObjShadow.HotSpot"
	2
	The “HotSpot” status flag. The OnHotSpot event is triggered when the mouse pointer is over an object assigned this ObjStatus flag. *

	Clickxe "BTIS.MetaDraw.ObjShadow.Click"
	4
	The “Click” status flag. Triggers the OnHitObject event in response to a single mouse click upon the object. **

	WebURLxe "BTIS.MetaDraw.ObjShadow.WebURL"
	8
	The “WebURL” status flag. The object is linked to a URL. A left-mouse click upon the object loads the URL specified in the ObjURL property within the Web browser frame specified by the WebTargetFrame property. **

	Selectedxe "BTIS.MetaDraw.ObjShadow.Selected"
	16
	The “Select” status flag. Determines whether the object is selected or not (see the ObjSelected property).

	Visiblexe "BTIS.MetaDraw.ObjShadow.Visible"
	32
	The “Visible” status flag. Determines whether the object is visible or not (see the ObjVisible property).

	LabelAnglexe "BTIS.MetaDraw.ObjShadow.LabelAngle"
	64
	The “Label Angle” status flag. Determines whether rotation angle of a label is set relative to its parent link (or line or dimension line) or to the parent container.

	FixedBorderxe "BTIS.MetaDraw.ObjShadow.FixedBorder"
	128
	Forces borders of a multi-line text object to remain fixed. Otherwise borders will be automatically adjusted when edited text is too large for the existing border. (If text shrinks, borders are not changed, they are changed only when text caret goes outside the borders during editing). By default this flag is NOT set.

	Resiziblexe "BTIS.MetaDraw.ObjShadow.Resizible"
	256
	If this flag set the object can be resized even if ModificationFlags.ResizeSingle is set in the Modification property.

	DblClickxe "BTIS.MetaDraw.ObjShadow.DblClick"
	1024
	The HitObjectDouble event is triggered when the mouse is Double Clicked over an object which has this flag set. **

* HyperGraphic responses to clicking within (URL Jumps and Triggering the HitObject or HitObjectDouble event) are enabled only while in EditMode.View
* * HyperGaphic responses to mouse movements (Cursor changes and triggering the OnHotSpot event) are enabled only while in EditMode.View and while the HotSpots property is set to True.

The Modifications property flag Modification.Hitthrough determines how hotspots are recognized for containers and objects within containers. With this bit flag set, MetaDraw reacts to the hotspot status of individual objects under the mouse whether the objects are grouped in a container or not. When the Modification.Hitthrough flag bit is clear, the hotspot status of objects within a container group is ignored and MetaDraw will react instead to the hotspot settings of the container object. Objects outside of a container are not affected by this Modifications flag setting.

Using this property allows changing several objects’ status flags at a time. You can equivalently use the ObjHotspot, ObjSelected, ObjVisible properties to change only the corresponding flags.

The Current property determines the set of objects the property acts upon. The Current property can not point to several objects when you read this property.

Example

’ The following code makes all selected objects ”Invisible”
’ and toggles the “Visible”, “HotSpot”
’ flags for first selected object
MetaDraw1.Current = ObjHandle.Selected
MetaDraw1.ObjVisible = False
MetaDraw1.ObjMove(ObjMove.FirstSelected)
If MetaDraw1.Current > ObjHandle.Valid Then
 MetaDraw1.ObjStatus = MetaDraw1.ObjStatus Xor _
 (ObjStatus.Visible + ObjStatus.HotSpot)
End If

Data Type

BTIS.MetaDraw.ObjStatus
See also

EditMode, HotSpots, ObjHotspot, ObjSelected, ObjURL properties

ObjTag Propertyxe "Properties:ObjTag"

XE "ObjTag Property"

xe "BTIS.MetaDraw.MetaDraw.ObjTag"
Description [image: image107.wmf]
Specifies string data to be associated with a given object. You can use this property to identify objects, store comments about an object, or to hold a string for use in a HyperGraphic application when the user clicks, etc.

Usage

[Visual Basic]
Public Property ObjTag As String
[C#]
public string ObjTag {get; set;}

Remarks

By default the ObjTag property is set to an empty string ("") upon creation of an object.

The Current property should contain a valid handle of the object whose tag is changed/received.

The ObjTag values are saved within the image file when saved in Internal MetaDraw (PictureType.MetaDraw) or in Enhanced Metafile and Window Metafile formats (PictureType.EnhMetafile, PictureType.Metafile).

This property can also be changed via the ObjTags property, by using an empty tag name. Thus the following two lines perform the same function:

MDraw.ObjTag = “RectString” ’ Set default tag to “RectString”
MDraw.ObjTags(“”) = “RectString” ’ The same as previous line
Unlike the ObjTags property, the ObjTag property is always of string data type. If a non-string value is assigned to the ObjTags(“”) property, it will be converted to a string, when you read the ObjTag property.

MDraw.ObjTags(“”) = 1.52 ’ Set default tag to float value 1.52
Name$ = MDraw.ObjTag ’ The Name$ variable contains string ”1.52”
Data Type

String
See also

Changing object’s attributes, Use Hot-Spot abilities, Current property

ObjTags Propertyxe "Properties:ObjTags"

XE "ObjTags Property"

xe "BTIS.MetaDraw.MetaDraw.ObjTags"
Description [image: image108.wmf]
Specifies user data associated with a given object. Each object can have multiple named tags; each tag value may be of a different data type.

Usage

[Visual Basic]
Public Property ObjTags (name As String) As Object
[C#]
public object ObjTags (string name) {get; set;}

Remarks

By default, there are no tags defined for an object upon its creation. Any data type may be assigned to this property: String, Single, Integer, Data, Currency and other object types. Even a picture or a control can be assigned to this property.

Upon assignment,

If a tag with the specified name already exists, the associated value is replaced.
If no such tag name currently exists, a new tag is created with specified name and value.

When reading a tag, whose name was not defined, this property returns an empty (null) object. When an empty string is specified as name of the tag, this property references to the default tag (the same as ObjTag property).

The ObjTag values are saved within the image file when saved in Internal MetaDraw and MetaFiles formats (PictureType.MetaDraw, PictureType.Metafile, PictureType.EnhMetafile).

	Note:
	Only data of standard Variant types (String, Single, Integer, Data, Currency) can be saved with objects. If the ObjTags(“…”) property contains a Picture or a Control, it will not be saved.

Example

’ The Current property must contain the handle of the object
’ whose tags we want to change
MDraw.ObjTags(“Name”) = “Table”
MDraw.ObjTags(“Cost”) = 129.99
MDraw.ObjTags(””) = “A rectangle object” ’ Change the default tag
Name$ = MDraw.ObjTag ’ Variable Name$ contains the following
 ’ string: “A rectangle object”
Data Type

System.Object
See also

ObjTag property, Changing object’s attributes, Current property

ObjTagsCount Propertyxe "Properties:ObjTagsCount"

XE "ObjTagsCount Property"

xe "BTIS.MetaDraw.MetaDraw.ObjTagsCount"
Description [image: image109.wmf]
The ObjTagsCount property returns the number of defined tags for the object whose handle is specified in the Current property.

Usage

[Visual Basic]
Public Property ObjTagsCount As Integer
[C#]
public int ObjTagsCount {get; set;}

Remarks

Each graphic element in MetaDraw can have up to 32,000 associated Object Tags.

By default objects do not have any tags and this property returns 0 until tags have been assigned using the ObjTags property.

Setting ObjTagsCount to 0 deletes all object’s Tags associated with the current element.

Setting ObjTagsCount to a value less than the current number of ObjTags for a specified item removes the "extra" tags.

Setting ObjTagsCount to a value greater than the number of tags defined for the element will have no result.

Example

' Create a Rectangle Object
MDraw.AddObject(ObjectTypes.Rectangle, X1, Y1, X2, Y2)
' .Current must point to the object whose tags we want to set
' After AddObject, .Current points to the most recently added object
MDraw.ObjTags("Name") = "Desk"
MDraw.ObjTags("Cost") = 129.99
MDraw.ObjTag = "fred's desk" ' ObjTag is a default tag with no name
num_tags% = MDraw.ObjTagCount ' num_tags% are equal 3 now
MDraw.ObjTagCount = 0 ' Deletes all tags
Data Type

Integer
See also

ObjTags property, Changing object’s attributes

ObjTagsName Propertyxe "Properties:ObjTagsName"

XE "ObjTagsName Property"

xe "BTIS.MetaDraw.MetaDraw.ObjTagsName"
Description [image: image110.wmf]
The ObjTagsName property is an array property which holds the names of all Object Tags associated with an element whose handle is specified in the Current property.

Usage

[Visual Basic]
Public Property ObjTagsName (idx As Integer) As String
[C#]
public string ObjTagsName (int idx) {get; set;}

Remarks

Each graphic element in MetaDraw can have up to 32,000 associated Object Tags. Each tag has a name which is assigned when the tag is created.

The ObjTagsName array is zero-based – the first element in the array is ObjTagsName(0). So the idx parameter is from 0 to ObjTagsCount – 1.

It is possible to change a tag’s name by assigning a new value to this property.

	Note:
	Tag names are case sensitive, so “Tag” and “TAG” are different tag names.

Example

 This code converts all tag names to UpperCase strings
' The Current property must contain the handle of the object
' whose tag names we want to change
For I% = 1 To MDraw.ObjTagsCount
 MDraw.ObjTagsName(I%-1) = UCase(MDraw.ObjTagsName(I%-1))
Next I%

Data Type

String
See also

ObjTags property, ObjTagsCount property

ObjTagsValue Propertyxe "Properties:ObjTagsValue"

XE "ObjTagsValue Property"

xe "BTIS.MetaDraw.MetaDraw.ObjTagsValue"
Description [image: image111.wmf]
The ObjTagsValue property is an array property which holds the values of all Object Tags associated with an element whose handle is specified in the Current property.

Usage

[Visual Basic]
Public Property ObjTagsValue (idx As Integer) As Object
[C#]
public object ObjTagsValue (int idx) {get; set;}

Remarks

Each graphic element in MetaDraw can have up to 32,000 associated Object Tags.

The Current property must contain the handle of the object whose tags are changed.

The ObjTagsValue array is zero-based – the first element in the array is ObjTagsValue(0). So the idx parameter is from 0 to ObjTagsCount – 1.

Example

' The Current property must contain the handle of the object
' whose tags we want to change
MDraw.ObjTags(“Name”) = “Table”
MDraw.ObjTags(“Cost”) = 129.99
Print(MDraw.ObjTagsValue(0), MDraw.ObjTagsValue(1))
' >> “Table 129.99” will be printed
MDraw.ObjTagsValue(1) = 225.95
Print(MDraw.ObjTagsValue(0), MDraw.ObjTagsValue(1))
' >> “Table 225.95” will be printed
Data Type

System.Object
See also

ObjTags, ObjTagsName, ObjTagsCount properties

ObjType Propertyxe "Properties:ObjType"

XE "ObjType Property"

xe "Converting Object Types"

xe "BTIS.MetaDraw.MetaDraw.ObjType"
Description [image: image112.wmf]
Returns type of the object or group of the objects.
Setting this property will convert an object from one type to another.

Usage

[Visual Basic]
Public Property ObjType As BTIS.MetaDraw.ObjectTypes
[C#]
public BTIS.MetaDraw.ObjectTypes ObjType {get; set;}

Settings

The ObjType property settings are determined by the BTIS.MetaDraw.ObjectTypes enumeration.

ObjectTypes enumerationxe "Enumerations:ObjectTypes"

XE "ObjectTypes Enumeration"

xe "BTIS.MetaDraw.ObjectTypes"
	Constant
	Value
	Description

	Containerxe "BTIS.MetaDraw.ObjectTypes.Container"
	0
	Container (group of objects).

	Linexe "BTIS.MetaDraw.ObjectTypes.Line"
	1
	Line

	Rectanglexe "BTIS.MetaDraw.ObjectTypes.Rectangle"
	2
	Rectangle

	RoundRectxe "BTIS.MetaDraw.ObjectTypes.RoundRect"
	3
	Rounded rectangle

	Ellipsexe "BTIS.MetaDraw.ObjectTypes.Ellipse"
	4
	Ellipse (circle)

	Arcxe "BTIS.MetaDraw.ObjectTypes.Arc"
	5
	Arc

	Piexe "BTIS.MetaDraw.ObjectTypes.Pie"
	6
	Pie (sector)

	Chordxe "BTIS.MetaDraw.ObjectTypes.Chord"
	7
	Chord

	Polylinexe "BTIS.MetaDraw.ObjectTypes.Polyline"
	8
	Polyline

	Polygonxe "BTIS.MetaDraw.ObjectTypes.Polygon"
	9
	Polygon

	Textxe "BTIS.MetaDraw.ObjectTypes.Text"
	10
	Text

	Imagexe "BTIS.MetaDraw.ObjectTypes.Image"
	12
	Image (picture held by the PictureImage property)

	Bezierxe "BTIS.MetaDraw.ObjectTypes.Bezier"
	14
	Bezier curve

	PolyPolygonxe "BTIS.MetaDraw.ObjectTypes.PolyPolygon"
	15
	Bezier curve

	FloodFillxe "BTIS.MetaDraw.ObjectTypes.FloodFill"
	19
	Floodfill

	Linkxe "BTIS.MetaDraw.ObjectTypes.Link"
	21
	Straight link

	DimLinexe "BTIS.MetaDraw.ObjectTypes.DimLine"
	22
	Dimension line

	PolyLinkxe "BTIS.MetaDraw.ObjectTypes.PolyLink"
	23
	Multi-segmented link

	Trianglexe "BTIS.MetaDraw.ObjectTypes.Triangle"
	30
	adds a polygon initialized as a Triangle

	Diamondxe "BTIS.MetaDraw.ObjectTypes.Diamond"
	31
	adds a polygon initialized as a Diamond

	Pentagonxe "BTIS.MetaDraw.ObjectTypes.Pentagon"
	32
	adds a polygon initialized as a Pentagon

	Starxe "BTIS.MetaDraw.ObjectTypes.Star"
	33
	adds a polygon initialized as a Star

	Hexagonxe "BTIS.MetaDraw.ObjectTypes.Hexagon"
	34
	adds a polygon initialized as a Hexagon

	Octagonxe "BTIS.MetaDraw.ObjectTypes.Octagon"
	35
	adds a polygon initialized as a Octagon

Remarks

Reading this property identifies the type of object(s) pointed to by the Current property. If Current specifies more then one object (a group of selected objects) and these objects are not the same type generates an error.

When converting objects (other than Text objects) to a Polyline (Polygon), the ObjResolution property determines how many points are used for the resulting polyline.

	Note:
	Object Type conversion may not be reversible. It is possible to convert an Arc to a polyline, but it is not possible to convert a polyline back to an Arc.

Data Type

BTIS.MetaDraw.ObjectTypes
See also

ObjResolution property, AddObject method
ObjURL Propertyxe "Properties:ObjURL"

XE "ObjURL Property"

xe "Web"

xe "BTIS.MetaDraw.MetaDraw.ObjURL"
Description [image: image113.wmf]
Specifies an associated internet URL for the object specified by the Current property.

Usage

[Visual Basic]
Public Property ObjURL As String
[C#]
public string ObjURL {get; set;}

Remarks

MetaDraw executes a "URL Jump" in response to left-mouse clicks on URL enabled objects (the object has the ObjStatus.WebURL flag set in the ObjStatus/ ObjHotSpot property), and when EditMode is EditMode.View.

When executing a URL Jump, the web browser will be launched (if not already opened) and passed the value of the ObjURL property as a Web Address. If a relative URL is specified in this property, the value of the WebURLBase property is used to construct the full URL. The WebTargetFrame property determines the frame in which the referenced resource will be loaded.

You may handle the OnHotSpot or HitObject events to open a browser window with an URL stored in this property.

The Modifications property flag ModificationFlags.Hitthrough determines how hotspots (including ObjURL settings) are recognized for containers and objects within containers. With this bit flag set, MetaDraw reacts to the hotspot status of individual objects under the mouse whether the objects are grouped in a container or not. When the ModificationFlags.Hitthrough flag bit is clear, the hotspot status of objects within a container group is ignored and MetaDraw will react instead to the hotspot settings of the container object. Objects outside of a container are not affected by this Modifications flag setting.

	Note:
	The ObjStatus.HotSpot, ObjStatus.Click, and ObjStatus.WebURL flags are automatically set when a URL is assigned to the object.

Data Type

String
See also

Working with the Internet, ObjStatus properties

ObjVisible Propertyxe "Properties:ObjVisible"

XE "ObjVisible Property"

xe "BTIS.MetaDraw.MetaDraw.ObjVisible"
Description [image: image114.wmf]
This property is used to test or toggle the object’s visible status, hiding the object from display when in View mode.

Usage

[Visual Basic]
Public Property ObjVisible As Boolean
[C#]
public bool ObjVisible {get; set;}

Remarks

Use this object's flag to hide some objects (e.g. hotspot areas). When this flag is False the object will not be shown, but all events will occur.

This flag affects the display only when the EditMode property is EditMode.View and the ShowInvisible property is False. Otherwise, all objects are always visible, in spite of the 'ObjVisible' flag.

Objects that do not have this flag set also can be hidden in edit modes (while editing) by setting the PictureFlags.HideInvisible flag in the PictureOptions property.

	Note:
	No objects within a container for which the ObjVisible property is False will be displayed, even if objects inside it have their Visible flag set to True.

Data Type

Integer (Boolean)

See also

Changing object’s attributes, Use Hot-Spot abilities, Current property

OnHotSpot Eventxe "Events:OnHotSpot"

XE "OnHotSpot Event"

xe "BTIS.MetaDraw.MetaDraw.OnHotSpot"
Description

This event occurs when the mouse is moving over an object which has the “HotSpot” flag set.

Syntax

[Visual Basic]
Public Event OnHotSpot As HotSpotEventHandler
Public Delegate Sub HotSpotEventHandler (sender As Object, e As HotSpotEventArgs)

[C#]
public event HotSpotEventHandler OnHotSpot;
public delegate void HitObjectEventHandler (object sender, HotSpotEventArgs e);

Remarks

This event occurs only when EditMode is EditMode.View, and only if the HotSpots property is True and it was not masked in the EventMask property.

When the OnHotSpot event is triggered, the Current property is temporarily reset by MetaDraw to point to the topmost object in the object stacking order which has an ObjHotSpot flag and which lies under the mouse pointer. The value of Current after OnHotSpot is returned to it's prior value after the event is processed.

