User's Guide� & Reference

ALLTEXT™ 4� (Standard and HT/Pro)

Enhanced Rich Text Box Control�15 September 1995

Bennet-Tec Information Systems, Inc.���

ALLText ™ 4�

Created by:�Jeffrey W. Bennett,�Victor A. Chernov, �Vladislav V. Golovkov, �Pavel V. Illich-Switych,�Alexander E. Nikiforov�Published and Distributed by: �Bennet-Tec Information Systems, Inc.�10 Steuben Drive, Jericho, NY 11753 -USA�Controls@Bennet-Tec.Com�Phone (516) 433-6283 Fax (516) 822-2679��

Information in this document is subject to change without notice. No part of this document may be reproduced, transmitted or translated in any form or by any means, electronically or mechanical, without the written permission of Bennet-Tec Information Systems.

Copyright © 1994, 1995 Bennet-Tec Information Systems

 All rights reserved

The following trademarks are used in this document. Whenever you come across them, please remember that they are the trademarks or registered trademarks of the companies shown below.

 Windows and Visual Basic are trademarks of the Microsoft Corporation.

�

End-User IDEAS & Feedback

ALLText is a tool under constant development. New editions and versions are already in development. Our goal is to maintain ALLText as the most flexible text tool on the market. Here we depend on you, the user. It is you who drives the development of ALLText. Let us know where we are coming up short, let us know where we should focus more attention. If you find bugs, we want to know. If you find faults with our manual, we want to know. (We wouldn't object to a bit of praise from time to time either).

We'd also like to help share ideas between end-users of our control. Please let us know if you come up with any innovative uses of ALLText or any programming tricks you think others should know about. We will include them as demo subroutines, or in future editions of the help file.

Contact us directly by phone or fax, or better yet, drop us some e-mail.

�

					President,

					Bennet-Tec Information Systems, Inc.

					10 Steuben Drive, Jericho, NY 11753

					(516) 433-6283 Fax (516) 822-2679

					E-Mail: Controls@Bennet-Tec.Com

					 or	71201,1075 on Compuserve

�ALLText

	Multiple Font and Color Text Box Control

Licence agreement: Use and Distribution.

This is a legal agreement between you (the purchaser of the ALLTEXT) and Bennet-Tec.

0.	Ownership: The ALLText control is owned by Jeffrey W. Bennett and Bennet-Tec Information Systems, Inc. and is protected by US copyright laws and international treaty provisions. Neither the software nor the documentation may be copied for distribution or resale without express permission from Bennet-Tec, except as stipulated below (see Distribution of RunTime Software).

2.	Grant of License. This license agreement permits you, a single individual, to use the enclosed custom control "ATX40S.VBX" or “ATX40H.VBX” in creating applications or running non-compiled applications within a design time environment such as Visual Basic. With respect to use in a networked environment, this means that only one copy of the software may be running at one time for each license you have purchased. A separate copy of the software must be purchased for each developer using the software in a design time environment. The License file may not be shared or distributed.

2.	Distribution of RunTime software: In order to distribute applications created with the ALLText control, you will need to provide your users with a run time VBX. The file ATX40S.VBX or ATX40H.VBX may be distributed with your applications for this purpose. You may distribute this file without any additional fees or royalties. You may not distribute the help file ATX4.HLP, or the design-time support file ATX4S.LIC or ATX4H.LIC under any circumstances - these files are for use solely by the purchaser of the licence from Bennet-Tec. In distributing your code, you should copy the file ATX40S.VBX or ATX40H.VBX onto your distribution disks and upon installation of your application, copy the file into the client's windows/system directory. If referred to in your documentation (on-line files or hard copy), you should note the proper copyright information for the ALLTEXT control.

3.	Limited Warranty: Bennet-Tec warrants that the software (ALLTEXT) will perform as advertised and as provided for in the documentation for a period of ninety (90) days from the date of receipt. Should the software (ALLTEXT) fail to perform as advertised within such a period, Bennet-Tec will make every reasonable effort to satisfy any such claims, alternatively the customer may return the software (original disks and documentation) within this period with proof of purchase for a full refund of the purchase price (not to include shipping and handling charges).

4.	Other Warranties: To the maximum extent permitted by law, Bennet-Tec disclaims all other warranties, expressed or implied.

5.	No Liability for Consequential Damages: To the maximum extent permitted by law, Bennet-Tec will refuse to accept any liability for damages whatsoever arising out of the use or inability to use this product (ALLTEXT), even if Bennet-Tec has been advised of the possibility of such damages.

6.	Contact Information: Should you need to discuss this agreement, or have any questions concerning the product (ALLTEXT) itself, please contact Bennet-Tec at phone (516) 997-5596, Fax (516) 822-2679, or by Electronic Mail at Controls@Bennet-Tec.Com. Our address is 50 Jericho Tpk, Jericho, NY 11753

�

ALLText General Description

AllText is a multiple font custom control text box designed for Visual Basic programmers by Bennet-Tec Information Systems. AllText looks like a textbox on your form, but supports the simultaneous display of multiple fonts, font characteristics and colors; paragraph formatting; and even inclusion of any bit map as the background to the control. Using AllText, you can include a WYSIWYG edit/display text box as part of your Visual Basic programs. The ability to highlight with colors as well as font characteristics make it the ideal choice for use in word-processing and text presentation.