Setting the HotSpotEventArgs.State parameter to HotSpot.UserCursor within this event instructs MetaDraw to NOT change the cursor shape to “hand” when the mouse is over the “hotspot” object. This may be helpful when you want to set your own cursor for “Hotspot” objects.

As an alternative to the OnHotSpot event, you can use the ObjectsHitTest method inside the MouseUp event in any edit mode to get the handle of the object under the mouse cursor.

The Modifications property flag ModificationFlags.HitThrough determines how hotspots are recognized for containers and objects within containers. With this bit flag set, MetaDraw reacts to the hotspot status of individual objects under the mouse whether the objects are grouped in a container or not. When the ModificationFlags.HitThrough flag bit is clear, the hotspot status of objects within a container group is ignored and MetaDraw will react instead to the hotspot settings of the container object. Objects outside of a container are not affected by this Modifications flag setting.

	Note:
	This event will not occur if the mouse pointer leaves the MetaDraw box window, or is moves over a window which lies above the MetaDraw box. Be careful, you can receive the OnHotSpot event with HotSpotEventArgs.State parameter as HotSpot.Enter and then never receive this event when State is HotSpot.Leave (in the case, for example, when the mouse pointer leaves the MetaDraw box and a new picture was assigned at the time).

HotSpotEventArgs Event objectxe "Event objects:HotSpotEventArgs"

XE "HotSpotEventArgs Event object"

xe "BTIS.MetaDraw.HotSpotEventArgs"
The HotSpotEventArgs parameter determines hotspot state and mouse pointer coordinates in the MetaDraw client window in pixels.

Syntax

[Visual Basic]
Public Class HotSpotEventArgs Inherits EventArgs

[C#]
public class HotSpotEventArgs : EventArgs

Properties

This object has the following properties that provide information specific to the event:

	Property
	Type
	Description

	X
	Integer
	X coordinate of the mouse pointer.

	Y
	Integer
	Y coordinate of the mouse pointer.

	State
	BTIS.MetaDraw.HotSpot
	It can be set by MetaDraw to one of the values determined by the BTIS.MetaDraw.HotSpot enumeration indicate what triggered the event or it may be set within the event routine to HotSpot.UserCursor to tell MetaDraw not to change the mouse cursor.

HotSpot enumerationxe "Enumerations:HotSpot"

XE "HotSpot Enumeration"

xe "BTIS.MetaDraw.HotSpot"
	Constant
	Value
	Description

	Enterxe "BTIS.MetaDraw.HotSpot.Enter"
	0
	Mouse pointer is moved upon object in first time.

	Leavexe "BTIS.MetaDraw.HotSpot.Leave"
	1
	Mouse pointer leaves 'hotspot' object.

	Overxe "BTIS.MetaDraw.HotSpot.Over"
	2
	Mouse is moving over the object.

	UserCursorxe "BTIS.MetaDraw.HotSpot.UserCursor"
	-1
	Don’t change cursor.

Example

' Change the cursor for the “hotspot” object
Private Sub MetaDraw1_OnHotSpot(ByVal sender As Object, _
 ByVal e As BTIS.MetaDraw.HotSpotEventArgs) _
 Handles MetaDraw1.OnHotSpot

 With MetaDraw1

 Select Case e.State

 Case HotSpot.Enter, HotSpot.Over

 .MousePointer = MousePointer.Cross

 e.State = HotSpot.UserCursor

 Case HotSpot.Leave

 .MousePointer = MousePointer.Default

 End Select

 End With

End Sub

See also

Use Hot-Spot abilities, Current property, EventMask, HotSpots, ObjHotSpot properties, ObjectsHitTest method
OpenDraw Propertyxe "Properties:OpenDraw"

XE "OpenDraw Property"

xe "BTIS.MetaDraw.MetaDraw.OpenDraw"
Description

This property determines which part of the picture will be re-painted. It can be either the entire picture or only the open container.

Usage

[Visual Basic]
Public Property OpenDraw As BTIS.MetaDraw.OpenDrawStyle

[C#]
public BTIS.MetaDraw.OpenDrawStyle OpenDraw {get; set;}

Settings

The OpenDraw property settings are determined by the BTIS.MetaDraw.OpenDrawStyle enumeration.

OpenDrawStyle Enumerationxe "Enumerations:OpenDrawStyle"

XE "OpenDrawStyle Enumeration"

xe "BTIS.MetaDraw.OpenDrawStyle"
	Constant
	Description

	Fullxe "BTIS.MetaDraw.OpenDrawStyle.Full"
	Paint the whole picture.

	Containerxe "BTIS.MetaDraw.OpenDrawStyle.Container"
	Paint only the open container. Objects outside the open container will not be displayed.

	Hatchedxe "BTIS.MetaDraw.OpenDrawStyle.Hatched"
	objects that lie outside the open container will be displayed as hatched outlines/boundaries.

Remarks

When the container is opened (by mouse double-click or by assigning True to the ObjOpened property) the picture will be automatically repainted.

Data Type

BTIS.MetaDraw.OpenDrawStyle
See Also

Repaint property

OrigHeight, OrigWidth Propertiesxe "Properties:OrigHeight"

xe "Properties:OrigWidth"

XE "OrigHeight Property"

XE "OrigWidth Property"

xe "BTIS.MetaDraw.MetaDraw.OrigHeight"

xe "BTIS.MetaDraw.MetaDraw.OrigWidth"
Description

The OrigWidth and OrigHeight properties are the original height and width of the picture in units specified by the ScaleUnits property or the parent control scaling mode (by default is in twips).

Usage

[Visual Basic]
Public Property OrigWidth As Single
Public Property OrigHeight As Single

[C#]
public float OrigWidth {get; set;}
public float OrigHeight {get; set;}

Remarks

Every picture created or loaded into a MetaDraw control has a certain height and width as its intrinsic attributes. They were defined when the picture was first created and cannot be changed afterwards. The original size is calculated depending upon the picture type. For a bitmap or an icon, it is produced from the bitmap’s pixel dimensions (or icon’s standard dimensions), using the current display resolution. For a metafile, the original size is stored in a header which VB provides for every metafile loaded.

The OrigWidth/OrigHeight properties can be changed using code statements only when there is no picture loaded in the control. (Set .PicWidth or .PicHeight to 0 in order to re-initialize the picture before setting OrigHeight and OrigWidth.)

Set these properties to determine the actual dimensions of the picture being created, and then create the image by assigning an empty image to the Picture property.

' clear the MetaDraw picture
MetaDraw.PicWidth = 0
'Set the desired original size (4 inches)
MetaDraw.ScaleUnits = ScaleUnit.Inches
MetaDraw.OrigWidth = 4.0
MetaDraw.OrigHeight = 4.0
'Initialize with empty picture
MetaDraw.PicWidth = 1000
MetaDraw.PicHeight = 1000
' Now use AddObject Method
' to create the desired image, or allow end-user to draw

Note that loading an image into the Picture property of MetaDraw resets these properties automatically, to reflect the original picture size.

When a picture is already loaded, the typical use of OrigWidth and OrigHeight properties is as a reference to the unzoomed size of the picture, by which to set a zoomed visible display. For example, the following code displays the picture 200% enlarged relative to its original size:

MetaDraw.ZoomFactor = 2.0

The AutoScale property may also be used to display the picture at its original size.

Data Type

Long
See Also

Logical coordinates, AutoScale property, ZoomFactor, PicXSize and PicYSize properties, ScaleUnits property

PasteFromClipboard Methodxe "Methods:PasteFromClipboard"

xe "PasteFromClipboard Method"

xe "Clipboard"

xe "BTIS.MetaDraw.MetaDraw.PasteFromClipboard"
Description

Inserts a picture from the clipboard into MetaDraw. This method may be used to replace the entire image or to merge in a picture pasted from the clipboard.

Syntax

[Visual Basic]
Public Function PasteFromClipboard (clbMask As BTIS.MetaDraw.ClipboardFormat) As BTIS.MetaDraw.ClipboardFormat
Public Function PasteFromClipboard (clbMask As BTIS.MetaDraw.ClipboardFormat, picDst As BTIS.MetaDraw.PictureSource) As BTIS.MetaDraw.ClipboardFormat
[C#]
public BTIS.MetaDraw.ClipboardFormat PasteFromClipboard (BTIS.MetaDraw.ClipboardFormat clbMask);
public BTIS.MetaDraw.ClipboardFormat PasteFromClipboard (BTIS.MetaDraw.ClipboardFormat clbMask, BTIS.MetaDraw.PictureSource picDst);

Parameters

The PasteFromClipboard method uses these arguments:

	Argument
	Description

	clbMask
	Determines which formats can be copied from the clipboard. This is a bitwise mask composed from the values determined by the BTIS.MetaDraw.ClipboardFormat enumeration.

	picDst
	Determines destination of the paste operation that is determined by the BTIS.MetaDraw.PictureSource enumeration. When PictureSource.CheckClbFormats value is specified in this parameter, the function inserts no pictures, but just returns formats available in the clipbaord.

	
	Constant
	Description

	
	PictureSource.CheckClbFormats
	Checks whether picture in clipboard has the same format as specified in clbMask parameter.

Returns

0 - none of the requested formats are available in the clipboard

> 0 - indicates the format of the image copied from the clipboard,
- OR - (If picDst = PictureSource.CheckClbFormats) provides a bit mask identifying which image formats are currently held in the clipboard.

Remarks

If there are several available data formats in the clipboard, MetaDraw chooses one of them according to the following priority ranking:

 MetaDraw Internal format,
 Enhanced metafile,
 Windows metafile,
 DIB,
 Bitmap.

If the PictureSource.PictureClip value is specified as destination, MetaDraw inserts the corresponding picture from the clipboard into main picture as a single object. The Current property will contain the handle of inserted object.

Example

’ The following line inserts an enhanced metafile from the clipboard
’ into the main MetaDraw picture
MDraw.PasteFromClipboard(ClipboardFormat.EnhMetafile, PictureSource.PictureClip)

’ The following line copies either a metafile or bitmap
’ from the clipboard to the temporary image
MDraw.PasteFromClipboard(ClipboardFormat.Metafile Or ClipboardFormat.Dib, PictureSource.PictureImage)

' The PIC_CHECKCLBFORMATS flag may be used to check
' if some specific image format exists in the clipboard
IsBMPFormatAvailable = (MetaDraw1.PasteFromClipboard(ClipboardFormat.Bitmap, PictureSource.CheckClbFormats) > 0)

See Also

CopyToClipboard method, PictureClip property

PicBackColor, PicBorderColor Propertiesxe "Properties:PicBackColor"

xe "Properties:PicBorderColor"

XE "PicBackColor Property"

XE "PicBorderColor Property"

xe "BTIS.MetaDraw.MetaDraw.PicBackColor"

xe "BTIS.MetaDraw.MetaDraw.PicBorderColor"
Description

The PicBackColor property specifies the color to be used as a background inside the picture rectangle.

The PicBorderColor property specifies the color to be used as a background outside the picture bounds or when no picture is present.

Usage

[Visual Basic]
Public Property PicBackColor As System.Drawing.Color
Public Property PicBorderColor As System.Drawing.Color
[C#]
public System.Drawing.Color PicBackColor {get; set;}
public System.Drawing.Color PicBorderColor {get; set;}

Remarks

PicBackColor and PicBorderColor are used as shown on the following picture:

[image: image115.wmf]PicBackColor

PicBorderColor

MetaDraw

control

PicBorderColor also determines the color filling the MetaDraw’s client area when no picture is loaded.

PicBackColor also specifies the transparent color in the conversion of the picture to ICON.

The PicBackColor, PicBorderColor properties are also used to specified the gradient colors when GradientStyle is not GradientStyle.None.

Example

’ Set horizontal gradient from blue color to green
MDraw.GradientStyle = GradientStyle.LeftToRight
MDraw.PicBackColor = Color.Blue
MDraw.PicBorderColor = Color.Green

Data Type

System.Drawing.Color
See Also

Displaying and Scrolling the picture

PicLeft, PicTop, PicWidth, PicHeight Propertiesxe "Properties:PicLeft"

xe "Properties:PicTop"

xe "Properties:PicWidth"

xe "Properties:PicHeight"

XE "PicLeft Property"

XE "PicTop Property"

XE "PicWidth Property"

XE "PicHeight Property"

xe "BTIS.MetaDraw.MetaDraw.PicLeft"

xe "BTIS.MetaDraw.MetaDraw.PicTop"

xe "BTIS.MetaDraw.MetaDraw.PicWidth"

xe "BTIS.MetaDraw.MetaDraw.PicHeight"
Description

These properties define a logical coordinate system - used for setting and manipulating object boundaries within the overall image. These coordinates are independent of the physical dimensions of the image.

Usage

[Visual Basic]
Public Property PicLeft As Integer
Public Property PicTop As Integer
Public Property PicWidth As Integer
Public Property PicHeight As Integer
[C#]
public int PicLeft {get; set;}
public int PicTop {get; set;}
public int PicWidth {get; set;}
public int PicHeight {get; set;}

Remarks

Setting PicWidth or PicHeight to Zero destroys the current picture, (empties the MetaDraw control). The actual desired values of PicWidth and PicHeight should then be set. This should be done before attempting to set PicLeft, PicTop, OrigHeight and OrigWidth for a new image.

When you assign a new picture to the MetaDraw control, the scaling properties are automatically changed to reflect the logical units for the new picture:

· If the picture is a bitmap or an icon, the PicLeft and PicTop properties become zero, and the PicWidth and PicHeight get their values from the actual bitmap dimensions (in pixels).

· If the picture is a metafile, the MetaDRAW searches through the metafile for the SetWindowOrg() and SetWindowExt() records and uses their parameters to set logical units.

· If there are no SetWindowOrg()/SetWindowExt() records near the beginning of the metafile, then the PicLeft and PicTop properties are set to lowest values used in the metafile’s records, and the PicWidth/PicHeight are set to the difference between highest and lowest values.

· The original size (OrigWidth/OrigHeight properties) is calculated differently, depending upon the picture type. For a bitmap or an icon, it is produced from the bitmaps pixel dimensions (or icons standard dimensions), using the current display resolution. For a metafile, the original size is stored in a header which Windows provides for every metafile loaded.

· Offsets of the picture visible rectangle (PicXOfs, PicYOfs properties) are assigned a value of zero (picture will be displayed from left-top corner of the MetaDraw control box). Size of the visible picture (PicXSize, PicYSize properties) is assigned the original picture size.

For best presentation it is important to set PicWidth and PicHeight to maintain equal coordinate resolution in the X and Y directions – the ratios PicWidth/OrigWidth and PicHeight/OrigHeight should be equal.

	Note:
	These properties are Integer , not scaleable Single (floating point) values as in other coordinate/size properties. They don’t depend upon the settings of the ScaleUnits property. They determine only resolution of the picture that is loaded in the MetaDraw control box.

	Note:
	Note that the standard for Windows MetaFile Format(WMF) only supports resolution settings up to 32,767 – higher values should not be used for PicWidth and PicHeight if the image is to be exported to WMF format.

Data Type

Integer
Defaults

The default coordinate system runs from (0,0) to (1000,1000)

See Also

Logical coordinates

Picture Propertyxe "Properties:Picture"

XE "Picture Property"

xe "BTIS.MetaDraw.MetaDraw.Picture"
Description

This property is used to import or export a picture to/from the MetaDraw control.

Usage

[Visual Basic]
Public Property Picture As BTIS.MetaDraw.MDPicture
[C#]
public BTIS.MetaDraw.MDPicture Picture {get; set;}

Remarks

When this property is accessed, the current picture is copied into a new MDPicture object of a type specified in the PictureType property. If the PictureType property is PictureType.Bitmap, the ExportWidth and ExportHeight properties determine the exported bitmap size (in pixels). In MetaDraw the ExportOptions property must contain ExportFlags.ExportRect flag, when the ExportWidth, ExportHeight properties are used.

When a new picture is assigned to the control, the previous picture is destroyed and the new picture converted into MetaDraw's internal format.

· Metafiles: All metafile records are converted to proper MetaDraw graphical objects.

· Bitmaps and icons: An image is created consisting of a single bitmap object.

· If an empty or null picture is assigned to this property (Nothing in VB, null in C#), an empty picture will be created with current settings for PicLeft, PicTop, PicWidth, PicHeight, OrigWidth, OrigHeight properties (old picture content will be destroyed).

After the picture is created, the PicXOfs, PicYOfs properties are set to zero and PicXSize, PicYSize are set to OrigWidth, OrigHeight accordingly (or to PicWidth/PicHeight if no original size is specified).

Setting the ExportFlags.Clipping flag in the ExportOptions property allows the exported image to be clipped using the ClipLeft, ClipTop, ClipWidth and ClipHeight properties.

You can use the LoadPicture/SavePicture methods with PictureSource.Picture as the second parameter to load/save pictures. These methods work faster than the assigning picture to this property.
	Note:
	When reading this property MetaDraw creates a temporary object MDPicture with a copy of the main picture. Changing parameters of this object does not act on the main MetaDraw picture.
For example, the following code:

MetaDraw1.Picture.Image.FromFile("image.jpg")

does not change picture inside MetaDraw.

Example

’ Assign the current MetaDraw picture to a PictureBox
’ as a 64x64 bitmap.
MDraw.PictureType = PictureType.Bitmap
MDraw.ExportOptions = ExportFlags.ExportRect + ExportFlags.Pixels
MDraw.ExportWidth = 64: MDraw.ExportHeight = 64
PictureBox1.Image = MDraw.Picture.Image

Data Type

BTIS.MetaDraw.MDPicture

See also

PictureType property, LoadPicture, SavePicture methods, MDPicture object

PictureChanged Propertyxe "Properties:PictureChanged"

XE "PictureChanged Property"

xe "BTIS.MetaDraw.MetaDraw.PictureChanged"
Description

A flag representing the status of the picture - whether any changes have been made.

Usage

[Visual Basic]
Public Property PictureChanged As Boolean
[C#]
public bool PictureChanged {get; set;}

Remarks

The MetaDraw control sets the PictureChanged property to True when any change is made to the picture (e.g.: moved objects, changed attributes).

	Note:
	The MetaDraw control sets this property to False only when the Picture property has been assigned or read (or the LoadPicture method is called with the PictureSource.Picture parameter). This Flag may also be programmatically set to False.

Data Type

Boolean

See also

Creating a new picture, Editing a picture

PictureClip Propertyxe "Properties:PictureClip"

XE "PictureClip Property"

xe "BTIS.MetaDraw.MetaDraw.PictureClip"
Description

Using this property you can merge any picture into current picture, or retrieve any object(s) from the current picture.

Usage

[Visual Basic]
Public Property PictureClip As BTIS.MetaDraw.MDPicture
[C#]
public BTIS.MetaDraw.MDPicture PictureClip {get; set;}

Remarks

The PictureClip property may be set directly, or by using the LoadPicture or PasteFromClipboard methods. Regardless of how the PictureClip method is set, the result is the same.

The picture assigned to PictureClip is converted to a graphical object (a container will be created if there are multiple metafile records in the inserted image) and the resulting object is inserted into the current picture using its original size and offset. If the new object does not fit into the picture (larger than the current picture) it is shrunk to fit.

When this property is read, the element(s) of the current picture specified by the Current property will be converted to a MDPicture object of the type specified by the PictureType property.

If the PictureType property is PuctureType.Bitmap, the ExportWidth and ExportHeight properties determine the resulted bitmap size (in pixels). In MetaDraw the ExportOptions property must contains ExportFlags.ExportRect flag, when the ExportWidth, ExportHeight properties are used.

Setting the ExportFlags.Clipping flag in the ExportOptions property allows the exported image to be clipped using the ClipLeft, ClipTop, ClipWidth and ClipHeight properties.

Example

’ The following code creates a new metafile based on
’ the selected objects and assigns it as a PictureBox
Private Sub cmdSetCursor_Click()
 With MetaDraw1
 If .ObjCount(ObjHandle.Selected) > 0 Then
 .PictureType = PictureType.EnhMetafile
 .Current = ObjHandle.Selected
 PictureBox1.Image = .PictureClip.Image
 End If
 End With
End Sub
Data Type

BTIS.MetaDraw.MDPicture

See also

Merging pictures, Picture property, PictureType property

PictureImage Propertyxe "Properties:PictureImage"

XE "PictureImage Property"

xe "BTIS.MetaDraw.MetaDraw.PictureImage"
Description

This property serves as a temporary buffer to hold a secondary image.

It is used as the source of images in certain AddObject method calls, and certain Action property settings, and in EditMode.Image.

Usage

[Visual Basic]
Public Property PictureImage As BTIS.MetaDraw.MDPicture
[C#]
public BTIS.MetaDraw.MDPicture PictureImage {get; set;}

Remarks

In addition to direct setting of the property, the PictureImage may be set by

· Setting the Action property to Actions.ImageCopy, or Actions.ImageSwap
· Calling the LoadPicture method with a destination of PictureSource.PictureImage
· Calling the PasteFromClipboard method with a destination of PictureSource.PictureImage

The picture referenced by this property will be inserted as a new element as a result of:

· Drawing with the mouse in EditMode.Image
· Calling the AddObject methods with parameter ObjectTypes.Image
· Setting the Action property to Actions.ImageInsert
The PictureImage property may be quickly swapped with the main picture by setting the Action property to Actions.ImageSwap.

Data Type

BTIS.MetaDraw.MDPicture

See also

Creating objects, Action property, Picture property

PictureOptions Propertyxe "Properties:PictureOptions"

XE "PictureOptions Property"

xe "BTIS.MetaDraw.MetaDraw.PictureOptions"
Description

Specifies additional flags, which determine how to load pictures and display the background.

Usage

[Visual Basic]
Public Property PictureOptions As BTIS.MetaDraw.PictureFlags
[C#]
public BTIS.MetaDraw.PictureFlags PictureOptions {get; set;}

Settings

The PictureOptions property settings are determined by the BTIS.MetaDraw.PictureFlags enumeration.

PictureFlags Enumerationxe "Enumerations:PictureFlags"

XE "PictureFlags Enumeration"

xe "BTIS.MetaDraw.PictureFlags"
	Constant
	Value
	Description

	SolidMetafilexe "BTIS.MetaDraw.PictureFlags.SolidMetafile"
	1
	Load Windows metafiles as a single object – picture.

	SolidEnhMetafilexe "BTIS.MetaDraw.PictureFlags.SolidEnhMetafile"
	2
	Load Enhanced Windows metafiles as a single object – picture.

	SolidMetafilesxe "BTIS.MetaDraw.PictureFlags.SolidMetafiles"
	3
	Load both Windows metafiles and Enhanced metafiles as a single object.

	PicBackgroundxe "BTIS.MetaDraw.PictureFlags.PicBackground"
	16
	The image held by the BackPicture property scrolls and zooms with the main image.

	PicFullBackxe "BTIS.MetaDraw.PictureFlags.PicFullBack"
	32
	If this flag set, MetaDraw will draw the picture background (BackPicture property) even beyond the extent of the main picture (if the control window is larger than the main picture).

	StretchBrushxe "BTIS.MetaDraw.PictureFlags.StretchBrush"
	64
	With this flag set, MetaDraw will stretch the picture assigned to the FillPattern property into an 8x8 bitmap. Otherwise the full picture will be used as the brush on WinNT and Win98 machines (or 8x8 top-left corner for Win95).

	InvertDXFxe "BTIS.MetaDraw.PictureFlags.InvertDXF"
	128
	This flag instructs MetaDraw to invert black and white colors while loading a .DXF file. Otherwise MetaDraw adds black rectangle under the DXF picture. (this can be removed if desired after importing the DXF image).

	HideInvisiblexe "BTIS.MetaDraw.PictureFlags.HideInvisible"
	256
	When the is set all objects with invisible flag continue to be invisible during edit modes and export operations (ExportDC method). Otherwise such objects are invisible only in EditMode.View mode.

	DXFDefaultLimitsxe "BTIS.MetaDraw.PictureFlags.DXFDefaultLimits"
	512
	This flag instructs MetaDraw to check limits set in DXF file being imported. MetaDraw will recalculate the size of picture during loading to guarantee that all the objects are visible.

	DXFVersion14xe "BTIS.MetaDraw.PictureFlags.DXFVersion14"
	1024
	Turn this flag on to take advantage of specific AutoCad ver.14 (or higher) features when exporting to DXF format from MetaDraw. This instructs MetaDraw to save in "Enhanced" mode. This is compatible with AutoCAD version 14 only, but allows MetaDraw to preserve additional features of the image. Otherwise, If this flag is clear, MetaDraw saves in AutoCad 10 compatible format.

	LargeBrushxe "BTIS.MetaDraw.PictureFlags.LargeBrush"
	4096
	This flag forces MetaDraw to use its own mechanism for drawing patterns. It allows support of any size patterns in Windows 95. If this flag is not set only 8x8 top-left corner of the bitmap will be used on Win 95.

	PictureClipxe "BTIS.MetaDraw.PictureFlags.PictureClip"
	8192
	This flag forces MetaDraw to Clip objects at the boundary of the MetaDraw picture – hiding any portion which extends beyond the range of the picture coordinate system.

	ConvertRotatedxe "BTIS.MetaDraw.PictureFlags.ConvertRotated"
	16384
	This flag specifies whether to convert simple objects (rectangle, ellipse, ...) which are rotated into polygons when saving in WMF or EMF formats. When NOT set the WorldTransform GDI function is used to rotate objects. This is not supported in WMF, so rotated objects become unrotated after loading them back to MetaDraw. If the ConvertRotated flag is set MetaDraw converts rotated objects to polygons, so they look rotated even in WMF files.

Remarks

If the SolidMetafile or SolidEnhMetafile flag is specified in the PictureOptions property, MetaDraw will load/insert the corresponding metafile as one solid object – Picture. This means, that MetaDraw will not parse the distinct objects within the metafile . Use these flags if you insert a metafile that contains some records which are not recognized by MetaDraw (e.g. Clipping, Path records).

When PicBackground is set and the BackPicture property determines the background image, MetaDraw will draw this image as the main picture background (not as the MetaDraw window background). In that case, the background will be scrolled and zoomed with the MetaDraw picture together.

If the PicFullBack flag is set, MetaDraw will draw the picture background even outside the picture. Otherwise the background will be clipped by the picture boundaries. This flag is ignored, when the PicBackground flag is not set.

If InvertDXF (value is 128) is set in PictureOptions then MetaDraw imports DXF files with a Transparent background MetaDraw draws uses Black as the Base color for lines. Otherwise MetaDraw adds a Black rectangle as a background when importing DXF files (This rectangle is a standard rectangle object in MetaDraw, placed under other objects imported as part of the DXF image. It can be removed or changed, just like any other object in MetaDraw, after importing the DXF image). MetaDraw draws uses White as the Base color for lines

* * * WARNING - DO NOT save MetaDraw picture to WMF or EMF formats if the image contains an inserted solid metafile in .WMF or .EMF formats Save and load such images only in .MDP format.

The flag PictureClip clips objects which extend beyond the range of the picture coordinate system. If this flag is not set, it is possible that some objects will be displayed going beyond the boundaries.

Example

PicLeft = 0
PicTop = 0
PicWidth = 1000
PicHeight = 1000
AddObject (ObjectTypes.Rectangle, 900,100, 1100, 200)

will draw a rectangle which extends to the right beyond the range of the picture. Setting the PictureFlgs.PictureClip flag will clip the rectangle at X = 1000.

Example

’ the following code tells MetaDraw do not export invisible objects
’ and clip part of objects lied outside the main picture
MetaDraw.PictureOptions = MetaDraw.PictureOptions _
 Or PictureFlgs.PictureClip _
 And Not PictureFlgs.HideInvisible

Data Type

BTIS.MetaDraw.PictureFlags
See Also

BackPicture property, FillPattern property

PictureSource Enumerationxe "Enumerations:PictureSource"

XE "PictureSource Enumeration"

xe "BTIS.MetaDraw.PictureSource"
Description

This enumeration determines which MetaDraw picture should be used in exporting/importing operations.

	Constant
	Value
	Description

	Picturexe "BTIS.MetaDraw.PictureSource.Picture"
	0
	Load into the Picture property - replaces entire picture.

	PictureImagexe "BTIS.MetaDraw.PictureSource.PictureImage"
	1
	Load into PictureImage - puts loaded picture into PictureImage buffer.

	PictureClipxe "BTIS.MetaDraw.PictureSource.PictureClip"
	2
	Load as the PictureClip property - merges loaded picture into main picture

	ByCurrentxe "BTIS.MetaDraw.PictureSource.ByCurrent"
	3
	Replace objects specified in the current property with the loaded picture.

	BackPicturexe "BTIS.MetaDraw.PictureSource.BackPicture"
	
	* RESERVED for Internal MetaDraw use.

	FillPatternxe "BTIS.MetaDraw.PictureSource.FillPattern"
	4
	Load into BackPicture (ICO, WMF, EMF & BMP only)

	MouseCursorxe "BTIS.MetaDraw.PictureSource."
	5
	Sets the FillPattern (ICO, WMF, EMF & BMP only)

	xe "BTIS.MetaDraw.PictureSource.MouseCursor"
	6
	Sets the Mouse Cursor (ICO only)

PictureType Enumerationxe "Enumerations:PictureType"

XE "PictureType Enumeration"

xe "BTIS.MetaDraw.PictureType"
Description

This enumeration determines the type of picture to be saved (or loaded) in import/export operations.

	Constant
	Value
	Description

	Defaultxe "BTIS.MetaDraw.PictureType.Default"
	0
	Detect picture type automatically.

	Bitmapxe "BTIS.MetaDraw.PictureType.Bitmap"
	1
	Picture format is bitmap.

	Metafilexe "BTIS.MetaDraw.PictureType.Metafile"
	2
	Picture format is metafile.

	Iconxe "BTIS.MetaDraw.PictureType.Icon"
	3
	Picture format is Icon.

	EnhMetafilexe "BTIS.MetaDraw.PictureType.EnhMetafile"
	4
	Picture format is EMF (enhanced Metafile).

	MetaDrawxe "BTIS.MetaDraw.PictureType.MetaDraw"
	10
	Picture format is MetaDraw Internal format.

	DXFFilexe "BTIS.MetaDraw.PictureType.DXFFile"
	13
	Picture format is DXF. (requires DXF support License option)

	JPEGxe "BTIS.MetaDraw.PictureType.JPEG"
	14
	Picture format is JPEG

	GIFxe "BTIS.MetaDraw.PictureType.GIF"
	15
	Picture format is GIF

	PNGxe "BTIS.MetaDraw.PictureType.PNG"
	20
	Picture format is PNG

PictureType Propertyxe "Properties:PictureType"

XE "PictureType Property"

xe "BTIS.MetaDraw.MetaDraw.PictureType"
Description

Determines the type of picture to export when reading the Picture, PictureClip properties.

Usage

[Visual Basic]
Public Property PictureType As BTIS.MetaDraw.PictureType
[C#]
public BTIS.MetaDraw.PictureType PictureType {get; set;}

Settings

The PictureType property settings are determined by the BTIS.MetaDraw.PictureType enumeration. Only the following values are valid for the PictureType property:

	Constant
	Value
	Description

	Defaultxe "BTIS.MetaDraw.PictureType.Default"
	0
	Automatically determine the picture type.

	Bitmapxe "BTIS.MetaDraw.PictureType.Bitmap"
	1
	Export picture as bitmap.

	Metafilexe "BTIS.MetaDraw.PictureType.Metafile"
	2
	Export picture as metafile.

	Iconxe "BTIS.MetaDraw.PictureType.Icon"
	3
	Export picture as icon.

	EnhMetafilexe "BTIS.MetaDraw.PictureType.EnhMetafile"
	4
	Export picture as 32-bit enhanced Windows metafile (EMF).

	MetaDrawxe "BTIS.MetaDraw.PictureType.MetaDraw"
	10
	Use internal MetaDraw format.

Remarks

If the PictureType property is PictureType.Bitmap the ExportWidth and ExportHeight properties determine size of the exported bitmap (flag ExportFlags.ExportRect in the ExportOptions property must also be set).

You MUST save images with a PictureType of PictureType.Metafile, PictureType.EnhMetafile, PictureType.Internal in order to preserve the ObjTag, ObjStatus, ObjHotSpot, … characteristics.

Data Type

BTIS.MetaDraw.PictureType
See also

ExportHeight and ExportWidth properties, Picture property, PictureClip property

PicXOfs, PicYOfs Propertiesxe "Properties:PicXOfs"

xe "Properties:PicYOfs"

XE "PicXOfs Property"

XE "PicYOfs Property"

xe "Scrolling"

xe "BTIS.MetaDraw.MetaDraw.PicXOfs"

xe "BTIS.MetaDraw.MetaDraw.PicYOfs"
Description

These properties determine the offset of the upper-left corner of the visible area from the upper-left corner of the picture. The offset is measured in units specified by the ScaleUnits property.

Usage

[Visual Basic]
Public Property PicXOfs As Single
Public Property PicYOfs As Single
[C#]
public float PicXOfs {get; set;}
public float PicYOfs {get; set;}

Remarks

Changing these offsets has the effect of scrolling the picture in the box. These properties are also changed when the picture is manually scrolled by mouse action.

If the ScrollCheck property is True and new values are assigned to PicXOfs, PicYOfs, these values are checked and adjusted as needed to keep the picture inside the box.

	Note:
	These properties can not be changed unless the AutoScale property is set to AutoScaleMode.User.

Example

’ The following code scrolls the MetaDraw picture horizontally.
’ Assume that the visible picture is large than the MetaDraw window
Private delta As Integer

Private Sub cmdStart_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStart.Click
 MetaDraw1.ScrollMouse = ScrollType.WheelZoom
 Timer1.Interval = 100
 Timer1.Start()
 delta = MetaDraw1.PicXSize / 100
End Sub

Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 Dim ofsX As Integer
 With MetaDraw1
 ofsX = .PicXOfs
 .PicXOfs = .PicXOfs + delta
 ' If it’s unable to scroll, then change the direction
 If .PicXOfs = ofsX Then delta = -delta
 End With
End Sub
Data Type

Single

See Also

Logical coordinates, Zooming and Scrolling pictures, AutoScale property, ScrollCheck property, ScaleUnits property

PicXSize, PicYSize Propertiesxe "Properties:PicXSize"

xe "Properties:PicYSize"

XE "PicXSize Property"

XE "PicYSize Property"

xe "Zoom"

xe "BTIS.MetaDraw.MetaDraw.PicXSize"

xe "BTIS.MetaDraw.MetaDraw.PicYSize"
Description

The PicXSize and PicYSize properties are the visible height and width of the picture, in units specified by the ScaleUnits property.

Usage

[Visual Basic]
Public Property PicXSize As Single
Public Property PicYSize As Single
[C#]
public float PicXSize {get; set;}
public float PicYSize {get; set;}

Remarks

Changing the PicXSize and PicYSize properties affects the visible size of the picture displayed in the MetaDraw box.

	Note:
	These properties can only be changed when the AutoScale property is AutoScaleMode.User.

If PicXSize and PicYSize properties are set to 0 the picture will not be displayed. In this case the background of the MetaDraw control box will be filled with color that is specified in the PicBorderColor property.

	Note:
	The PicXSize/PicYSize properties have nothing in common with the logical picture units which are specified by the PicLeft, PicTop, PicWidth, PicHeight properties, They only determine the visible size of MetaDraw main picture.

Setting the ZoomFactor property maintains the aspect ratio in X and Y diretions and is generally preferred as an alternative to independently setting PicXSize and PicYSize.

Example

The following code shows the middle of the visible rectangle 1.5 times zoomed (PicXOfs and PicYOfs are also changed to fix the given point at the center of the box):

' Zoom relative to original size
MDraw.PicXSize = MDraw.OrigWidth * 1.5
MDraw.PicYSize = MDraw.OrigHeight * 1.5

' Zoom relative to current visible size
MDraw.PicXSize = MDraw.PicXSize * 1.5
MDraw.PicYSize = MDraw.PicYSize * 1.5
MDraw.PicXOfs = MDraw.PicXOfs * 1.5
MDraw.PicYOfs = MDraw.PicYOfs * 1.5

Data Type

Single

See Also

Logical coordinates, Zooming and Scrolling pictures, AutoScale property, ScaleUnits property, ZoomFactor property

ReadImageMap Methodxe "Methods:ReadImageMap"

XE "ReadImageMap Method"

xe "BTIS.MetaDraw.MetaDraw.ReadImageMap"
Description

Requires Subscription License Option
This method reads an image from HTML content with the corresponding ImageMap section and converts them into MetaDraw picture.