Unique Features (included in both Standard and HT/Pro editions):

·	Display and/or editing of text in multiple simultaneous fonts and font characteristics:

FontFamily, FontName, FontSize,�Bold, Underline, Italic, StrikeThrough, Super and Sub Scripts�Colors (the 16 QBColor settings are supported),�� EMBED MSWordArt.2 \s ���.

·	Paragraph formatting supporting (for each paragraph):

Alignment: centered, left, right or left/right justify,�Margins: left and right as well as hanging indents�Vertical spacing - space before, space after, and line spacing�Tab Stop size.

·	Cut & Paste, including preservation of format between applications.

·	Creation and use of a Font Table, facilitating the smooth and rapid changing of fonts; ie; changing to Arial Bold 25 pt, italics all in one step.

·	BitMapped Background - may be moved or positioned at run-time, great for special effects or water marks.

·	Several Write Protect and Screen Protect modes for presentation of text, with controlled user interaction, as well as allowing programmatic manipulation of text without refresh until ready.

·	(New) Print to Printer or DC (pictureboxes, forms..)

·	(New) Multi Level Undo Support

·	(New) Page and Line Numbers

·	(New) File Drag & Drop

·	(New) Full Search support - even an enhanced Search - Search filter includes format information

·	(New) Change State Event - Triggers for user specified events

�

AllText HT/Pro is our Professional level edition of the popular ALLText mixed font textbox. Designed for demanding users, ALLText HT/Pro offers all the features from our ALLText standard edition plus RTF support, Hypertext tagging, OLE Objects and Picture Support. Everything you need to make a professional HyperText or MultiMedia application.

ALLText HT/Pro Additional Features:

·	RTF I/O with full support for character and paragraph formatting for exchange of files with other stand-alone applications.

·	HYPERTEXT tagging of any phrases - Events on click, dblclick, Mouse and cursor enter/leave. Built in Find_HTag function.

·	(New) BookMark Tagging - like Hotspot tags, but without change of mouse pointer, 		can be nested with Hypertext tags. May also be used for special merge fields.

·	(New) Embedded Images (BMP, ICO, JPG, WMF)

·	Embedded OLE 1.0 Objects -great for speadsheets or graphs. A server is needed for inclusion or editing, but not for viewing.

·	Paragraph Borders - Single, Double, Shaded, any side or all sides.

·	Data Aware - Supports binding to memo or large binary object fields

·	Absolute Aligned Tabs - absolute positioning and alignment: left, right, centered

·	(New) Hidden Text - shsh!, we hesitate to show it here

�Services and Products available from Bennet-Tec

Bennet-Tec Information Systems, Inc. is a leading developer of software components, and a provider of a complete range of software development services.

Custom Controls:

��ALLText д�Multi-Font Text Control, Also ALLText HT/Pro - Hypertext Enhanced Edition����TList™�Enhanced Outline control (multifont, multipicture, drag-drop, restructuring, and much more.)��� EMBED MsImager.1 ����MetaDrawд�Object Oriented Graphic Image and HyperGraphic Control.����FileIconд�Icon Extraction, Display & Launch control for Visual Basic.����PicScrollд�Scrollable, Zoomable, DropFile Aware Picture Box control for Visual Basic.����VBX Artistд�Image Editing Control For Visual Basic����ScatterPlot3d д�Three-D Scatter Plot control for Visual Basic����Global д�InterApplication variable sharing for Windows��

Custom software development services

OCX/VBX Customization

DLL/Component Creation

Complete Windows application Development

Past projects include:

Electronic Mail, Web Browsers,

Electronic Exams

CAD, Games

Financial Order Entry Systems

Technology Licensing

Bennet-Tec has unique technology available for licensing in areas of

Internet / HTML

Embedded Word Processing - for any Windows application

Forms processing

Document and image annotation

Our aim is to make you look sharp!

 �Contents

 CHAPTER 1: Getting Started	� GOTOBUTTON _Toc336513660 � PAGEREF _Toc336513660 �1��

Adding the control to a form, Constants, Definitions

CHAPTER 2: ALLText Programming Techniques:	� PAGEREF _Ref336840450 �3�

How to Section -

CHAPTER 3: ALLText Properties	� GOTOBUTTON _Toc336513662 � PAGEREF _Toc336513662 �33��

Technical description of supported properties

CHAPTER 4: ALLText Functions	� GOTOBUTTON _Toc336513663 � PAGEREF _Toc336513663 �99��

Technical description of supported functions

CHAPTER 5: ALLText Events	� GOTOBUTTON _Toc336513664 � PAGEREF _Toc336513664 �115��

Technical description of supported events

Appendix 1: TroubleShooting	� GOTOBUTTON _Toc336513665 � PAGEREF _Toc336513665 �127��

Answers to the most common problems

Appendix 2: Embedded Format Codes	� GOTOBUTTON _Toc336513666 � PAGEREF _Toc336513666 �131��

Listing of embedded format codes supported by ALLText

Appendix 3: Mouse and Keyboard Control	� PAGEREF _Ref336518054 �133�

�

�Chapter 1

Getting Started� XE “Getting Started”�

Adding the ALLText Control to a Form

To begin using the ALLText control, make sure you have the appropriate files on your hard disk and all in the same directory:

ALLText Standard Files: ATX40S.VBX, ATX4S.LIC and ATX4.HLP.

ALLText HT/Pro Files: ATX40H.VBX, ATX4H.LIC and ATX4.HLP

The preferable location for these files in design mode is your \Windows directory. Alternatively you may locate them in any other directory. The windows\system directory is NOT a preferred choice as this directory is generally used by end-user applications which may overwrite your design version of ALLText with an older version of the VBX.