Syntax

[Visual Basic]
Overloads Public Function ReadImageMap (source As Object, mapName As String) As Integer
Overloads Public Function ReadImageMap (source As Object, mapName As String, picDst As BTIS.MetaDraw.PictureSource) As Integer
[C#]
public int ReadImageMap (object source, string mapName);
public int ReadImageMap (object source, string mapName, BTIS.MetaDraw.PictureSource picDst);

Parameters

This function accepts the following parameters:

	Parameter
	Description

	source
	Specifies the HTML or ImageMap to be read.

It can be either string or Stream object that contains HTML content.

	mapName
	Name of the Map that should be extracted from the HTML content.
If it is empty or omitted MetaDraw reads the map section for the first tag with USEMAP attribute.

	picSrc (optional)
	Identifies how MetaDraw will insert HTML image – as a new picture or into the current picture. It may be one of the following values:
 PictureSource.Picture – Creates a new picture (default value)
 PictureSource.PictureClip – Inserts new objects into the current picture.

Returns

The ReadImageMap method returns error code in case of errors or 0 if ImageMap has been successfully exported.

Remarks

The source parameter determines where MetaDraw will read HTML content from. It can be either string that contains HTML text or a Stream object that points to HTML data.

If there is an tag that refers to the specified MAP section (it has “usemap=#<mapname>” attribute) in the HTML file, MetaDraw will also download the corresponding image and insert it as the first object.

All AREAs elements from <MAP> section will be converted to the corresponding MetaDraw object:

POLY
- polygon

RECT
- rectangle

CIRC
- ellipse

By default the ObjStatus property for all objects created from AREA elements will be set to (WebURL, Cursor, HotSpot) and .ObjVisible will be set to False. The developer can handle MetaDraw’s Change event (ChangeType.Added) to operate with new objects added during exporting from the MAP section (e.g. to change their attributes).

Example

’ Read ImageMap for the first tag with USEMAP attribute
’ From the specified HTML file
errno = .ReadImageMap(“file://Image.html”, "")

’ Read HTML content to the str$ string and extract a MAP named <MyMap>

Read #FlNum, str$
.ReadImageMap(str$, “MyMap”, PictureSource.PictureClip)

See Also

CreateImageMap method

Redo Methodxe "Methods: Redo"

XE "Redo Method"

xe "BTIS.MetaDraw.MetaDraw.Redo"
Description

This method reverses the effect of the last Undo commands.

Syntax

[Visual Basic]
Overloads Public Function Redo () As Integer
Overloads Public Function Redo (levels As Integer) As Integer
[C#]
public int Redo ();
public int Redo (int levels);

Returns

The number of commands that have been successfully canceled/ reversed.

When nLevel is set to 0 or omitted, the function returns the number of Redo commands stored in Redo buffer.

Remarks

This method reverses/ cancels the specified number of most recently performed Undo commands. If the specified value (nLevel parameter) is greater than the number of available commands in Redo buffer, only available redo commands will be executed and the function returns the number of that commands.

The Redo buffer will be erased after any changes (other than Undo and Redo) in MetaDraw main picture.

Example

MDraw.AddObject(ObjectTypes.Ellipse, 100, 100, 200, 300)
MDraw.Undo(1) ’ delete ellipse
MDraw.Redo(1) ’ restore the object
See also

Undo/Redo support, Undo method, UndoLevels property

RedoAvailable Propertyxe "Properties:RedoAvailable"

XE "RedoAvailable Property"

xe "BTIS.MetaDraw.MetaDraw.RedoAvailable"
Description

This method returns the number of actions available in the Redo buffer.

Syntax

[Visual Basic]
Public Property RedoAvailable As Integer
[C#]
public int RedoAvailable {get; set;}

Returns

The number of commands that are available for Redo operation.

Remarks

Assignment a value to this property will reduce the number of available Redo actions to the specified value (older actions will be discarded). Setting to 0 deletes all Redo actions.

The Redo buffer will be erased after any changes (other than Undo and Redo) in MetaDraw main picture.

See also

Undo/Redo support, Redo method, UndoLevels property

Redraw Propertyxe "Properties:Redraw"

XE "Redraw Property"

xe "BTIS.MetaDraw.MetaDraw.Redraw"
Description

This property determines whether or not to repaint picture automatically after any changes.

Usage

[Visual Basic]
Public Property Redraw As Boolean
[C#]
public bool Redraw {get; set;}

Remarks

If Redraw property is True, picture will be updated after any change (scrolling, resizing, change of an object’s attributes, etc).

If Redraw is False, the picture will not be repainted after changes, but the user can repaint it using the Refresh method. Moreover, the picture will be repainted (if it had been changed and Redraw property was False) after assigning the Redraw property to True.

Data Type

Boolean

See also

Refresh method in the .NET Framework Class Library Reference.
Refresh Methodxe "Methods:Refresh"

XE "Refresh Method"

xe "BTIS.MetaDraw.MetaDraw.Refresh"
Description

Update the control at run-time.

Syntax

[Visual Basic]
Public Sub Refresh
[C#]
public void Refresh();

Remarks

Use this method for a full picture update. This method can be used to refresh the picture while the Redraw property is False.

See also

Refresh method in the .NET Framework Class Library Reference.
RemoveObject Method xe "Methods:RemoveObject"

XE "RemoveObject Method"

xe "BTIS.MetaDraw.MetaDraw.RemoveObject"
Description

Removes object(s) specified by index, or the Current property, from the current picture in the MetaDraw control box.

Syntax

[Visual Basic]
Overloads Public Sub RemoveObject ()
Overloads Public Sub RemoveObject (obj As BTIS.MetaDraw.ObjHandle)

[C#]
public void RemoveObject ();
public void RemoveObject (BTIS.MetaDraw.ObjHandle obj);

Parameters

The parameter can be one of the values determined by the BTIS.MetaDraw.ObjHandle enumeration.

	Value
	Description

	Container
	Delete all objects in the current open container. If it is not the main container, then it also will be deleted also and the container from the next level up becomes the open container.

	Selected
	Delete all selected objects.

	Current
	Objects for deleting are specified by Current property.

	object_handle
	Specifies a valid object handle to be deleted.

Remarks

If the parameter value is ObjHandle.Current or omitted, the object or group of objects specified by the Current property will be deleted. The Current property may contain either a reserved handle, or the handle of the object (or container) that should be deleted.

After the RemoveObject method has been invoked the Current property contains:

· ObjHandle.Null, if an object handle was specified for deleting;

· the same value, if a reserved handle was specified.

Example

The following example shows how to delete all polygons in the open container:

Private Sub Command1_Click()
 With MetaDraw1
 Dim cur As ObjHandle, hnd As ObjHandle
 ' Move pointer to first object in open container
 .ObjMove(ObjMove.FirstInCont)
 ' repeat loop while there is one more object
 While .Current > ObjHandle.Valid
 If .ObjType = ObjectTypes.Polygon Then
 hnd = .Current
 .ObjMove(ObjMove.Next)
 cur = .Current
 .RemoveObject(hnd)
 .Current = cur
 Else
 ' Move Current pointer to next object
 .ObjMove(ObjMove.Next)
 End If
 End While
 End With
End Sub

See also

Current property

Repaint Propertyxe "Properties:Repaint"

XE "Repaint Property"

xe "BTIS.MetaDraw.MetaDraw.Repaint"
Description

Determines the painting method for the picture.

Usage

[Visual Basic]
Public Property Repaint As BTIS.MetaDraw.RepaintType
[C#]
public BTIS.MetaDraw.RepaintType Repaint {get; set;}

Settings

The Repaint property settings are determined by the BTIS.MetaDraw.RepaintType enumeration.

RepaintType Enumerationxe "Enumerations:RepaintType"

XE "RepaintType Enumeration"

xe "BTIS.MetaDraw.RepaintType"
	Constant
	Description

	Normalxe "BTIS.MetaDraw.RepaintType.Normal"
	The MetaDraw control will paint the picture as a metafile (redraw object by object).

	Bufferedxe "BTIS.MetaDraw.RepaintType.Buffered"
	The MetaDraw control will use an offscreen bitmap for a fast looking repaint.

Remarks

If Repaint is RepaintType.Normal then the picture will be drawn to screen immediately.

If Repaint is RepaintType.Buffered the picture object will first be drawn on a temporary bitmap in memory, after which the resulting bitmap will be drawn on screen.

	Note:
	Don't use RepaintType.Buffered mode on slow machine. Otherwise, the picture will be drawn very slowly.

Data Type

BTIS.MetaDraw.RepaintType
See also

Redraw property

RotateObjects Methodxe "Methods:RotateObjects"

XE "RotateObjects Method"

xe "Rotation"

xe "BTIS.MetaDraw.MetaDraw.RotateObjects"
Description

This function rotates object(s), determined by the Current property, around a specified point by a specified angle.

Syntax

[Visual Basic]
Overloads Public Sub RotateObjects (pt As Point, angle Single, crdType As BTIS.MetaDraw.CoordType)
Overloads Public Sub RotateObjects (X As Integer, Y As Integer, angle Single, crdType As BTIS.MetaDraw.CoordType)

[C#]
public void RotateObjects (Point pt, float angle, BTIS.MetaDraw.CoordType crdType);
public void RotateObjects (int X, int Y, float angle, BTIS.MetaDraw.CoordType crdType);

Parameters

The RotateObjects method uses these arguments:

	Argument
	Description

	X, Y
pt
	Determines the point around that the rotation will perform.

	angle
	Determines the rotation angle.

	crdType
	Specifies the measurement units for X, Y, pt parameters

The crdType parameter is a BitMask can take on the following values determined by the BTIS.MetaDraw.CoordType enumeration:

	Constant
	Value
	Description

	Logic
	0
	All coordinates are in global logical coordinates (picture coordinates).

	LogicLocal
	2
	All coordinates are specified in local (container) logical units.

	Pixels
	4
	All coordinates are in client pixels.

Remarks

This method differs from the ObjRotation property in that rotation may be about any X/Y point.

Unfortunately, non-TrueType text objects can not be rotated by MetaDraw.

If the Current property points to several objects (ObjHandle.Selected), all of them will be rotated around the specified point independently.
See Also

EditMode property, ObjRotation property

RotatePicture MethodXE "Methods:RotatePicture"

XE "RotatePicture Method"

XE "Rotation"

XE "BTIS.MetaDraw.MetaDraw.RotatePicture"
Description

This function rotates the entire image (including the background picture).

Syntax

[Visual Basic]
Public Sub RotatePicture (type As BTIS.MetaDraw.RotateType
)

[C#]
public void RotatePicture (BTIS.MetaDraw.RotateType type);

Parameters

The type parameter accepts the values determined by the BTIS.MetaDraw.RotateType enumeration.

RotateType Enumerationxe "Enumerations:RotateType"

XE "RotateType Enumeration"

xe "BTIS.MetaDraw.RotateType"
	Value
	Description

	ToLeftxe "BTIS.MetaDraw.RotateType.ToLeft"
	Rotate Left

	ToRightxe "BTIS.MetaDraw.RotateType.ToRight"
	Rotate Right

	To180xe "BTIS.MetaDraw.RotateType.To180"
	Rotate 180 degrees

Remarks

If the MetaDraw picture has a background image determined by the BackPicture property, it will be also rotated by the specified direction.

See Also

ObjRotation property, RotateObjects method

SaveData Methodxe "Methods:SaveData"

XE "SaveData Method"

xe "MetaDraw Control Data Format"

xe "BTIS.MetaDraw.MetaDraw.SaveData"
Description

Save MetaDraw contents to a file or a stream.

Syntax

[Visual Basic]
Public Sub SaveData (dest As Object)

[C#]
public void SaveData (object dest);

Parameters

The dest parameter specifies the destination where the MetaDraw data should be stored. This can be either a file given by the File Name or and object inherited from the Syste.IO.Stream object.

Remarks

This function stores all MetaDraw data to the specified file, including control window sizes, attributes, all pictures and so on. The LoadData method can be used to restore the saved data.

	Note:
	Use the .MDR file extension for such files.

See Also

LoadData property

SavePicture Methodxe "Methods:SavePicture"

XE "SavePicture Method"

xe "BTIS.MetaDraw.MetaDraw.SavePicture"
Description

Saves MetaDraw's pictures into an external file or database field.

Syntax

[Visual Basic]
Overloads Public Sub SavePicture (dest As Object, picSrc As BTIS.MetaDraw.PictureSource)
Overloads Public Sub SavePicture (dest As Object, picSrc As BTIS.MetaDraw.PictureSource, picType As BTIS.MetaDraw.PictureType)

[C#]
public void SavePicture (object dest, BTIS.MetaDraw.PictureSource picSrc);
public void SavePicture (object dest, BTIS.MetaDraw.PictureSource picSrc, BTIS.MetaDraw.PictureType picType);

Parameters

The SavePicture uses these arguments:

	Argument
	Description

	Dest
	Specifies a destination to which picture will be saved.

This is an object and it may be one of the following types:

	
	Type
	Destination

	
	String
	A local file name

	
	Integer (IntPtr)
	A valid (opened) Windows file handle

	
	Stream
	A valid object based on System.IO.Stream

	
	ByteArray
	A memory byte array that will contain binary data of a picture

	picSrc
	Specifies which picture should be saved. You can save the main picture, any set of objects from the main picture, or the temporary buffer image by specifying one of the values of the BTIS.MetaDraw.PictureSource enumeration.

	picType
	Determines the data format of the stored picture. Use one of the values determined by the BTIS.MetaDraw.PictureType enumeration.

Returns

This method returns no values, but causes a run-time error in case of errors.

Remarks

Saving in the MetaDraw Internal format is most efficient in terms of speed and generally most efficient in terms of space with the possible exception of JPG files if the image contains large raster based objects.

The picType parameter is optional. If it is omitted, MetaDraw uses the PictureType property to determine the type of stored picture. The user should either specify the type of the picture as the third parameter in the SavePicture method, or using the PictureType property of MetaDraw before calling this method without a 3rd parameter).

	Note:
	The type of picture (data format) that will be saved depends on the PictureType property or picType parameter, NOT on the specified file extension.

If picSrc is PictureSource.PictureClip, you should set the value of Current to point to the object(s) you want to save, before calling this method. You can also save a single object from MetaDraw's picture (e.g. bitmap). Just assign its handle into the Current property and call the SavePicture method and specify PictureSource.Bycurrent as the picSrc parameter. To save all Selected objects, set the Current property to the special value of ObjHandle.Selected.

When ExportFlags.Clipping flag is set in the ExportOptions property then the ClipLeft, ClipTop, ClipWidth and ClipHeight properties determines clipping rectangle to be saved as resulted picture.

When saving a picture in DXF file format the PictureFlags.DXFversion14 flag of the PictureOptions property determines which version of DXF format will be used.

Saving to an Image File

To Save to an image file simply specify the FileName as the first parameter of the SavePicture method.

Saving to an open Sequential File

Specifying a valid open Windows file handle or Stream object for a sequential file as the destination parameter saves the picture to the current position of the opened file or stream. This technique is useful to create a picture library (several pictures saved in one file).

Example

' Save selected objects to a JPEG file
If MetaDraw.ObjCount(ObjHandle.Selected) > 0 Then
 MetaDraw.Current = ObjHandle.Selected
 MetaDraw.SavePicture(”c:\somefile.jpg”, _
 PictureSource.PictureClip, PictureType.JPEG)
End If
' Save picture to byte array from one MetaDraw
' and then load from byte array into another
Dim ByteArray() As Byte
MD1.SavePicture(ByteArray, PictureSource.Picture)
MD2.LoadPicture(ByteArray, PictureSource.Picture)
' The previous code is equivalent to
MD2.Picture = MD1.Picture

See Also

Saving and Exporting pictures, ExportOptions property, LoadPicture method

ScaleUnits Propertyxe "Properties:ScaleUnits"

XE "ScaleUnits Property"

xe "BTIS.MetaDraw.MetaDraw.ScaleUnits"
Description
Returns or sets a value indicating the unit of measurement for some MetaDraw’s properties that determine visual sizes (OrigWidth/OrigHeight, PicXSize/PicYSize, ClientWidth/ClientHeight, ClipXXXX).

Usage

[Visual Basic]
Public Property ScaleUnits As BTIS.MetaDraw.ScaleUnits
[C#]
public BTIS.MetaDraw.ScaleUnits ScaleUnits {get; set;}

Settings

The settings for this property are determined by the BTIS.MetaDraw.ScaleUnits enumeration.

ScaleUnits Enumerationxe "Enumerations:ScaleUnits"

XE "ScaleUnits Enumeration"

xe "BTIS.MetaDraw.ScaleUnits"
	Constant
	View

	Pixelsxe "BTIS.MetaDraw.ScaleUnits.Pixels"
	Returned values are in pixels (depends on the current screen resolution)

	Twipsxe "BTIS.MetaDraw.ScaleUnits.Twips"
	Returned values are in twips (1440 twips per logical inch; 567 twips per logical centimeter).

	Pointsxe "BTIS.MetaDraw.ScaleUnits.Points"
	Returned values are in points (72 points per logical inch).

	Inchesxe "BTIS.MetaDraw.ScaleUnits.Inches"
	Returned values are in inches.

	Millimetersxe "BTIS.MetaDraw.ScaleUnits.Millimeters"
	Returned values are in millimeters.

	Centimetersxe "BTIS.MetaDraw.ScaleUnits.Centimeters"
	Returned values are in centimeters.

Remarks

Default value for this property is ScaleUnits.Pixels.

Example

’ The following sample code sets the visible size of

’ the MetaDraw picture to (3.5” x 4”) inches.

With MetaDraw1
 .ScaleUnits = ScaleUnits.Inches
 .PicXSize = 3.5
 .PicYSize = 4.0
End With
Data Type

BTIS.MetaDraw.ScaleUnits
See also

Coordinate properties of MetaDraw

Scroll Eventxe "Events:Scroll"

XE "Scroll Event"

xe "Scrolling"

xe "BTIS.MetaDraw.MetaDraw.Scroll"
Description

Occurs when the picture size or position is changed, e.g., when the user scrolls the picture (using mouse, keyboard or scrollbars) or if PicXOfs/PicYOfs or PicXSize/PicYSize properties are changed programmatically.

Syntax

[Visual Basic]
Public Event Scroll As EventHandler
[C#]
public event EventHandler Scroll;

Remarks

The Scroll event occurs before the actual scrolling/scaling is performed, so the code in this event can check and modify PicXOfs/PicYOfs and PicXSize/PicYSize as required.

	Note:
	No recursion occurs when you change any properties of the given MetaDraw control from inside its Scroll event, because a special internal flag is used to prevent nested calls of this event.

See also

The following code forces the picture to be scrolled diagonally whenever the user tries to scroll it up or down:

Sub MetaDraw_Scroll()
 MetaDraw.PicXOfs = MetaDraw.PicYOfs
End Sub

See also

Displaying and scrolling the picture

ScrollBars Propertyxe "Properties:ScrollBars"

XE "Scrollbars Property"

xe "Scrolling"

xe "BTIS.MetaDraw.MetaDraw.ScrollBars"
Description

This property determines whether or not to show the scrollbars on the right and bottom sides of the MetaDraw control. Scroll bars allow the user to scroll the picture by clicking the mouse on these bars.

Usage

[Visual Basic]
Public Property ScrollBars As BTIS.MetaDraw.ScrollBarStyle
[C#]
public BTIS.MetaDraw.ScrollBarStyle ScrollBars {get; set;}

Settings

The ScrollBars property settings are determined by the BTIS.MetaDraw.ScrollBarStyle enumeration.

ScrollBarStyle Enumerationxe "Enumerations:ScrollBarStyle"

XE "ScrollBarStyle Enumeration"

xe "BTIS.MetaDraw.ScrollBarStyle"
	Constant
	Description

	Nonexe "BTIS.MetaDraw.ScrollBarStyle.None"
	No scrollbars are shown.

	Autoxe "BTIS.MetaDraw.ScrollBarStyle.Auto"
	The same as Auto95, but scrollbars are shown in old style.

	Alwaysxe "BTIS.MetaDraw.ScrollBarStyle.Always"
	The same as Always95, but scrollbars are shown in old style.

	Auto95xe "BTIS.MetaDraw.ScrollBarStyle.Auto95"
	(Default) Each of the two scrollbars is automatically enabled if scrolling is possible in the corresponding direction. That is, the horizontal scrollbar is enabled when picture width PicXSize is greater than width of the client area of the control and the vertical bar is enabled when PicYSize is greater than height of the client area. Note that the client rectangle (where you can see the picture) will change its size depending upon which scrollbars are visible.

	Always95xe "BTIS.MetaDraw.ScrollBarStyle.Always95"
	Both Horizontal and Vertical scrollbars are always visible. However, you still can’t scroll if the picture is smaller than the box. The advantage is that the MetaDraw box’s client area remains the same for any picture loaded.

Remarks

Whether the scroll bars are enabled or not, the user can scroll (drag) the picture through use of the mouse or keyboard.

	Note:
	The scroll bars do not function in design mode.

Data Type

BTIS.MetaDraw.ScrollBarStyle
See also

Displaying and scrolling the picture

ScrollCheck Propertyxe "Properties:ScrollCheck"

XE "ScrollCheck Property"

xe "Scrolling"

xe "BTIS.MetaDraw.MetaDraw.ScrollCheck"
Description

This property determines whether or not to check visible picture bounds after the picture is scrolled or resized.

Usage

[Visual Basic]
Public Property ScrollCheck As Boolean
[C#]
public bool ScrollCheck {get; set;}

Setting

The ScrollCheck property settings are:

	Setting
	Description

	True
	Enables automatic checking for the visible picture rectangle after the picture is scrolled or resized.

	False
	Disable any checking after changing PicXOfs, PicYOfs, PicXSize, PicYSize properties.

Remarks

If ScrollCheck is True, and you assign new values to PicXOfs, PicYOfs or PicXSize, PicYSize then these values are checked and adjusted as needed to keep the picture inside the box: negative values are changed to zero, large positive values are adjusted so that the right edge of the picture is at the right edge of the box. If the picture fully fits in the box vertically or horizontally (can’t be scrolled in this direction), then the corresponding PicXOfs/PicYOfs property is always zero and the assigning new values have not any effects.

If ScrollCheck property is False, no checks are made. The picture can be placed anywhere in the window or beyond it.

Data Type

Boolean

See also

Displaying and scrolling the picture

ScrollKeyboard Property xe "Properties:ScrollKeyboard"

XE " ScrollKeyboard Property"

xe "Scrolling"

xe "BTIS.MetaDraw.MetaDraw.ScrollKeyboard"
Description

This property determines whether or not to allow the user to scroll the picture in the control using the keyboard.

Usage

[Visual Basic]
Public Property ScrollKeyboard As Boolean
[C#]
public bool ScrollKeyboard {get; set;}

Settings

The ScrollKeyboard property settings are:

	Setting
	Description

	True (default)
	Allows the MetaDraw control to scroll the picture by the keyboard.

	False
	Keyboard scrolling is disabled.

Remarks

When ScrollKeyboard is True and the MetaDraw control has focus, MetaDraw interprets several cursor keys to scroll the picture vertically and horizontally. All keyboard messages for these keys are consumed inside the MetaDraw and do not cause any events.

When ScrollKeyboard is False, the default keyboard processing is disabled and the programmer can process any of the cursor keys in the KeyDown/KeyUp and KeyPress events. The following table shows the standard interpretation of the control keys.

	Virtual key code
	Scrolls
	With [Ctrl] pressed

	VK_LEFT
	1 pixel left
	Window width left

	VK_RIGHT
	1 pixel right
	Window width right

	VK_UP
	1 pixel up

	VK_DOWN
	1 pixel down

	VK_PRIOR (PgUp)
	'Height' pixels up
	To the top of picture

	VK_NEXT (PgDn)
	'Height' pixels down
	To the bottom of picture

	VK_HOME
	To the left edge

	VK_END
	To the right edge

Data Type

Boolean

See also

Displaying and scrolling the picture, ScrollBars property, ScrollCheck property, ScrollMouse property

ScrollMouse Propertyxe "Properties:ScrollMouse"

XE "ScrollMouse Property"

xe "Scrolling"

xe "Zooming"

xe "BTIS.MetaDraw.MetaDraw.ScrollMouse"
Description

This property determines how MetaDraw Scrolls and Zooms the picture in response to the mouse.

Usage

[Visual Basic]
Public Property ScrollMouse As BTIS.MetaDraw.ScrollType
[C#]
public BTIS.MetaDraw.ScrollType ScrollMouse {get; set;}

Settings

The ScrollMouse property may be set by combining appropriate flag values using the logical OR operation. Flag values are determined by the BTIS.MetaDraw.ScrollType enumeration.

ScrollType Enumerationxe "Enumerations:ScrollType"

XE "ScrollType Enumeration"

xe "BTIS.MetaDraw.ScrollType"
	Constant
	Value
	Description

	Nonexe "BTIS.MetaDraw.ScrollType.None"
	0
	Mouse scrolling is disabled.

	Rightxe "BTIS.MetaDraw.ScrollType.Right"
	1
	Scroll picture while the right mouse button is pressed and mouse is dragging (default value).

	Middlexe "BTIS.MetaDraw.ScrollType.Middle"
	2
	Activate picture scrolling when the middle mouse button is pressed. Picture will be scrolled in direction determined by the mouse position.

	RightMiddlexe "BTIS.MetaDraw.ScrollType.RightMiddle"
	3
	Combination of Right and RightMiddle flags.

	Reversexe "BTIS.MetaDraw.ScrollType.Reverse"
	4
	Toggle between dragging and scrolling for the right & middle mouse buttons.

	Leftxe "BTIS.MetaDraw.ScrollType.Left"
	8
	Scroll picture while the left mouse button is pressed and mouse is dragging.

	LReversexe "BTIS.MetaDraw.ScrollType.LReverse"
	16
	Toggle between dragging and scrolling for the left mouse button.

	Wheelxe "BTIS.MetaDraw.ScrollType.Wheel"
	32
	Scroll picture vertically and horizontally with mouse wheel. To scroll horizontally use Shift key.

	WheelZoomxe "BTIS.MetaDraw.ScrollType.WheelZoom"
	64
	Zoom picture with mouse wheel. Press Ctrl key to enable zooming.

Remarks

Even if the mouse scrolling and the scroll bars are all disabled, the picture can still be scrolled at runtime by changing the PicXOfs and PicYOfs properties from the code, and Zoomed using the Zoom, PicXSize, PicYSize, or AutoScale properties.

Customized response to use of the Mouse Wheel may also be achieved by processing of the MouseWheel event.

Example

’ Scrolling picture using the right mouse button or wheel and
’ zooming with wheel and Ctrl key.
MetaDraw.ScrollMouse = ScrollType.Right Or _
 ScrollType.Wheel Or ScrollType.WheelZoom

Data Type

BTIS.MetaDraw.ScrollType
See also

Displaying and scrolling the picture, ScrollBars property, ScrollCheck property, ScrollKeyboard property, MouseWheel event

SetLinkPoint Methodxe "Methods:SetLinkPoint"

xe "Links"

xe "SetLinkPoint Method"

xe "BTIS.MetaDraw.MetaDraw.SetLinkPoint"
Description

Changes coordinates of starting/ending link points.

Syntax

[Visual Basic]
Public Sub SetLinkPoint (idx As BTIS.MetaDraw.LinkIndex, x As Integer, y As Integer, crdType As BTIS.MetaDraw.LinkCoords)

[C#]
public void SetLinkPoint (BTIS.MetaDraw.LinkIndex idx, int x, int y, BTIS.MetaDraw.LinkCoords crdType);

Parameters

The SetLinkPoint method uses these arguments:

	Argument
	Description

	idx
	Identifies which link ending is being described. Its values are determined by the BTIS.MetaDraw.LinkIndex enumeration.

	x, y
	Specifies the coordinates where the link ending is anchored.

	crdType
	Specifies the measurement units for x, y parameters.

Remarks

The coordinates for the link ending point is always relative to the object where that link ending is anchored and lies inside the object’s boundaries. Coordinates set outside the object’s boundaries will be automatically reset to a valid coordinate.

The type of coordinates in crdType is determined by the BTIS.MetaDraw.LinkCoords enumeration.

LinkCoords Enumerationxe "Enumerations:LinkCoords"

XE "LinkCoords Enumeration"

xe "BTIS.MetaDraw.LinkCoords"
	Constant
	Value
	Description

	Logicxe "BTIS.MetaDraw.LinkCoords.Logic"
	0
	All coordinates are in global logical coordinates (picture coordinates).

	LogicLocalxe "BTIS.MetaDraw.LinkCoords.LogicLocal"
	2
	All coordinates are specified in local (container) logical units.

	Pixelsxe "BTIS.MetaDraw.LinkCoords.Pixels"
	4
	All coordinates are in client pixels.

	The previous values can be combined (OR'd) with one of the following masks:

	Rotatedxe "BTIS.MetaDraw.LinkCoords.Rotated"
	0x0200
	Recalculate coordinates if objects are rotated.

	Offsetxe "BTIS.MetaDraw.LinkCoords.Offset"
	0x1000
	Offsets from center of the object.

	Defaultxe "BTIS.MetaDraw.LinkCoords.Default"
	0x2000
	Use default point.

If the LinkCoords.Offset flag specified, the x, y parameters determine offsets from the center point of object. Otherwise the absolute coordinates.

If the LinkCoords.Default flag specified, MetaDraw automatically calculates the applicable point (the x, y parameters are ignored in that case).

See Also

Link Attributes

ShowAboutBox Methodxe "Methods:ShowAboutBox"

XE "ShowAboutBox Method"

xe "Version Information"

xe "BTIS.MetaDraw.MetaDraw.ShowAboutBox"
Calling the ShowAboutBox method causes MetaDraw to display a dialog box identifying MetaDraw, the version in use, the license serial number, and Bennet-Tec as the copyright holder on MetaDraw.

ShowInvisible Propertyxe "Properties:ShowInvisible"

XE "ShowInvisible Property"

xe "BTIS.MetaDraw.MetaDraw.ShowInvisible"
Description

This property determines whether or not to paint objects whose ObjVisible attribute is False.

Usage

[Visual Basic]
Public Property ShowInvisible As Boolean
[C#]
public bool ShowInvisible {get; set;}

Settings

The ShowInvisible property settings are:

	Setting
	Description

	True
	All objects will be drawn.

	False
	Only objects which have ObjVisible property set to True will be drawn.

Remarks

	Note:
	This property is only affected when the EditMode property is EditMode.View. Otherwise all object are always visible.

If the container does not have the Visible flag set (The ObjVisible property is False) it will not be displayed, even if any object inside it have Visible flag.

Data Type

Boolean

See also

Changing object’s attributes, Using Hot-Spot abilities

Text Propertyxe "Properties:Text"

XE "Text Property"xe "BTIS.MetaDraw.MetaDraw.Text"
Description

This property sets or returns the text string for the text object(s) whose handle is specified in the Current property.

Usage

[Visual Basic]
Public Property Text As String
[C#]
public string Text {get; set;}

Remarks

The text string can contain from 1 to 32767 characters. The text string can not contain NULL characters (Chr(0)).

After assigning a new string to the text object its boundaries will be recalculated according to the FontSize, TextHAlign, TextVAlign properties and previous boundaries.

This property is available only for text objects (ObjType property is ObjectTypes.Text). Attempting to read or write the Text property when .Current points to an object of another type will result in an error “Object is not a Text”.

You can use the Chr(13) or Chr(10) characters to make a new line for multi-line text objects. The following sequences of these characters make a new line:

Chr(13)
Chr(10)
Chr(13) + Chr(10).

Example

The following lines create two text objects (one under another):

Sub cmdAddText_Click ()
 With MetaDraw1
 .AddObject(ObjectTypes.Text, 10, 10, 10, 10)
 .Text = "Blue Line"
 .TextColor = Color.Blue
 ’ .Current contains the handle of first text object
 .AddObject(ObjectTypes.Text, 10, .ObjBottom, 10, .ObjBottom)
 .Text = "Red Line"
 .TextColor = Color.Red

 End With
End Sub
The following code creates a multi-line text object with two lines:

MDraw.AddObject(ObjectTypes.Text, 100, 100, 600, 300)
MDraw.TextStyle = TextStyle.Multiline
MDraw.Text = "First line" + Chr(13) + "Second line"
MDraw.FontSize = -90

Data Type

String
See also

Changing object’s attributes, FontCharSet property.

TextColor Propertyxe "Properties:TextColor"

XE "TextColor Property"

xe "BTIS.MetaDraw.MetaDraw.TextColor"
Description

Specifies the color of the characters for the text object.

Usage

[Visual Basic]
Public Property TextColor As System.Drawing.Color
[C#]
public System.Drawing.Color TextColor {get; set;}

Remarks

This property is available only for text objects (ObjType property is ObjectTypes.Text).

Data Type

System.Drawing.Color
See also

Changing object’s attributes

TextStyle Propertyxe "Properties:TextStyle"

XE "TextStyle Property"

xe "TextStyle"

xe "BTIS.MetaDraw.MetaDraw.TextStyle"
Description

Specifies the style of a text object.

Usage

[Visual Basic]
Public Property TextStyle As BTIS.MetaDraw.TextStyle
[C#]
public BTIS.MetaDraw.TextStyle TextStyle {get; set;}

Remarks

The TextStyle property settings are determined by the BTIS.MetaDraw.TextStyle enumeration.

TextStyle Enumerationxe "Enumerations:TextStyle"

XE "TextStyle Enumeration"

xe "BTIS.MetaDraw.TextStyle"
	Constant
	Description

	Standardxe "BTIS.MetaDraw.TextStyle.Standard"
	Standard text. Text string is drawn according to the starting point and text alignments.

	Boundedxe "BTIS.MetaDraw.TextStyle.Bounded"
	Text string is displayed inside the specified rectangle.

	Multilinexe "BTIS.MetaDraw.TextStyle.Multiline"
	Multi-line text. Text string is wrapped to be displayed in the specified rectangle.

	Boxedxe "BTIS.MetaDraw.TextStyle.Boxed"
	Text string is displayed with a box inside the specified rectangle.

When the TextStyle.Standard style is specified for the text object, its boundaries are calculated automatically (according to the FontSize property) and can not be changed. You can only change the position of the text object (starting point) or text string size (FontSize).

If the TextStyle.Bounded style is specified, the single text string will be displayed inside the specified rectangle. MetaDraw automatically adjusts the FontSize property according to the height of the boundary rectangle and space between characters to fit all characters to the width of the specified rectangle.

When the text style is set to TextStyle.Multiline, MetaDraw draws the text string inside the specified rectangle and wraps lines to fit the width of the rectangle. Wrapped text is aligned inside the rectangle according to the text alignments. Carriage Returns, LineFeed or a combination of the two may be used to force a line break in MultiLine objects.

The TextStyle.Boxed style provides support for automatically drawing a rectangular box around a text object. The LineColor property determines the color of the box line.

For all Text objects, the BackStyle is Opaque then the BackColor determines the color filling the rectangle behind the text. If BackStyle is transparent then FillStyle and FillColor determine the pattern and color filling the rectangle behind the text.

Including ObjStatus.FixedBorder in the ObjStatus property forces borders of a MULTI-LINE text object to remain fixed as text is added during editing. Otherwise, borders will be automatically adjusted when edited text is too large for the existing border. (If text shrinks, borders are not changed. They are changed only when text caret goes outside the borders during editing). By default this flag is NOT set.

Including FillStyle.Filled flag in the FillStyle property will draw a frame around a Standard text object and fill in the background of the object.

Data Type

BTIS.MetaDraw.TextStyle
See also

Text objects

TextHAlign Propertyxe "Properties:TextHAlign"

XE "TextHAlign Property"

xe "BTIS.MetaDraw.MetaDraw.TextHAlign"
Description

This property determines how text will be aligned in horizontal direction.

Usage

[Visual Basic]
Public Property TextHAlign As BTIS.MetaDraw.TextHAlign
[C#]
public BTIS.MetaDraw.TextHAlign TextHAlign {get; set;}

Settings

The TextHAlign property settings are determined by the BTIS.MetaDraw.TextHAlign enumeration.

TextHAlign Enumerationxe "Enumerations:TextHAlign"

XE "TextHAlign Enumeration"

xe "BTIS.MetaDraw.TextHAlign"
	Constant
	View

	Leftxe "BTIS.MetaDraw.TextHAlign.Left"
	Text will be aligned to the left side of the bounding rectangle.