Now open a new VB Project and add an ALLText control to your form using the File Add menu choice to select ATX40S.VBX (standard edition) or ATX40H.VBX (HT/Pro edition). The ALLText icon should then appear on your toolbar. You may select the control and place on your form as you would any other control.

After adding the control to your form, you may set the various default properties. Note that the text and text characteristic properties may not be accessed at design time, this may change in some future version of the control, but for now it is required that text manipulation be handled at runtime.

Constants�XE "Constants"�

All constants and file declarations used by ALLText and referred to in this manual are shipped with the control in a constant declaration file. You should add the file ATX4SAPI.BAS (standard edition) or ATX4HAPI.BAS (HT/Pro edition) to you Visual Basic application.

Definitions

Font Table�XE "Font Table, definition"� - An internal table of fonts in use is maintained by ALLText to allow quick manipulations of character formatting. Each entry specifies a complete combination of FontName, FontSize, Underline, Bold, Italics, Shadow, and Sub/SuperScriptText characteristics. Font Table Entries may be read using the FontTableGet function and defined using FontTablePut. Text can be formatted by referring to an entry in the font table using the FontIndex property or an embedded code such as \f1 for font table entry 1. Font table entries will be automatically created as needed upon setting font properties such as FontName or FontSize.

Paragraph�XE "Paragraph, definition"� - Much of ALLText’s internal functioning is based on manipulation of paragraph sized units. A paragraph is generally defined as a unit of text terminated by a hard line break - either a carriage return/ linefeed {chr$(13) & Chr$(10)} in terms of Raw Text, or the embedded code “\par ” in terms of formatted text. Paragraphs are characterized by Alignment, Margins, and Text content.

Pixel�XE "Pixel, Definition"� - A hardware dependent unit of measure equal in size to the smallest addressable element for a given physical device.

Point�XE "Point, definition"� - A unit of measure equal to 1/72 of an inch, applicable to font sizes.

Twips�XE "Twips, definition"� - The standard, device independent, unit of measure used by Windows applications. A twip is equivalent to 1/1440 inches.�

�Chapter 2

ALLText Programming Techniques, How To:

This section is intended to get you started quickly using ALLText. More detailed information on Properties, Functions, and Events is available in the relevant sections of this manual. Note too that you may wish to start out with one or more of our demonstration applications (included on your disk). Feel free to use and modify any of the sample code to meet your needs.

We hope that this introduction to ALLText proves helpful to you. If you have any suggestions as to how to make this section (or any other section) of the manual more useful, please let us know.

How To Move Code from the Visual Basic Textbox to ALLText� XE “Porting code” �

With no additional coding, simply including an ALLText window on your VB form will provide you with a text box much like the standard text box. There are some basic concepts however which may be supported differently by ALLText, and a few features which are not supported at all by ALLText. These are described below.

1. Text Formatting and Default Fonts.� XE Text Formatting �� XE Default Fonts�

The most basic difference between ALLText and the VB textbox is with regard to formatting and related properties. ALLText was designed to support mixed fonts within a single control. Unlike the standard text box, most formatting properties associated with ALLText produce their effect on the current cursor location or select region, not the entire text box.

Text is first selected, or the caret positioned at an insertion site and then the FontName property is set or read. With no selection active, only the current cursor and text immediately entered at that location is affected.

In order to modify the default font, use the ALLText FontTableGet and FontTablePut functions.

	Sub Form_Load ()�	 ' Sets up default font - font table entry 0� 	 ' First read old font table 0 parameters�	 st% = FontTableGet(ALLText, 0, fam%, CharSet%, FntName$, FntSize%, FntWidth%, � 			Bold%, Italic%, Underline%, StrikeOut%, shadow%, SubSup%)�	 ' Now reset desired font parameters and put new definition in font table entry 0.�	 FntNam$ = "Times New Roman"�	 FntSize% = 15

	 st% = FontTablePut(ALLText, 0, fam%, CharSet%, FntNam$, FntSize%, FntWidth%, � 			Bold%, Italic%, Underline%, StrikeOut%, shadow%, SubSup%)�	 End Sub

2. MultiLine�XE "MultiLine"�: ALLText always operates in a multi-line mode and does not support the MultiLine property. It is possible however to simulate this in some instances by setting the DocWidth to a large value. So long as there are no carriage return/line feed sequences (ie: the end-user doesn't hit enter), line wrapping may appear to be turned off.

3. DDE�XE "DDE"�: ALLText does not support DDE nor any of the DDE properties: LinkItem, LinkMode, LinkTopic, or TimeOut. We do support use of the clipboard for data exchange, however, and the embedding of OLE objects.

4. HideSelection�XE "HideSelection"�: ALLText does not support the HideSelection property. We do however provide a mechanism through the WriteProtect property which may be called upon to hide the visible highlighting of a select region.

5 .MaxLength�XE "MaxLength"�: ALLText does not support the MaxLength property. We do provide a TextLength property, however, which may be used within the KeyPress event to prevent entering text when the document is over a certain length.

6. Scrollbars�XE "ScrollBars"�: ALLText does not support the standard ScrollBars property. Instead, ALLText does provide it's own more flexible support for selecting the display mode of scrollbars through the ScrollBarV and ScrollBarHScrollBarH properties.

7. Password�XE "Password"�: ALLText does not support the Password property.

8. Parent�XE "Parent"�: ALLText does not support the Parent property.

How to Add Text or Load a Document� XE “Loading, how to” �� XE “File I/O” �� XE “Adding Text” �

The first thing you will probably want to do with ALLText is to add and display some text with the ALLText control. There are several methods of going about this.

1. Using Text and FText Properties to set the Content� XE “Text Property” �� XE “FText Property” �

Simply set either the Text or FText properties to specify the control content. The Text property contains the complete text content of the control, without any formatting codes, up to the first 32k. (ALLText can hold millions of characters of text but the Text and FText properties are limited to 32K. Text beyond the first 32K must be accessed in another manner.) You can set or read this property. Setting the Text property will replace the entire content of the textbox with the string specified. After setting the Text property, the content of the control will be unformatted.

 eg: ALLText.Text = “This is some text”

 or ALLText.FText = “One \cf1 word \cf0 here will be blue”

The FText Property is similar to the Text property but includes embedded formatting codes (see Appendix) like “\cf1 ” for blue, or ”\par ” for begin a new paragraph. These embedded codes will be interpreted by ALLText resulting in the display of formatted text. The interpretation of embedded codes by FText is controlled by the SelFType property.

Note that to add text to pre-existing content it is preferable to use either SelText or SelFText as below..

2. Using SelText and SelFText� XE “SelText Property” �� XE “SelFText Property” �

If you are going to be building the contents of an ALLText box by adding new strings to pre-existing content, using SelText or SelFText properties will be much faster and produce better results than constantly resetting the Text or FText properties. Setting either property will insert the specified character string at the current cursor location. If a select region is active at this time (SelLength >0), it is replaced. SelText reads and writes only the unformatted text content (no embedded codes), while SelFText includes and interprets embedded formatting codes. Note that you can position the cursor with the standard SelStart property or a combination of CurPar and CurChar properties. More information on positioning the cursor and selecting text is presented below (see “How To Control the Cursor Position and Select Text”)

 eg: ALLText.SelStart = ALLText.TextLength ' set insert position to end of document

 ALLText.SelText = “Here we paste some text ”

 ALLText.SelStart= ALLText.SelSTart + ALLText.SelLength ' move insert position

 ALLText.SelFText = “Here we paste some \cf1 blue text”

The interpretation of embedded codes by SelFText is controlled by the SelFType property.

3. Pasting Text from the Clipboard� XE “Clipboard” �� XE “Paste” �

ALLText provides full Clipboard support. To copy formatted RTF data from the clipboard programmatically, use the .ClipboardAction property. Set the ClipboardAction property to 1 in order to cut selected text from ALLText to the clipboard, Set to a value of 2 if you want to copy selected text to the clipboard ,and to 3 in order to paste selected text from the clipboard. Do NOT use Visual Basic’s ClipBoard object as the text held by the Clipboard object is NOT formatted.

 ALLText.ClipboardAction = ATX_Paste '= 3 see constants file

ALLText also provides support for both the <Shift> <Insert> and <Cntrl> “V” keyboard style combinations for pasting text from the clipboard actions at run-time.

All font, color and paragraph formatting will be preserved when copying from applications which support RTF Clipboard operations (Word, WordPerfect, AmiPro).

NOTE: In order to properly support cut and paste of embedded Pictures (Supported under HT/Pro edition and Pen editions only) within an RTF document, you must have the ATXPIC.DLL present and REGISTERED To paste a BMP or File from the clipboard see our PastePic demo application in the Samples directory.

 DECLARATION: Declare Function ATX_REGNEWEXTERN Lib "atx40h" �	 			(ByVal noMsg%, ByVal lpstrModule$) As Integer

 In Form_Load:	 Ret_code = ATX_REGNEWEXTERN(1, "ATXPic.dll")

4. Loading text from a File� XE “Loading”�� XE “File I/O”�

ALLText makes loading a document simple. You can load a Text, RTF or ATX formatted file using the ALLText I/O stream property, FileLoad. Additionally FileSave may be used to save data to a file.

First set the DataType property to specify the file format: 0 for Raw Text, 1 for ATX_S (does not include font table and is useful only when hardcoding the font table), 2 for ATX_F (includes font table), or 3 for RTF level 1 (HT/Pro edition only) formatted file. Set the FileName property, including the full path to the desired file name. Now, Initiate file loading by setting the FileLoad property to 1 This indicates that ALLText should load the complete file without need of further programmatic intervention. For Example:

 ALLText1.FileName = "AutoExec.BAT" ' Set the file name

 ALLText1.DataType = ATX_FORMAT_TEXT ' see constant def file for constant values

 ALLText1.FileLoad = 1 ' Automatically load the file

or

 ALLText1.FileName = "SomeDoc.RTF" ' Set the file name

 ALLText1.DataType = ATX_FORMAT_RTF ' see constant def file for constant values

 ALLText1.FileLoad = 1 ' Automatically load the file

Other settings of the FileLoad property invoke the ATXGet event to allow greater programmatic control. These are somewhat more involved and are discussed in the section dedicated to ALLText Low Level I/O.

Note that you may want to prevent end-user interaction during the load procedure by setting the WriteProtect �XE "WriteProtect Property"�property to TRUE (-1) prior to the FileLoad statement, and returning to a value of False (0) upon completion.

PLEASE NOTE - File I/O has side effects, ALLText internally prevents reading or writing of certain properties during I/O. Closing the ALLText window or an application during running of I/O may lead to errors.