	Centerxe "BTIS.MetaDraw.TextHAlign.Center"
	Text will be drawn in the middle of the bounding rectangle.

	Rightxe "BTIS.MetaDraw.TextHAlign.Right"
	Text will be aligned to the right side of the bounding rectangle.

Remarks

MetaDraw always draws a Standard text object from its starting point and the alignment determines where the text characters will be located relative to the starting point.

This property is helpful when a text object is inserted inside a container and the user changes the container boundaries.

This property is available only for text objects (ObjType property is ObjectTypes.Text).

Example

’ This code creates a container with a rectangle and
’ two text objects that are joined to the corresponding
’ corners of the rectangle.
With MetaDraw1
 .AddObject(ObjectTypes.Rectangle, 100, 100, 400, 300)
 .ObjSelected = True
 .AddObject(ObjectTypes.Text, 100, 100, 100, 120)
 .ObjSelected = True
 .TextHAlign = TextHAlign.Left
 .TextVAlign = TextVAlign.Top
 .Text = "Left-Top"
 .AddObject(ObjectTypes.Text, 400, 280, 400, 300)
 .ObjSelected = True
 .TextHAlign = TextHAlign.Right
 .TextVAlign = TextVAlign.Bottom
 .Text = "Right-Bottom"
 .Current = ObjHandle.Selected
 .Action(Actions.Group)
End With
Data Type

BTIS.MetaDraw.TextHAlign
See also

Changing object’s attributes, TextVAlign property

TextVAlign Propertyxe "Properties:TextVAlign"

XE "TextVAlign Property"

xe "BTIS.MetaDraw.MetaDraw.TextVAlign"
Description

This property determines how text will be aligned in vertical direction.

Usage

[Visual Basic]
Public Property TextVAlign As BTIS.MetaDraw.TextVAlign
[C#]
public BTIS.MetaDraw.TextVAlign TextVAlign {get; set;}

Settings

The TextVAlign property settings are determined by the BTIS.MetaDraw.TextVAlign enumeration.

TextVAlign Enumerationxe "Enumerations:TextVAlign"

XE "TextVAlign Enumeration"

xe "BTIS.MetaDraw.TextVAlign"
	Constant
	View

	pxe "BTIS.MetaDraw.TextVAlign.p"
	Text will be aligned to the top side of the bounding rectangle.

	Centerxe "BTIS.MetaDraw.TextVAlign.Center"
	Text will be drawn in the middle of the bounding rectangle.

	Bottomxe "BTIS.MetaDraw.TextVAlign.Bottom"
	Text will be aligned to the bottom side of the bounding rectangle.

	For standard text objects only

	Baselinexe "BTIS.MetaDraw.TextVAlign.Baseline"
	The baseline of a text object will be aligned to the starting point.

Remarks

This property is helpful when a text object is inserted inside a container and the user changes the container boundaries.

This property is available only for text objects (ObjType property is ObjectTypes.Text).

Example

’ This code creates a container with a rectangle and
’ a text object in the middle of the rectangle.
With MetaDraw1
 .AddObject(ObjectTypes.Rectangle, 100, 100, 400, 300)
 .ObjSelected = True
 .AddObject(ObjectTypes.Text, 100, 100, 100, 120)
 .ObjSelected = True
 .TextHAlign = TextHAlign.Center
 .TextVAlign = TextVAlign.Center
 .Text = "Center"
 .Current = ObjHandle.Selected
 .Action(Actions.Group)
End With
Data Type

BTIS.MetaDraw.TextVAlign
See also

Changing object’s attributes, TextHAlign property

Undo Methodxe "Methods: Undo"

XE "Undo Method"

xe "BTIS.MetaDraw.MetaDraw.Undo"
Description

Calling this method rolls back the last changes to the image.

Syntax

[Visual Basic]
Overloads Public Sub Undo () As Integer
Overloads Public Sub Undo (levels As Integer) As Integer
[C#]
public int Undo ();
public int Undo (int levels);

Parameters

The levels parameter determines how many undo command should be executed.

Returns

The number of commands that have been successfully rollbacked.

When levels is set to 0 or omitted, the function returns the number of commands stored in Undo buffer.

Remarks

If the number of commands in Undo buffer is less then specified levels value, only existing Undo commands will be performed and the function returns the number of that commands.

Each performed Undo command will be added to redo buffer that allows reversing the effects of the Undo commands.

The UnDo of a Delete operation will not preserve the original value of the .Current property assigned to deleted and undeleted objects.

Example

With MetaDraw1
 .AddObject(ObjectTypes.Rectangle, 100, 100, 200, 200)
 .ObjSetBounds(New Rectangle(200, 200, 300, 300), CoordType.Logic)
 .Undo(1) ’ restore previous bounds
End With
See also

Undo/Redo support, Redo method, UndoGrouping property, UndoLevels property

UndoAvailable Propertyxe "Properties:UndoAvailable"

XE "UndoAvailable Property"

xe "BTIS.MetaDraw.MetaDraw.UndoAvailable"
Description

This method returns the number of actions available in the Undo buffer.

Syntax

[Visual Basic]
Public Property UndoAvailable As Integer
[C#]
public int UndoAvailable {get; set;}

Returns

The number of commands that are available for Undo operation.

Remarks

Assignment a value to this property will reduce the number of available Undo actions to the specified value (older actions will be discarded). Setting to 0 deletes all Undo actions.

See also

Undo/Redo support, Undo method, UndoLevels property

UndoLevels Propertyxe "Properties: UndoLevels"

XE "UndoLevels Property"

xe "BTIS.MetaDraw.MetaDraw.UndoLevels"
Description

Determines the maximum number of possible operations that Metadraw can store for purposes of UnDo/ ReDo.

Usage

[Visual Basic]
Public Property UndoLevels As Integer
[C#]
public int UndoLevels {get; set;}

Default Value

0 – No actions will be added to UnDo buffer

Remarks

This property specifies the maximum number of changes/ operations performed upon a MetaDraw image, that will be buffered by MetaDraw in support of Undo operations.

Setting UnDoLevels to 0 pauses the adding of changes in the UnDo buffer.
Actions already in the UnDo buffer may still be UnDone by calling the UnDo method.

Example

Example 1
’ Set Undo level to remember two most recent commands
MDraw.UndoLevels = 2
MDraw.AddObject(ObjectTypes.Rectangle, 100, 100, 200, 200)
MDraw.AddObject(ObjectTypes.Rectangle, 400, 100, 500, 200)
MDraw.AddObject(ObjectTypes.Rectangle, 100, 300, 200, 400)
MDraw.Undo 3 ’ only two last added objects will be removed
Example 2
.UndoLevels = 100 ' allow up to 100 UnDo actions
.AddObject(ObjectTypes.Line, 50,50,75,75)
.UndoLevels = 0 ' Pause undo Buffer
 ' Do not add following actions to UnDo buffer
.AddObject(ObjectTypes.Rectangle, 100,100,150,150)
.UndoLevels = 100 ' Resume adding to UnDo buffer
.AddObject(ObjectTypes.Ellipse, 200,100, 250, 100)
.Undo(2) ' Remove Ellipse & Line, Rectangle remains
Data Type

Integer
See also

Undo/Redo support, Undo method, UndoAvailable property

UndoGrouping Propertyxe "Properties: UndoGrouping"

xe "UndoGrouping Property"

xe "BTIS.MetaDraw.MetaDraw.UndoGrouping"
Description

The UndoGrouping property provides a mechanism to group multiple actions (changes to the MetaDraw image) into a single step for purposes of Undo and Redo operations.

Usage

[Visual Basic]
Public Property UndoGrouping As Boolean
[C#]
public bool UndoGrouping {get; set;}

Remarks

After UndoGrouping is set to True all changes will be stored as one Undo command. This allows you to undo several changes in one step (e.g. it is useful when you need to change object’s attributes).

	Note:
	When UndoGrouping is active (True) UndoLevel value is ignored and all changes will be stored unless UndoGrouping is set to False.

Example

Example 1
.UndoLevels = 10 ’ Activate Undo (remember 10 recent steps)
.UndoGrouping = True
.LineWidth = 8
.LineColor = Color.Red
.FillColor = Color.Green
.UndoGrouping = False
.Undo(1) ’ restore object’s colors and border width
Example 2
' For user in editmode drawing rectangles or ellipses,
' We start UndoGrouping here in MouseDown event
' when user starts drawing new object
' and close the UndoGrouping in MouseUp after setting parameters.
' A single Undo step will now undo both the parameters and the object
Private Sub MetaDraw1_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MetaDraw1.MouseDown

 MetaDraw1.UndoGrouping = True
End Sub

Private Sub MetaDraw1_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MetaDraw1.MouseUp
 With MetaDraw1
 .UndoGrouping = True
 .LineColor = Color.Red
 .FillStyle = FillStyle.Gradient
 .FillColor = Color.Yellow
 .BackColor = Color.Green
 .UndoGrouping = False
 End With
End Sub

Protected Overrides Sub OnLoad(ByVal e As System.EventArgs)
 MetaDraw1.EditMode = EditMode.Ellipse
 MetaDraw1.UndoLevels = 10
End Sub

Private Sub btnUndo_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnUndo.Click
 MetaDraw1.Undo(1)
End Sub
Data Type

Boolean
See also

Undo/Redo support, Undo method

ZoomCentering Propertyxe "Properties:ZoomCentering"

XE "ZoomCentering Property"xe "Zoom"xe "BTIS.MetaDraw.MetaDraw.ZoomCentering"
Description

The ZoomCentering property determines who to scroll picture when its scale factor is changed.

Syntax

[Visual Basic]
Public Property ZoomCentering As Boolean
[C#]
public bool ZoomCentering {get; set;}

Remarks

If the ZoomCentering property setting is True MetaDraw will zoom the picture so its visible center will be kept in the center of the MetaDraw window.

When this property is False, MetaDraw pins the top left corner of the visible area.

Example

' Keep the visible center of MetaDraw picture in
' the center of visible area
MetaDraw.ZoomCentering = True
MetaDraw.ZoomFactor = 2 ' display image at 2 x original size
See also

Original Unzoomed Size, ZoomFactor property

ZoomFactor Propertyxe "Properties:ZoomFactor"

XE "ZoomFactor Property"xe "Zoom"xe "BTIS.MetaDraw.MetaDraw.ZoomFactor"
Description [image: image116.wmf]
The ZoomFactor property can be set to increase or decrease the visible size of the image on screen. Setting the ZoomFactor causes MetaDraw to display the image at the specified multiple of the original size.

Syntax

[Visual Basic]
Public Property ZoomFactor As Single
[C#]
public float ZoomFactor {get; set;}

Example

MetaDraw1.ZoomFactor = 1.0 ' display image at original size
MetaDraw1.ZoomFactor = 0.60 ' display image at 60% of original size
MetaDraw1.ZoomFactor = 2.0 ' display image at 2 x original size
Remarks

This is a Write Only property.

The original size used as the base setting (ZoomFactor = 1) is specified by the OrigWidth and OrigHeight properties

Setting the ZoomFactor automatically resets the AutoScale property to AutoScaleMode.User, and updates PicXSize and PicYSize

It is also possible to Zoom in X and Y directions separately using the PicXSize and PicYSize properties.

See also

PicXSize, PicYSize, OrigWidth, OrigHeight properties

Appendix A
Trappable Errorsxe "Error Codes"
Trappable Errors

A number of trappable errors can occur during the operation of MetaDraw. If you do not trap these errors, your application will close after displaying an error message. You can use the standard Visual Basic Try..Catch..End Try statement and the CMetaDrawException object to test which error has occurred, as shown in the following example:

Try
 MetaDraw1.LoadPicture("Test.bmp", BTIS.MetaDraw.PictureSource.Picture)
Catch ex As BTIS.MetaDraw.CMetaDrawException
 Select Case ex.Code
 Case &H800459F2 ' File not found
 MsgBox("File not found or could be opened")
 Case &H800459DD ' Invalid picture type
 MsgBox("This picture type is not supported by MetaDraw")
 Case Else
 MsgBox("Error in loading file." & vbCrLf & ex.Message)
 End Select
End Try

For more information about trapping errors in Visual Basic, see the Visual Basic Programmer’s Guide.

The following table lists the main trappable errors for the MetaDraw control (hexadecimal values).

Error#
Constant
Message and Explanation

0x800459D8
MDR_E_NOTIMP
“Function not implemented yet”
You called a function that is not implemented in MetaDraw.

0x800459D9
MDR_E_INVALIDOBJTYPE
“Invalid object type”
The second parameter of the AddObject method does not refer to a valid object type. This error will be also occured when you are trying to change an attribute that is not supported for that object type.

0x800459DA
MDR_E_INVALIDHANDLE
“Invalid object handle”
The handle specified in the Current property is not a valid object handle or the Current property contains one of the reserved handles which are not allowed for the implemented action.

0x800459DB
MDR_E_INVALIDINDEX
“Invalid index”
An incorrect index was specified in the RemoveObject method or while reading the property ObjCount, ObjTags.
0x800459DC
MDR_E_INVALIDPARAM
“One or more parameters are invalid”
One or more parameters passed to the MetaDraw method are invalid.

0x800459DD
MDR_E_INVALIDPICTYPE
“Invalid or unknown picture type”
File (or Stream) passed to the LoadPicture method contains picture format that is not supported by MetaDraw.

0x800459DE
MDR_E_INVALIDFONT
“Invalid font name”
Font name assigned to the FontName property is not registered in the system.

0x800459DF
MDR_E_INVALIDARRAY
“Parameter must be an Integer or Long array”
Third parameter for the ObjGetParams/ ObjSetParams methods should be Integer or Long array.

0x800459E0
MDR_E_INVALIDOBJECT
“Invalid object data”
You are trying to assign to the object data that is not compatible with this kind of objects.

0x800459E1
MDR_E_INVALIDCONTAINER
“Object is invalid or not a container”
You are trying to apply an action for simple object that valid for containers only.

0x800459E2
MDR_E_INVALIDPROPERTY
“The current object does not have this property”
You are trying to access a property that is not available for current object type.

0x800459E3
MDR_E_INVALIDLINK
“The link object is invalid”
You are trying to change parameters of an object that not link or the link does not support that parameters.

0x800459E7
MDR_E_NOTTEXT
“Object is not a text”
You are attempting to make an action which is allowed only for Text objects. For example, you have tried reading or writing the Text property while .Current pointed to a Polyline object.

0x800459E8
MDR_E_CANTUNGROUP
“Object(s) can not be ungrouped”
You are trying to ungroup object(s) that is not a container.

0x800459E9
MDR_E_CANTSETPROPERTY
“Property cannot be changed at this time”
You are trying to change a property that is locked at the moment (e.g. the PicXSize property can not be changed when the AutoScale property is set to AutoScaleMode.Original.

0x800459EC
MDR_E_NOPICTURE
“No picture defined”
You are trying to operate with objects when no picture defined in MetaDraw. E.g. a picture was not defined in the PictureImage property when image operations were invoked (e.g. insert image to the current picture using AddObject method with OT_IMAGE parameter).

0x800459ED
MDR_E_NOSELECTION
“There are no selected objects”
You are trying to apply an action that requires one or more objects to be selected but there are no selected objects.

0x800459ED
MDR_E_NOSELECTION
“There are no selected objects”
You are trying to apply an action that requires one or more objects to be selected but there are no selected objects.

0x800459EE
MDR_E_NOTCONTAINER
“Object is not a container”
The Current property does not contain a handle of a valid container. For example, you are trying to set the Current pointer to the first child of the container by calling the ObjMove property with ObjMove. FirstChild, but the Current property did not contain either the reserved handle OBJ_CONTAINER or a handle of the container.

0x800459EF
MDR_E_INVALIDTAGINDEX
“Invalid tag index”
You are trying to access object’s tag by index that is out of range.

0x800459F0
MDR_E_DUPLICATENAME
“Duplicate tag name”
You are trying to add a tag with the name that is already specified for the object.

0x800459F1
MDR_E_INVOBJTYPE
“Unable to convert the object to the specified type”
Current object can not be converted to the specified type.

0x800459F2
MDR_E_FILENOTFOUND
“File not found or could not be opened”
MetaDraw could not open file passed to the LoadPicture or LoadData method.

0x80045A0A
MDR_E_CANTDELETE
“Object can not be deleted”
You are trying to delete the main container in the RemoveObject method. The main container cannot be deleted, but you can delete all objects in the main container using the Clear method.

0x80045A0B
MDR_E_CANTOPEN
“Object can not be opened”
You are trying to open an object that cannot be opened by assigning True to the ObjOpened property. Only the following objects can be opened: Container, RoundedRectangle, Arc, Pie, Chord, Polyline, Polygon.

Appendix B
Metafile Restrictionsxe "MetaFile Restrictions"
Metafile Restrictions
The MetaDraw control operates with graphical objects which are determined by the special internal format. It needs to convert metafile records into corresponding objects. Usually, there are no problems during the transformation; however the MetaDraw control has some restrictions for converting a metafile into its own internal format:

1. If there are a few records for META_SETWINDOWORG and META_SETWINDOWEXT in the metafile, only first pair will be accepted. The picture can be distorted if the metafile contains more than one records META_SETWINDOWORG or META_SETWINDOWEXT
2. A value of the META_SETMAPMODE record is used only to determine the physical sizes of the picture (if they were not specified in the metafile header).

3. All records which specify a clipping region (like META_INTERSECLIPRECT, META_SELECTCLIPREGION and so on) are ignored.

4. Records which work with regions (META_FILLREGION, META_FRAMEREGION and so on) are ignored.

5. Records which fill an area of the screen surface (META_FLOODFILL, META_EXTFLOODFILL) are ignored.

6. Records which work with logical palette (META_REALIZEPALETTE, META_RESIZEPALETTE and so on) are ignored.

7. MetaDraw works only with polygons in ALTERNATE polygon-filling mode. Therefore, the record META_SETPOLYFILLMODE is ignored.

8. The text which is specified by META_DRAWTEXT (DrawText function) is converted to a one line text string. All text objects will be drawn using the ExtTextOut() GDI function.

9. Device-dependent bitmaps that are drawn by META_BITBLT, META_STRETCHBLT records will be converted into DIB using the current realized palette.

10. The picture can be distorted if the enhanced metafile contains records EMR_SETWORLDTRANSFORM and EMR_MODIFYWORLDTRANSFORM.