When reading a large file, ALLText will immediately interpret only enough of the formatting to display to fill the control window. Formatting then continues as a background process. It is possible to identify to track the progress of background formatting by reading the TextFormatted property. TextFormatted returns TRUE when all the formatting has been completed, or a Long Integer value representing the number of paragraphs currently processed. Setting TextFormatted to True will force ALLText to complete the current text formatting process before continuing. � XE “TextFormatted Property”�

(((It is IMPORTANT to recognize that until formatting has been completed, properties such as DocHeight which depend on the complete document formatting, will not be reliable.

How to Save a Document� XE “File I/O”�� XE “Saving, How To”�

The easiest way to save text from an ALLText control is to select the text you wish to save and then use the standard ALLText I/O stream property properties: FileSave.

First set the DataType property to specify the desired file format: 0 for Raw Text, 1 for ATX_S (does not include font table and is useful only when hardcoding the font table), 2 for ATX_F (includes font table), or 3 for RTF level 1 (HT/Pro edition only) formatted file. Set the FileName property, including the full directory path to the desired file name. Select the desired text and then, initiate file saving by setting the FileSave property to 1. This indicates that ALLText should save the complete file without need of further programmatic intervention. (Other settings of the FileSave property invoke the ATXPut event to allow greater programmatic control . These are somewhat more involved and are discussed in the section dedicated to ALLText Low Level I/O.)

For Example:

FileName = "\FRED\ALBERT\ATX" ' Set the file name

ALLText1.FileName = "\FRED\ALBERT\ATX" ' Set the file name

ALLText1.DataType = ATX_FORMAT_RTF ' see constant def file for constant values

....

ALLText1.SelStart =0 : ALLText.SelLength = ALLText.TextLength ' select all the text

ALLText1.FileSave = 1 ' Automatically save the file

Note that you may want to prevent end-user interaction during the save procedure by setting the WriteProtect �XE "WriteProtect Property"�property to True prior to the FileSave statement, and returning to a value of False upon completion.

(((IMPORTANT: File I/O has side effects, ALLText internally prevents reading or writing of certain properties during I/O. Closing the ALLText window or an application during running of I/O may lead to errors.

How to Set the Default Font� XE “Default Font, How to set”�

Upon loading ALLText, the default font in use is the SYSTEM font of 10 pt size.

In order to modify the default font, use the FontTableGet and FontTablePut functions to read the current default font (entry 0) and modify it to the desired parameters. Any text currently formatted according to the default font will be changed to reflect the new default font definition.

	Sub Form_Load ()�	 'Sets up default font - font table entry 0 as Times New Roman, 30 pt.� 	 'First read old font table 0 parameters�	 st% = FontTableGet(ALLText, 0, fam%, CharSet%, FntNam$, FntSize%, FntWidth%, � 			Bold%, Italic%, Underline%, StrikeOut%, shadow%, SubSup%)�	 'Now reset font name and size parameters�	 FntNam$ = "Times New Roman"�	 FntSize% = 30�	 st% = FontTablePut(ALLText, 0, fam%, CharSet%, FntNam$, FntSize%, FntWidth%, � 			Bold%, Italic%, Underline%, StrikeOut%, shadow%, SubSup%)�	End Sub

How to Format Text - Fonts, Colors , Paragraph Formatting� XE “Formatting, How To”�

The principle objective of ALLText is to support the display and manipulation of fully formatted, WYSIWYG, text. Towards this end, ALLText provides complete programmatic control over the content and formatting of documents. Full support is provided for both character and paragraph formatting - along these lines if Word can do it, ALLText can too (unfortunately we couldn’t figure out how to use up 3.5 Megabytes in the process the way they do).

Programatically, just about everything is available via direct settings of font and paragraph format properties (such as FontBold, LeftIndent, TabStep, etc) with only a few necessary function calls required to compose the proper formatting for our more flexible format options (eg: borders and custom font shadowing). Alternatively, formatting may be managed through the manipulation of text with embedded strings. Either method may be used equally well, however the use of the property settings is generally prefered where practical; the resulting code will be easier to read, debug, and maintain. Finally, A Font Selection Dialog box is also provided for end-user access through the F2 � XE “F2 Key”�Key (if enabled with the F2On property� XE “F2On Property”�).

Using Format Properties to Format Text� XE “Format properties”�

Property settings (FontName, Alignment, etc) in ALLText are associated with text within a select region or at the current cursor location (see Cursor Positioning and Text Selection). In general, reading the value of the various formatting properties will return the appropriate characteristics for the active select region or cursor location. A value of ATX_Undefined (-4096) or ATX_PAR_Undefined (-32000) will be returned when reading a property whose value varies within a currently selected region of text.

Setting a font property with no text currently selected prepares ALLText to treat the following typed text (or text entered at that location with the SelText property) as being of that characteristic (bold, italic, etc). If a select region is active, ALLText applies the font attributes to that selected text.

In addition to supporting Character formatting ALLText supports full control over paragraph formatting. Each paragraph may independently be set with respect to alignment, margins, tabs, and paragraph borders. Setting a paragraph formatting property reformats the current paragraph according to the new setting. If a select region is active ALLText applies the font attributes to any paragraphs which the select region overlaps.

Font Properties manipulating the font characteristics in this manner include:

FontBold�FontColor�FontFamily��FontHidden�FontItalic�FontName��FontShadow�FontSize�FontSubSup��FontUnder�FontWidth�FontVisible�� Properties supporting the direct formatting of paragraphs include:

Alignment�Border (HT/Pro only)�BottomIndent��FirstLineIndent�LeftIndent�LineSpacing��RightIndent�TabStep�TopIndent��Note that as new text is entered at some particular location, it takes on the formatting characteristics of that location. This is generally the same as that of the immediately preceding character.

As an example, you may wish to underline a string or change it’s color to Blue. First select the string as you would with the standard textbox, set the FontUnder property to True and set the color to Blue. Then turn the selection off.

ALLText.Text = “The ball is blue, isn’t it?” 	' Control now contains some unformatted text

ALLText.SelStart = 12: ALLText.SelLength =4	' Select the word “Blue”

ALLText.FontColor = QBColor (1)		' Set the color to Blue.

ALLText.SelLength =1				' Reduce select region to include only the “B”

ALLText.FontUnder = TRUE			' Underline the letter “B”

ALLText.Select = FALSE 			' Turn off Select region

FontColor, Italics, StrikeThrough, FontName, FontSize, SupSubscripts, etc are similarly set via properties. Simple underlining may be accomplished by setting the FontUnder property to True, while more complicated underlining (double, colored, dashed, etc) may be set in using other values as computed by the Make_Underline function. The same font properties may be read at any time to determine the formatting at the current cursor position or as contained within a select region.

*** IMPORTANT: Upon loading ALLText, the default paragraph is Left Aligned with no indentation and the default font name is "System", with no font characteristics set (ie the text is not bold, italic, etc). Note that the System font looks exactly the same regardless of whether the Bold property is set True or False. If you have tried to create some Bold text and do not observe a change, check the FontName property for that text region, try changing to Arial or some other font and you should see the effect. The default font may be changed using the FontTableGet and FontTablePut functions to change FontTable Entry 0. (See description of Font Table below).

Paragraph formatting is just as easy. Each paragraph may be independently formatted. Simply set the relevant property - LeftIndent, RightIndent, FirstLineIndent, LineSpacing, TopIndent and BottomIndent may all be set to some value in Twips, while Alignment may be set to an integer value representing:Left (0), Right (1), Centered(2), or Left/Right Justify (3) alignments.

	ALLText.CurPar = 5	'position start of select region in paragraph 5

	ALLText.SelToPar =8	'position end of select region on paragraph 8

	ALLText.LeftIndent = 1440 ' 1 inch =1440 twips

	ALLText.Alignment = ATX_CENTERED ' see constants and declaration file

Keyboard Formatting� XE “Keyboard”�� XE “F2On Property”�� XE “F2 Key”�

A Font Selection Dialog box is provided for end-user (run-time) access through the F2 Key (if enabled with the F2On property set to TRUE).

ALLText does not assume, however, any keystroke interpretation for setting fonts to bold, italics etc, or for setting paragraph formatting. If you wish, you may trap control key sequences in a Key...Event routine. Alternatively you may design a menu or button bar. For example

 Sub MnuBold_Click()

 ' switches FontBold property for selected text or current cursor location

 ALLText1.FontBold = Not ALLText1.FontBold

 End Sub

 or

	Dim KeyPress_Exit ' include this statement in your module level declarations

	Sub ALLText_KeyDown (KeyCode As Integer, Shift As Integer)

	Const CTRL_MASK = 2

	KeyPress_Exit = FALSE

	If Shift And CTRL_MASK Then

	 Select Case KeyCode

		Case Asc("B"), Asc("b")

		 ALLText.FontBold = Not ALLText.FontBold

	 KeyCode = 0

		 KeyPress_Exit = TRUE

		End Select

	 End If

	End Sub

 Sub ALLText_KeyPress (Key as Integer)

		'KeyPress +_Exit may be set by the keydown event

		If KeyPress_Exit then Key =0

	Exit sub

Formatting Text using Embedded Codes� XE “Formatting, Embedded codes”�� XE “Embedded codes”�

(This section is for somewhat more agressive users and may be ignored by the less daring).

In addition to formatting text through use of the above described format properties, pre-formatted text strings with embedded format codes may be entered into the document directly using SelFText or FText. The characteristics of existing selected text may also parsed by reading SelFText or FText and manipulated by changing the string in SelFText after selecting some text region. In general we suggest using the format properties whenever possible - it's simpler to understand, simpler to debug if things go wrong, and less likely to result in problems (such as may occur if mistyping an embedded formatting code which needs to be entered just right to have the desired effect). Still we document the embedded codes in an appendix to this manual, and offer full support for your programming enjoyment. If you really want to have fun, try to create a file with embedded codes using an ASCII text editor (not the best way to go about it - Use our JED editor instead.)

Embedded codes are available for just about everything in ALLText. Typically format codes start with a backslash and end with a terminating space. The terminating space is important - it lets the control know where the embedded code stops and the body text starts. Most of the codes have been borrowed from RTF. Others are of our own design and usually beggin with a “\ATX” string.

Most formatting codes are pretty straight forward. There are codes for paragraph formatting and codes for character formatting. A current listing of all formatting codes understood by ALLText is included in the file ATXCODES.WRI.

Paragraph formatting codes are generally inserted at the beginning of the formatted text string, but actually they can be included anywhere in the string and will be properly interpreted. When reading the formatted string back out however, they will be placed by ALLText at the beginning.