The coordinates which are specified in the metafile record will be used for creating the corresponding object. The boundary of the new picture is the smallest rectangle which contains the boundaries of all objects. The picture logical coordinates (like PicLeft, PicTop, PicWidth and PicHeight) are calculated as an intersection of this rectangle and the rectangle determined by the META_SETWINDOWORG and META_SETWINDOWEXT records.

The MetaDraw control supports the extended metafile format (using META_ESCAPE records), which allows you to save additional information about objects (object’s flags, container structure, tag information, ...). You can export a metafile without additional information by setting the PictureType property to the value PICTYPE_PLAINWMF.

Appendix C
DXF Support Notes xe "DXF Support Notes"
DXF Support Notes
Optional DXF Support Licenses provide support for Reading and Writing DXF format files

The DXF Import Support License enables the Reading of DXF formatted files.

The DXF Export Support License enables the Writing of DXF formatted files.

DXF support is only available to customers purchasing the DXF filter license.

For evaluation purposes, potential users of DXF support may use the HSEditor Utility to Import and Export DXF files prior to purchasing a MetaDraw DXF Import or Export license.

DXF General Usage notes:

DXF support is built into the MDraw32P.OCX file and does not require any additional DLL's, however support is provided only to DXF Licensed developers - Support is enabled by the licensing of an appropriate Serial Number coded to provide DXF support.

To Read and Write DXF Files use MetaDraw's LoadPicture and SavePicture methods

MetaDraw.LoadPicture filename, PictureSource

MetaDraw.SavePicture filename, PictureSource, PicType_DXFFile

where PictureSource is Pic_Picture, Pic_PictureClip, or Pic_PictureImage

The PICOPT_INVERTDXF flag of the PictureOptions property controls the background and color support for imported DXF files. By default MetaDraw always adds black rectangle under the DXF picture. (this can be removed if desired after importing the DXF image).

Setting the PICOPT_INVERTDXF flag in the PictureOptions property instead instructs MetaDraw to invert black and white colors while loading a .DXF file and do not add black rectangle under the DXF picture.

For best results in saving DXF files, set the PICOPT_DXFVERSION14 flag in the PictureOptions property before saving a DXF file. This instructs MetaDraw to save in "Enhanced" mode. This is compatible with AutoCAD version 14 only, but allows MetaDraw to preserve additional features of the image. If this flag is clear, MetaDraw saves in AutoCad 10 compatible format.

The PICOPT_DXFDEFAULTLIMITS flag of the PictureOptions property instructs MetaDraw to recalculate the size of picture during loading to guarantee that all the objects are visible. Because it can override some CAD settings for picture layout this flag is optional.

It is possible to define default font attributes for text objects. Before loading .DXF file (calling the LoadPicture method) you can change the default font for MetaDraw's picture as follows:

MDraw.Current = OBJ_DEFAULT

MDraw.FontName = "Arial Greek"

MDraw.FontBold = True

MDraw.LoadPicture “<some_file>

International Support - Any single-byte character with code greater than 128 (international characters) can be stored to a DXF file. But they will be displayed correctly only if a font with the corresponding character set is assigned to such text upon loading the DXF file. Because DXF is a text-dependent format MetaDraw doesn't support DBCS or UNICODE for DXF export at all.

Reading and Resaving a DXF file will cause the loss of features not supported by MetaDraw.

Features and Limitations of the DXF IMPORT support:

MetaDraw DXF supports the reading of DXF files as generated by AutoCad versions 10 through 14.

MetaDraw DXF recognizes the following DXF record types:

POINT, LINE, RECTANGLE, POLYLINE, ARC VERTEX ,
CIRCLE, ELLIPSE, ARC, TEXT, MTEXT, SOLID,
XLINE, RAY, LWPOLYLINE, INSERT (BLOCK)

Support for other records may be added later.

In particular the following records are NOT currently supported

TRACE, DIMENSION LINES.

Only 2-dimensional DXF images are recognized.

The third axis (Z coordinate) will be ignored when reading 3-D DXF images

All text primitives are converted into text objects using appropriate size (from the DXF file) and the current default font defined in MetaDraw. Text attributes (fontName, bold, italic, underline) are recognized only for MTEXT records when reading a DXF file. Before importing a DXF file default text attributes can be changed to desired values using the corresponding properties. All text objects imported from a DXF file will be created with the same specified text attributes (except font size and rotation angle, which are specified by DXF records).

Point objects are interpreted as Line objects where the starting and ending points are the same.

Polylines are converted into a set of lines and arcs;

Straight-line segments will be converted to standard PolyLines objects.

Curved lines will be converted to arcs.

Polygons are treated as Closed PolyLines.

The MetaDraw DXF import filter recognizes the following DXF object attributes: Line Width, Color, Angle, and Extended Data (represented as object’s tag in MetaDraw);

Every DXF layer becomes a separate container (grouped objects) in MetaDraw.

XDATA and Object Tags

MetaDraw can read AutoCAD extended data for DXF files created in ACAD environments with the XDATA command. (only the following types are supported: Int, Long, Real, Str). Because ACAD extended data with different types can have the same name, MetaDraw uses the following mechanism for interpretation:

An extended data sequence will be converted to an object tag with the same name and the corresponding type.

If there is an ambiguity (there are several extended data sequences with the same name but different types) in extended data, MetaDraw adds special prefix to the name of each double-named tag – type of tag. For example, if there are two extended data records named as "SOME_NAME" and with INT and REAL types assigned for an object in a DXF file, MetaDraw creates the following Tags for the corresponding object:

“SOME_NAME” (integer)

“SOME_NAMEDOUBLE” (real).

CURRENT LIMITATIONS:

· font name and font type are supported only for MText records - not for standard Text records, (MetaDraw uses it's default font name setting to for all Text read from a DXF file).

· line type is not supported,

· all objects are recognized as transparent (HATCH is not supported),

· Starting with build 2.5.011 MetaDraw supports insertion of Multilevel block when reading DXF files

· MetaDraw does not recognize AutoCAD's "Frozen" layer attribute and imports all layers the same way.
· MetaDraw ignores the visible attribute during import of with DXFs, i.e. all the invisible layers become visible containers in MetaDraw

Features and Limitations of the DXF Export support:

MetaDraw provides two modes of DXF export support.

· "Draft" DXF files - These are basic DXF files compatible with most versions of AutoCAD. But objects in such DXF files can lose some attributes.
· "Enhanced" DXF files - Compatible with AutoCAD version 14 only. In this mode MetaDraw makes use some of the newer features of DXF format to preserve the image as created in MetaDraw to the maximum extent possible. To save in "Enhanced" mode set the PICOPT_DXFVERSION14 flag in the PictureOptions property.

LIMITATIONS:

Both Draft and Enhanced modes have the following limitations:

1. All MetaDraw objects (except Polyline and Polygon) have the same line width – 1 pixel;

2. Line Style for all MetaDraw objects (except Polyline and Polygon) is always SOLID (DASH and DOTTED styles are not supported).

3. MetaDraw objects have no fill and are represented as TRANSPARENT (except Polygon);

4. MetaDraw does not support Visible attribute for DXF files - All invisible objects become visible when exported to DXF.

5. Colors of MetaDraw objects will be approximated to a nearest color in predefined color table (8 standard colors).

6. Bitmaps are ignored (they will be excluded from the saved file)

7. Links are converted to polyline objects (the nature of automatic link is not preserved)

8. HotSpot Information is not preserved on Export to DXF format, neither are ObjVisible nor ObjURL properties.

9. During Export, some objects are converted to objects of other types for a more optimal and full representation of data in the DXF format. Refer to the Tables below identifying object conversions in Enhanced and Draft

10. Please note that a polyline object may have line width and line type in DXF. So all the objects transformed into polylines during export preserve their line width and type settings. All the other objects which preserve their type and are not converted to polylines will have the SOLID line type and ZERO line width (-1 pixel).

The following features are available in the enhanced export mode only:

1. Filling of a polygon can be stored to a DXF file (solid colors only). In DXF file it is represented as a HATCH object;

2. Line width and style (DOTTED and DASHED) of a polygon/polyline can be stored in a DXF file;

3. The following text object attributes are stored in MTEXT record: FontName, FontBold, FontItalic, FontUnderlined.

4. In Draft mode, MetaDraw only stores text size and rotation angle for text objects. All other text attributes (font names, bold, italic) will be lost.
5. All text objects will be stored as multi-line text (stored with their boundaries).
In draft mode all MultiLine text objects will be converted to single line text objects in DXF format.

ENHANCED mode - Export Conversions

The following table shows the correspondence between MetaDraw objects and the associated ACAD objects (DXF records) when saving DXF files in enhanced export mode:

	METADRAW
	DXF RECORD

	Line
	 LWPOLYLINE

	Rectangle
	 LWPOLYLINE with straight segments

	Rounded rectangle
	 LWPOLYLINE with circular segments

	Ellipse
	 ELLIPSE

	Ellipse with zero sizes
	 POINT

	Arc (part of circle)
	 ARC

	Arc (part of ellipse)
	 ELLIPSE with specified angles

	Chord (part of circle)
	 ARC + LWPOLYLINE

	Chord (part of ellipse)
	 ELLIPSE with specified angles + LWPOLYLINE

	Pie (part of circle)
	 ARC + LWPOLYLINE

	Pie (part of ellipse)
	 ELLIPSE with specified angles + LWPOLYLINE

	Polyline

	 LWPOLYLINE

	Polygon

	 LWPOLYLINE
(closed)

	DimLine

	 LWPOLYLINE
(set of straight lines)

	Text

	 MTEXT

	Container
	Layer

DRAFT mode – Export Conversions

The following table shows the correspondence between MetaDraw objects and the associated ACAD objects (DXF records) when saving version 10 compatible DXF files for DRAFT export mode:

	METADRAW
	DXF RECORD

	Line

	 POLYLINE with two VERTICES

	Rectangle

	 POLYLINE with straight segments

	Rounded rectangle

	 POLYLINE with circular segments

	Ellipse

	 ELLIPSE

	Ellipse with zero sizes

	 POINT

	Arc (part of circle)
	 ARC

	Arc (part of ellipse)

	 ELLIPSE with specified angles

	Chord (part of circle)

	 ARC + POLYLINE

	Chord (part of ellipse)
	 ELLIPSE with specified angles + POLYLINE

	Pie (part of circle)

	 ARC + POLYLINE

	Pie (part of ellipse)
	 ELLIPSE with specified angles + POLYLINE

	Polyline

	 POLYLINE

	Polygon

	 POLYLINE (closed)

	DimLine

	 POLYLINE

	Text

	 TEXT (STANDARD)

Object TAGS / XDATA

MetaDraw object tags are represented in DXF files as Extended Application Data and may be reproduced in ACAD environments with XDATA and XDLIST commands.

MetaDraw stores only tags with the following predefined names:

DXFTAGDEFAULT (default tag string specified by the ObjTag property)

DXFTAG0

DXFTAG1

. . .

DXFTAG9

Tags with other names are ignored - they are not included in the exported DXF file.

Each of these tags can be one of the following types: ShortInteger, Long, Float, Double, String.

=

Appendix D
Other Notes

Other Notes

Text objects from external applicationsxe "Text Objects – Zero Height Text"
When reading Text objects from MetaFiles created by applications where the text height is saved as 0, MetaDraw will use the default value for font size.

Closed Curves – PolyLines and Beziers xe "Bezier Objects"

xe " PolyLine Objects "

xe "Closed Curves"
Setting the LineStyle property applied to a Bezier or Polyline object to include the PS_CLOSED flag bit (OR'g this bit with a valid line style) will close the shape – The starting and Ending points will be connectedfor a Bezier or PolyLine object A PS_CLOSED flag is now supported for the LineStyle property

Coordinate Properties as Pixels for Environments not supporting a ScaleMode

To avoid problems with coordinate properties in .NET, MetaDraw returns them in pixels if container does not support scale mode.

Appendix E
Trouble Shooting Tips

Trouble Shooting Tips

Technical Support

Technical Support questions may be sent

 By by submission to the Bennet-Tec web site Support page

Please include the following with all support requests:

· Your Full Name

· Full Name of Developer working with MetaDraw if different

· Your MetaDraw License Serial Number (or let us know if you are working in evaluation mode prior to purchasing a license)

· The exact version of the MetaDraw component you are working with – example 1.0.0.3, or 1.1.0.0

· A short summary of the issue

· A description of the problem and details on exactly how to reproduce it.

· What it is you are trying to achieve (perhaps an alternative approach can be suggested if we know your objective).

A ZIP file containing any screenshots showing how the problem may appear to you on your system, and any code for a SMALL sample which reproduces the problem. This sample must be simple – just enough to reproduce the problem without any extra code not directly related to the problem. Please do not include databases, multiple forms or dialogs, additional controls, or other logic and code which is not directly related to the issue at hand. Please do not send code or image files except within a single ZIP file as an attachment.

Appendix F
Changes from MetaDraw 3 OCX edition

Features Not Supported in .NET Edition

The following features which are available in MetaDraw 3 OCX are NOT currently supported by MetaDraw .NET:

1) WEB BASED FEATURES

The properties: WebTargetFrame, and WebURLBase ,

and the methods: WebGoBack, WebGoForward, WebNavigate ,

are not supported within the .NET edition

Internal .NET methods provided by the .NET Framework itself should be used instead

Use of MetaDraw within a Web page is not supported for the .NET edition

Use the OCX edition to embed MetaDraw within a Web page

2) DIAGRAM ARRANGE LICENSE OPTION

The RMArrangeObjects and ArrangeObjects methods are not supported in the OCX edition.

3) EMBEDDED CONTROLS / CONTAINER SUPPORT

MetaDraw can not act as a container control within .NET environment

The EmbeddedControls method is no longer supported

4) VECTORIZATION LINENSE OPTION

 Features of the Vectorization License are not supported in the .NET edition

 The methods ColorReduction, NoiseReduction, and Vectorize are not supported

5) DRAG AND DROP

Old Drag and Drop methods and events (for dragging between MetaDraw and other controls or applications) are not supported within the MetaDraw .NET edition

Use .NET framework support instead

6) OTHER

The following are no longer supported

AddObjectDefault - Use the enhanced AddObject method instead

GetParamsEx method – use the ObjGetParams instead

GetGrayScaleValue method

ChooseColor method.

TransparentBackground property.

JPGQuality property.

FileDescription property.

MDPicture property – Use one of the PictureXXXX properties instead

Syntax Changes .NET Edition

The Syntax of some methods has been changed or extended in going from the OCX to .NET edition

NAME CHANGES

All constant enumerations were renamed and are now presented as Enumeration Objects in keeping with the standards of the .NET Framework.

hDC property has been renamed as MetaDC

GetParams, SetParams, GetBounds, and SetBounds methods have been renamed
as ObjGetParams, ObjSetParams, ObjGetBounds, ObjSetBounds
DATA FORMAT CHANGES

The LoadData and SaveData methods use different format of .MDR data files that are not compatible with the OCX version.

SYNATX CHANGES

AddObject method – This method is now “overloaded” and can be called without any coordinate parameters, or can be called with either a .NET Point object or a .NET Rectangle object for use in specifying coordinates.

Action, ExportDC & ObjMove – These are now methods in MetaDraw.NET (They were write-only properties in the OCX edition).

ObjectHitMarker, ObjectsHitTest, RotateObjects, MoveObjects – These methods now accept a .NET Point object in specification of coordinates;

ChangeLogicalCoords – This method now accepts a .NET rectangle object in specification of coordinates;

LoadPicture, SavePicture – These methods accept a Stream object, but do not accept URL.

ObjGetParams – This method now returns an array of points as a function result (The GetParams method of the OCX edition returned the array as a parameter).

ObjGetBounds – This returns Boundaries as function result. (The GetBounds method of the OCX edition returned the boundaries as a parameter).

LogicToClient – This method can now be used in place of the separate LogicToClientX and LogicToClientY methods previously used in the OCX (these older methods are still supported by calling LogicToClient may be more convenient)

 USE IN C #

The syntax in this manual is geared principally to VB.NET programmers.

MetaDraw can however be used by .NET programmers in C++ and C# as well.