ALLText.SelFText = "\par \li1440 \fi-360 This is \ql a line of text”

In this example, we are inserting some text at the current cursor location (or replacing any previously selected text). The “\par” code says start a new paragraph (SelFText ignores carriage return/line feeds and relies instead upon the embedded \par code just as does RTF). The codes, “\li1440 ” and “\fi-360 ”, set up the paragraph as having a 1 inch (1440 twips) left indentation, and a first line indentation 1/4 inch (360 twips) in from the rest of the paragraph. In other words it is a hanging indent. The code “\ql ” specifies that this paragraph should be left justified. This could equivalently be programmed as follows:

ALLText.SelText = Chr$(13) & Chr$(10) & “This is a line of text”

ALLText.LeftIndent = 1440

ALLText.FirstLineIndent = -360

ALLText.Alignment = 0 'left

As you can see, embedded codes save programming lines, but can be much more difficult to read and maintain.

Most embedded font formatting codes are equally straight forward. ALLText supports 16 font colors - the same as are specified by Visual Basic’s QBColor function. Color formatting codes begin with a backslash and the letters “cf”, and then are followed by a number indicating the desired color. As with paragraph formatting, the code is terminated by a space, chr$(32). The format is as follows “\cfN ” where N is an integer from 1 to 16. An example of formatting with embedded colors follows below:

	SelFText = “\cf9 Fred \cf14 John \cf0 that’s all”

The codes “\cf9 ” and “\cf14 ” corresponding to blue and light yellow. The "\cf" string is followed by a value referring to one of the 16 colors supported for ALLText fonts - the same color encoding is used as in QBColor -

This is equivalent to the following:

	SelText = “ Fred ” : FontColor = QBColor(9) ' light blue

	SelStart = SelStart + SelLength

	SeText = “John ” : FontColor = QBColor(14) ' light yellow

	SelStart = SelStart + SelLength

	SelText = “That’s all” : FontColor = QBColor(0) ' black

Font characteristic formatting, including everything but the font name, can be set by simple codes as well. “\b-1 ” means the following will be bold, while “\b0 ” means not bold (note that the difference is not observable for the default “System” font.). A simple underline may be created using “\u-1 ” (Think of -1 as True and 0 as False). Note that for underlining, other values as created by the MakeUnderline function may be used to implement double underlines, colored underlines, dotted or dashed underlines.

FontNames are unfortunately not accessible by this mechanism. Instead one needs to refer to the entries in the “Font Table”. ALLText employs a FontTable mechanism internally to keep track of all fonts and font characteristics (name, size, bold, italics, etc). Think of this as a table of “font styles.” The font table architecture greatly speeds up the control's screen manipulations, and makes for a smoother interface when changing numerous font characteristics at one time. The FontTable also offers an efficient mechanism for file storage when saving in ATX format (compare to RTF).

Each entry in the Font Table defines a font style, a combination of font characteristics (Font Name, Size, Bold, Italic, etc - everything associated with the visible formatting of the character except for color, which is handled separately).

An embedded code may then be used used to format text simply by pointing to the appropriate style entry in the font table. For example "\f2 This will be formatted as per the definition of font 2". Here, the text is formatted according to font table entry 2. It's a whole lot faster and more efficient in memory than embedding a separate code for each independent font characteristic. In fact it’s alot easier than a string of format codes as well, compare “\f2 ” with “\b-1 \i0 \u2048 ”

Upon loading the control, there is one font in the font table. This first entry, corresponding to the embedded code “\f0 ”, is by default the “System” font without any special formatting characteristics (this can be changed with the FontTablePut function). Other font table entry definitions are created in sequential order automatically by ALLText whenever the manipulation or entry of new text requires a font which is not already defined in the font table (for example, when setting FontBold to True, if no text is already formatted according to the resulting combination of font characteristics a new entry will be created). Font Table entries may also be created programmatically through use of either the FontIndex property or the FontTablePut function.

The FontTableSize�XE "FontTableSize Property"� property may be read to determine the number of font entries in the table. * NOTE: Setting FontTableSize to a value of zero will remove all font definitions not currently in use from the table. Other settings have no effect.

FontTable Creation and Manipulation of Embedded Fonts�XE "Font Table definition"��XE "Font Manipulations"�

(This section is for even more agressive users and may certainly be ignored by the less daring).

As noted above, ALLText uses a FONT TABLE to establish font styles - multiple font formatting characteristics (name, size, bold, italics, etc) applied together to a region of text. The embedded code used to format text is then simply a pointer to the appropriate entry in the font table.

In general ALLText handles the font table for you automatically. There are some instances however where you may wish to manipulate the font table manually.

If you are creating a set of read only documents or even editable documents where you know in advance all the fonts which may be used, you may wish to hard code those font table definitions into your code. This will save space when saving the documents. It will also make it very easy to format text with embedding fonts or to identify a font style (just read the FontIndex property) in response to a click event .

Like everything else with ALLText, there are several ways to control the FontTable. You can use the FontIndex property or the FontTableGet and FontTablePut Functions.

The FontIndex property can be read at any time to determine the font table entry of the current font. If Font properties have been set but do not yet apply to any text, reading the FontIndex property will add that font definition to the FontTable. (If the font properties have been applied to selected text, the font definitions have already been automatically added to the font table).

The FontTableGet function can also be used at any time and will return all character formatting properties associated with a given font table entry. The FontTablePut function can be used to define or modify character formatting properties for any font table entry.