The main difference between using properties in VB.NET & C# is that indexed properties should be call with prefix get_ or set_

Example:

 VB: MetaDraw1.LinkStyle(LinkIndex.Start)

 C#: MetaDraw1.get_LinkStyle(LinkIndex.Start)

Index

A
About Property • 67

Action Method • 67

Actions Enumeration • 67

Add Points • 54

Adding a new object • 30

AddObject Method • 56, 68

Applications • 10

Attributes • 36

AutoScale • 29

AutoScale Property • 18, 71

AutoScaleMode Enumeration • 71

B
BackColor Property • 72

Background • 73, 107

BackPicture property • 73

BackPictureAlignment property • 73

BackPictureAlignments Enumeration • 73

BackStyle Enumeration • 75

BackStyle Property • 75

Bezier Objects • 202

BorderStyle Enumeration • 76

BorderStyle Property • 75

C
Captions • 116

Change Event • 76

Change Property • 56

ChangeCoordsFlags Enumeration • 78

ChangeEventArgs Event object • 77

ChangeLogicalCoords Method • 78

ChangeType Enumeration • 77

Clear Method • 79

Click Event • 80

ClientFlags Enumeration • 81

ClientHeight Property • 80

ClientToLogic Method • 81

ClientToLogicX Method • 81

ClientToLogicY Method • 81

ClientWidth Property • 80

Clipboard • 26, 53, 83, 158

ClipboardFormat Enumeration • 83

ClipLeft, ClipTop, ClipWidth, ClipHeight Properties • 82

Clipping • 82

Closed Curves • 202

Contact Information • 15

Container • 21

Control Window Size and Position • 17

Converting File Formats • 42

Converting Object Types • 141, 152

Coordinate System • 78

Coordinate Transform • 81

CoordType Enumeration • 134

CopyToClipboard Method • 83

Counting Objects • 46

CreateImageMap Method • 84

CreateLink method • 86

Creating a new object • 30

Cropping • 82, 97

Current Property • 87

Cut, Copy, Paste • 53

D
Default Attributes • 36, 56

Deleting • 38

Display Size • 18

Distribution Notes • 15

DoubleClick Event • 88

DrawMode Enumeration • 89

DrawMode Property • 89

DXF Support Notes • 197

E
EditFlags Enumeration • 90

EditFlags Property • 90

Editing • 30, 37

Editing using mouse • 30, 36, 37

EditMode Enumeration • 91

EditMode Property • 91

Effects • 52

Enumerations: Actions • 67; AutoScaleMode • 71; BackPictureAlignments • 73; BackStyle • 75; BorderStyle • 76; ChangeCoordsFlags • 78; ChangeType • 77; ClientFlags • 81; ClipboardFormat • 83; CoordType • 134; DrawMode • 89; EditFlags • 90; EditMode • 91; EventMasks • 93; ExportFlags • 97; ExportState • 95; FillStyle • 100; FindTagsFlags • 101; GradientStyle • 107; GridStyle • 110; GridView • 109; HitTestFlags • 131; HotSpot • 156; InRectFlags • 130; LineStyle • 113; LinkCoords • 183; LinkFlags • 115; LinkIndex • 115; LinkStyle • 118; LinkType • 86; MarkerType • 122; ModificationFlags • 124; MousePointer • 125; MoveFlags • 127; ObjectTypes • 153; ObjHandle • 88; ObjHotSpot • 136; ObjMove • 137; ObjShadow • 146; ObjStatus • 148; OpenDrawStyle • 157; OverlappedFlags • 133; PictureFlags • 165; PictureSource • 166; PictureType • 167; RepaintType • 174; RotateType • 175; ScaleUnits • 178; ScrollBarStyle • 179; ScrollType • 182; SetParamsFlags • 145; TextHAlign • 187; TextStyle • 186; TextVAlign • 188

Error Codes • 193

Event objects: ChangeEventArgs • 77; ExportEventArgs • 94; HitObjectEventArgs • 111; HotSpotEventArgs • 155

EventMask property • 56

EventMask Property • 93

EventMasks Enumeration • 93

Events: Change • 76; Click • 80; DoubleClick • 88; Export • 94; HitObject, HitObjectDouble • 110; OnHotSpot • 155; Scroll • 179

Export Event • 94

ExportDC Method • 95

ExportEventArgs Event object • 94

ExportFlags Enumeration • 97

ExportHeight Property • 96

ExportLeft Property • 96

ExportOptions Property • 97

ExportState Enumeration • 95

ExportTop Property • 96

ExportWidth Property • 96

F
File Formats • 23, 26, 42

FillColor Property • 98

Filling a Region • 52

FillPattern Property • 99

FillStyle Enumeration • 100

FillStyle Property • 99

Find • 48

FindObjectTags Method • 101

FindTagsFlags Enumeration • 101

Flipping • 41

FloodFill • 52

FontBold Property • 103

FontCharSet Property • 104

FontItalic Property • 103

FontName Property • 105

FontOrient Property • 105

FontSize Property • 106

FontStrikethru Property • 103

FontUnderline Property • 103

FontWidth Property • 106

Formats • 42

G
GIF • 23

GradientStyle Enumeration • 107

GradientStyle Property • 107

Grid • 53

GridAlign Property • 107

GridColor Property • 108

GridHeight Property • 108

GridShow Property • 109

GridStyle Enumeration • 110

GridStyle Property • 109

GridView Enumeration • 109

GridWidth Property • 108

Grouping • 39

H
HitObject Event • 110

HitObjectDouble Event • 110

HitObjectEventArgs Event object • 111

HitSensitivity Property • 111

HitTestFlags Enumeration • 131

Hot Spots • 44, 131, 136

HotSpot Enumeration • 156

HotSpotEventArgs Event object • 155

HotSpots property • 56

HotSpots Property • 112

How to create and manipulate diagram links • 48

HyperGraphics • 44, 136

I
InRectFlags Enumeration • 130

Introduction • 9

L
Labels • 116

Layering order • 41

Layering order of objects • 22

Licensing Restrictions • 15

LineColor Property • 112

LineStyle Enumeration • 113

LineStyle Property • 113

LineWidth Property • 114

LinkColor Property • 114

LinkCoords Enumeration • 183

LinkFlags Enumeration • 115

LinkFlags Property • 115

LinkIndex Enumeration • 115

LinkLabel Property • 116

LinkLength Property • 117

LinkObject Property • 117

Links • 48, 86, 115, 117, 118, 182

LinkStyle Enumeration • 118

LinkStyle property • 118

LinkType Enumeration • 86

LinkWidth property • 117

LoadData Method • 119

LoadPicture Method • 119

Locate Boundries • 134

Logical coordinates • 19

LogicToClient Property • 121

LogicToClientX Property • 121

LogicToClientY Property • 121

Looping through Objects • 46

M
MarkerColor Property • 122

Markers • 129

MarkerSize Property • 122

MarkerType Enumeration • 122

Merging into a picture • 35

MetaDC Property • 123

MetaDraw Control Data Format • 119, 176

MetaFile Restrictions • 196

Methods: Action • 67; AddObject • 32, 68; ChangeLogicalCoords • 78; Clear • 79; ClientToLigic • 81; ClientToLigicX • 81; ClientToLigicY • 81; CopyToClipboard • 83; CreateImageMap • 84; CreateLink • 86; ExportDC • 95; FindObjectTags • 101; LoadData • 119; LoadPicture • 119; MoveObjects • 126; ObjectHitMarker • 129; ObjectsHitTest • 131; ObjectsInRect • 130; ObjectsOverlappedBy • 133; ObjGetBounds • 134; ObjGetParams • 135; ObjMove • 137; ObjSetBounds • 143; ObjSetParams • 144; PasteFromClipboard • 158; ReadImageMap • 170; Redo • 171; Refresh • 172; RemoveObject • 173; RotateObjects • 174; RotatePicture • 175; SaveData • 176; SavePicture • 176; SetLinkPoint • 182; ShowAboutBox • 183; Undo • 188

ModificationFlags Enumeration • 124

Modifications Property • 124

Modifying Object Attributes • 37

MouseCursor Property • 125

MousePointer Enumeration • 125

MousePointer Property • 125

Move OnTop • 41

Move Under • 41

MoveFlags Enumeration • 127

MoveObjects method • 126

N
New picture • 17, 26

O
ObjBottom Property • 128

ObjCount Property • 129

Object Types • 32

ObjectHitMarker method • 129

Objects • 20

ObjectsHitTest method • 131

ObjectsInRect method • 130

ObjectsOverlappedBy Method • 133

ObjectTypes Enumeration • 153

ObjGetBounds Method • 134

ObjGetParams Method • 135

ObjHandle Enumeration • 88

ObjHotSpot Enumeration • 136

ObjHotSpot Property • 136

ObjLeft Property • 128

ObjLinkCount Property • 138

ObjLinks Property • 139

ObjMove Enumeration • 137

ObjMove Method • 137

ObjNumber Property • 140

ObjOpened Property • 141

ObjResolution Property • 141

ObjRight Property • 128

ObjRotation Property • 142

ObjSelected Property • 143

ObjSetBounds Method • 143

ObjSetParams Method • 144

ObjShadow Enumeration • 146

ObjShadow Property • 146

ObjShadowColor Property • 147

ObjShadowOfsX Property • 147

ObjShadowOfsY Property • 147

ObjStatus Enumeration • 148

ObjStatus Property • 147

ObjTag Property • 149

ObjTags Property • 149

ObjTagsCount Property • 150

ObjTagsName Property • 151

ObjTagsValue Property • 152

ObjTop Property • 128

ObjType Property • 152

ObjURL Property • 153

ObjVisible Property • 154

Offset • 18

OnHotSpot Event • 155

On-Line help • 15

Open container • 22

OpenDraw Property • 156

OpenDrawStyle Enumeration • 157

OrigHeight property • 17

OrigHeight Property • 157

Original Size • 17

OrigWidth Property • 17, 157

Overlap • 130, 133

OverlappedFlags Enumeration • 133

P
PasteFromClipboard Method • 158

Performance – maximizing speed • 56

PicBackColor Property • 159

PicBorderColor Property • 159

PicHeight Property • 19, 160

PicLeft Property • 19, 160

PicTop Property • 19, 160

Picture Coordinates • 19

Picture organization • 20; stacking order of objects • 22

Picture Property • 161

PictureChanged Property • 162

PictureClip Property • 163

PictureFlags Enumeration • 165

PictureImage Property • 164

PictureOptions Property • 164

PictureSource Enumeration • 166

PictureType Enumeration • 167

PictureType Property • 167

PicWidth Property • 19, 160

PicXOfs Property • 168

PicXOfs Property • 18

PicXSize Property • 18, 169

PicYOfs Property • 168

PicYOfs Property • 18

PicYSize Property • 169

PicYSize Property • 18

Points – adding and removing • 54

PolyLine Objects • 202

Printing • 43, 94, 95, 96, 97

Programmatically Adding Objects • 32

Properties: About • 67; AutoScale • 71; BackColor • 72; BackPicture • 73; BackPictureAlignment • 73; BackStyle • 75; BorderStyle • 75; ClientHeight • 80; ClientWidth • 80; ClipHeight • 82; ClipLeft • 82; ClipTop • 82; ClipWidth • 82; Current • 87; DrawMode • 89; EditFlags • 90; EditMode • 91; EventMask • 93; ExportHeight • 96; ExportLeft • 96; ExportOptions • 97; ExportTop • 96; ExportWidth • 96; FillColor • 98; FillPattern • 99; FillStyle • 99; FontBold • 103; FontCharSet • 104; FontItalic • 103; FontName • 105; FontOrient • 105; FontSize • 106; FontStrikethru • 103; FontUnderline • 103; FontWidth • 106; GradientStyle • 107; GridAlign • 107; GridColor • 108; GridHeight • 108; GridShow • 109; GridStyle • 109; GridWidth • 108; HitSensitivity • 111; HotSpots • 112; LineColor • 112; LineStyle • 113; LineWidth • 114; LinkColor • 114; LinkFlags • 115; LinkLabel • 116; LinkLength • 117; LinkObject • 117; LinkStyle • 118; LinkWidth • 117; LogicToClient • 121; LogicToClientX • 121; LogicToClientY • 121; MarkerColor • 122; MarkerSize • 122; MetaDC • 123; Modifications • 124; MouseCursor • 125; MousePointer • 125; ObjBottom • 128; ObjCount • 129; ObjHotSpot • 136; ObjLeft • 128; ObjLinkCount • 138; ObjLinks • 139; ObjNumber • 140; ObjOpened • 141; ObjResolution • 141; ObjRight • 128; ObjRotation • 142; ObjSelected • 143; ObjShadow • 146; ObjShadowColor • 147; ObjShadowOfsX • 147; ObjShadowOfsY • 147; ObjStatus • 147; ObjTag • 149; ObjTags • 149; ObjTagsCount • 150; ObjTagsName • 151; ObjTagsValue • 152; ObjTop • 128; ObjType • 152; ObjURL • 153; ObjVisible • 154; OpenDraw • 156; OrigHeight • 157; OrigWidth • 157; PicBackColor • 159; PicBorderColor • 159; PicHeight • 160; PicLeft • 160; PicTop • 160; Picture • 161; PictureChanged • 162; PictureClip • 163; PictureImage • 164; PictureOptions • 164; PictureType • 167; PicWidth • 160; PicXOfs • 168; PicXSize • 169; PicYOfs • 168; PicYSize • 169; RedoAvailable • 171; Redraw • 172; Repaint • 174; Rotation • 142; ScaleUnits • 178; ScrollBars • 179; ScrollCheck • 180; ScrollKeyboard • 181; ScrollMouse • 181; ShowInvisible • 183; Text • 184; TextColor • 185; TextHAlign • 186; TextStyle • 185; TextVAlign • 187; UndoAvailable • 189; UndoGrouping • 190; UndoLevels • 189; ZoomCentering • 191; ZoomFactor • 192

R
ReadImageMap Method • 170

ReDo • 42

Redo Method • 171

RedoAvailable Property • 171

Redraw property • 56

Redraw Property • 172

Refresh Method • 172

Registration • 12

Registration Q&A • 13

Remove Points • 54

RemoveObject Method • 173

Repaint Property • 174

RepaintType Enumeration • 174

Resetting the picture • 17, 26

Resolution • 19

RotateObjects Method • 174

RotatePicture Method • 175

RotateType Enumeration • 175

Rotating • 40

Rotation • 174, 175

S
SaveData Method • 176

SavePicture Method • 176

ScaleUnits Enumeration • 178

ScaleUnits Property • 178

Scaling • 29

Scroll Event • 30, 179

Scrollbars Property • 179

ScrollBarStyle Enumeration • 179

ScrollCheck Property • 180

Scrolling • 18, 28, 168, 179, 180, 181

ScrollKeyboard • 29

ScrollKeyboard Property • 181

ScrollMouse • 29

ScrollMouse Property • 181

ScrollType Enumeration • 182

Searching • 48

Selecting objects • 36

SetLinkPoint Method • 182

SetParamsFlags Enumeration • 145

Shadows • 52, 147

ShowAboutBox Method • 183

ShowInvisible Property • 183

Size – On-Screen Display • 18

Speed – maximizing performance • 56

T
Technical Support • 15

Text Objects – Zero Height Text • 202

Text Property • 184

TextColor Property • 185

TextHAlign Enumeration • 187

TextHAlign Property • 186

TextStyle • 185

TextStyle Enumeration • 186

TextStyle Property • 185

TextVAlign Enumeration • 188

TextVAlign Property • 187

Transparent Bitmap • 52

U
Undo • 42

Undo Method • 188

UndoAvailable Property • 189

UndoGrouping Property • 190

UndoLevels Property • 189

V
Version Information • 67, 183

Vertices – Adding and Removing • 54

W
Web • 153

Writing HotSpot applications • 56

Z
Zoom • 18, 28, 71, 169, 191, 192

ZoomCentering Property • 191

ZoomFactor Property • 192

ZoomFactor Property • 18

Zooming • 181

�_D2HPrivate(-9, 3)��License Registration Questions and Answers

�_D2HPrivate(-9,59)��Properties

�_D2HPrivate(-9,71)��Methods

�_D2HPrivate(-9,72)��Events

�_D2HPrivate(-9,4)��What is MetaDraw ?

�_D2HPrivate(-9,42)��About Property

�_D2HPrivate(-9,45)��AutoScale Property

�_D2HPrivate(-9,49)��BorderStyle Property

�_D2HPrivate(-9,55)��HotSpots Property

�_D2HPrivate(-9,76)��MousePointer Property

�_D2HPrivate(-6,0)��OpenDraw Property

�_D2HPrivate(-6,0)��Redraw property

�_D2HPrivate(-6,0)��Repaint Property

�_D2HPrivate(-6,0)��PicBackColor Property

�_D2HPrivate(-6,0)��PicBorderColor Property

�_D2HPrivate(-9,47)��GradientStyle Property

�_D2HPrivate(-7,15)��BackPicture, BackPictureAlignment Properties

�_D2HPrivate(-7,15,main)��BackPicture, BackPictureAlignment Properties

�_D2HPrivate(-9,30)��EditFlags Property

�_D2HPrivate(-9,31)��EditMode Property

�_D2HPrivate(-9,32)��EventMask Property

�_D2HPrivate(-9,54)��HitSensitivity Property

�_D2HPrivate(-9,70)��MarkerColor Property

�_D2HPrivate(-9,71)��MarkerSize Property

�_D2HPrivate(-9,48)��GridAlign Property

�_D2HPrivate(-9,49)��GridColor Property

�_D2HPrivate(-9,51)��GridShow Property

�_D2HPrivate(-9,52)��GridStyle Property

�_D2HPrivate(-9,50)��GridHeight, GridWidth Properties

�_D2HPrivate(-9,22)��ClientHeight, ClientWidth Properties

�_D2HPrivate(-9,22)��ClientHeight, ClientWidth Properties

�_D2HPrivate(-9,24)��ClipLeft, ClipTop, ClipWidth, ClipHeight Properties

�_D2HPrivate(-9,24)��ClipLeft, ClipTop, ClipWidth, ClipHeight Properties

�_D2HPrivate(-9,35)��ExportLeft, ExportTop, ExportHeight, ExportWidth Properties

�_D2HPrivate(-9,35)��ExportLeft, ExportTop, ExportHeight, ExportWidth Properties

�_D2HPrivate(-9,36)��ExportOptions Property

�_D2HPrivate(-9,72)��MetaDC Property

�_D2HPrivate(-9,74)��Modifications Property

�_D2HPrivate(-9,15)��BackPicture, BackPictureAlignment Properties

�_D2HPrivate(-9,38)��FillPattern Property

�_D2HPrivate(-9,75)��MouseCursor Property

�_D2HPrivate(-9,10)��About Property

�_D2HPrivate(-9,16)��BackStyle Property

�_D2HPrivate(-9,29)��DrawMode Property

�_D2HPrivate(-9,37)��FillColor Property

�_D2HPrivate(-9,38)��FillPattern Property

�_D2HPrivate(-9,39)��FillStyle Property

�_D2HPrivate(-9,56)��LineColor Property

�_D2HPrivate(-9,57)��LineStyle Property

�_D2HPrivate(-9,58)��LineWidth Property

�_D2HPrivate(-9,27)��Current Property

�_D2HPrivate(-9,41)��FontBold, FontItalic, FontStrikethru, FontUnderline Properties

�_D2HPrivate(-9,42)��FontCharSet Property

�_D2HPrivate(-9,43)��FontName Property

�_D2HPrivate(-9,44)��FontOrient Property

�_D2HPrivate(-9,45)��FontSize Property

�_D2HPrivate(-9,46)��FontWidth Property

�_D2HPrivate(-9,59)��LinkColor Property

�_D2HPrivate(-9,61)��LinkFlags Property

�_D2HPrivate(-9,62)��LinkLabel Property

�_D2HPrivate(-9,63)��LinkLength, LinkWidth Properties

�_D2HPrivate(-9,64)��LinkObject Property

�_D2HPrivate(-9,65)��LinkStyle Property

�_D2HPrivate(-9,66)��LinkSymbolColor Property

�_D2HPrivate(-9,48)��BackStyle Property

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-6,0)��LinkFlags Enumeration

�_D2HPrivate(-6,0)��LinkFlags Enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-6,0)��LinkFlags Enumeration

�_D2HPrivate(-6,0)��LinkFlags Enumeration

�_D2HPrivate(-6,0)��ObjHandle Enumeration

�_D2HPrivate(-6,0)��ObjHandle Enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-6,0)��ObjHandle Enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-6,0)��ObjHandle Enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-6,0)��ObjHandle Enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-9,60)��LinkIndex enumeration

�_D2HPrivate(-6,0)��RotateType Enumeration

_1107180570.doc

_1107180607.doc

_1107109689.doc

_1107109690.doc

_1107109688.doc