Two examples are shown below:

EXAMPLE 1 - USING FONTINDEX TO CREATE A FONT TABLE� XE “FontIndex Property”�

 Dim FontNumberAsString(50) ' a global array referencing font style entries

 Sub FontTableInit ()

 ' -This subroutine will define a number of fonts for you, call upon form load

 ' -The indicies for these font table entries are storred in an array for easy use

 Static FontNumberAsString(5) As String

 For Index = 1 To 5

 'define font i characteristics

 ALLText.FontName = "Arial": ALLText.FontSize = 4 * Index

 ALLText.FontBold = -.5 + .5 * (-1) ^ Index

 fontIndexValue = ALLText.FontIndex ' Reading FontIndex creates the font table entry

 'Now save embedded font code in array for easy reference and use

 FontNumberAsString(Index) = Mid$(Str$(fontIndexValue), 2)+" "

 Next Index

 End Sub

 Sub Test_it_Out()

 ' Demonstrates use of embedded font codes

 For Index = 1 To 5

 Color$=Mid$(Str$(Index),2)+" "

 ALLText.SelFText = "\f" + FontNumberAsString(Index) + "\cf" + Color$

 + " This text will now be size:" & Str$(4 * Index) & "\par ": ALLText.Select = False

 Next Index

Note that the color of text is not contained in the font table definition. In the above example, the color is specified by the embedded string "\cf" + Color$ + " ". The string "\par " indicates termination of a paragraph. Other embedded strings may be used to control paragraph formatting, etc.

EXAMPLE 2 - USING FONTTabLEGET & ...PuT �to Modify the Default font & CREATE NEW FONT TABLE ENTRY� XE “FontTableGet Function”�� XE “FontTablePut Function”�

 Sub Form_Load()

	 ' -This subroutine redefines FontTable Entry 0 as Arial 12 pt,

	‘ And creates another font table entry for Times New Roman 12 pt Bold.

	 '-get details for 0th entry (the default font)

 Dummy = FontTableGet (ALLText, 0, family%, CharSet%, FntName$, FntSize%, FntWidth%, Bold%, Italic%, Underline%, StrikeOut%, Shadow%, SubSup%)

	 '-change some parameters

	FntName$=“Arial” :	FntSize%=12

	'-Replace entry 0 in font table

 Dummy = FontTablePut (ALLText, 0, family%, CharSet%, FntName$, FntSize%, FntWidth%, Bold%, Italic%, Underline%, StrikeOut%, Shadow%, SubSup%)

	'-Now create Entry 1

	FntName$ = “Times New Roman” :	Bold%= TRUE

 Dummy = FontTablePut (ALLText, 1, family%, CharSet%, FntName$, FntSize%, FntWidth%, Bold%, Italic%, Underline%, StrikeOut%, Shadow%, SubSup%)

 End Sub

How to Add Paragraph Marks/ Line Breaks� XE “Carriage Return”�� XE “LineBreaks, how to”�

Users should note that there are two types of paragraph delineations in use by ALLText.

When using the Text and SelText properties, to work with raw unformatted text , an end of paragraph marker consists of a two character Carriage Return/Line Feed (CrLf) string; ie, CHR$(13) followed by CHR$(10). Each of the two characters is counted when using SelStart and SelLength. The cursor however can not be positioned in between them however so there are certain SelStart values which just won’t be accepted by ALLText. In this event SelStart will be reset to point at the first character after the paragraph break.

The formatted text properties, FText and SelFText, follow the RTF standard for paragraph delineation. FText and SelFText terminate paragraphs by concluding with the five character string "\par ". CrLf strings are totally ignored by ALLText when used to set FText or SelFText string. When reading these properties there may be extraneous CrLf strings within the text being read - these do not have any meaning - they are simply added to break up the string. This may seem strange, but this is based on the correspondence between ATX format and RTF formatting.

Note that due to the counting of CrLf as two characters by SelStart, one may have some confusion in decrementing through the content of ALLText. The following subroutine shows how this can be done properly using SelStart.

 While ALLText.SelStart > 0� If ALLText.CurChar = 0 Then� 	 ALLText.SelStart = ALLText.SelStart - 2� ALLText.SelLength = 2� 	 Else� ALLText.SelStart = ALLText.SelStart - 1� 	 ALLText.SelLength = 1� End If�	Wend

Another alternative would be:

	Sub Command1_Click ()�	 While ALLText.SelStart > 0� If ALLText.CurChar = 0 Then� 	ALLText.curpar = ALLText.curpar-1�		ALLText.curchar = 32766 ' will reset to last char in paragraph� Else�	 ALLText.curchar = ALLText.curchar-1�	 End If�	 Wend

How to Control WordWrapping� XE “Word Wrapping, how to”�� XE “DocWidth Property”�

ALLText automatically wraps text on screen to a width set by the DocWidth property (value in twips - 1440 twips/inch). You may want to set the DocWidth property to something like 85% of your control width.

 Sub Form_Resize ()

 ALLText.Width=Form.ScaleWidth

 ALLText.DocWidth=.85 *ALLText.Width

 ...

Be aware that when reading back the DocWidth property, you may find it slightly different than the value it was set to. This is because when set, ALLText converts DocWidth to a value corresponding to a whole number of pixels on your particular system.

Note also that the DocWidth property may be change when loading in a document using FileLoad, or when the control content is changed as a result of repositioning a data control to which the control is bound. In this case ALLText will read in the width of the document as specified in the stored file. You should reset the DocWidth after reading or in the Data.Reposition event if you want to insure a specific Word Wrap width.

How to Prevent Editing

�XE "WriteProtect Property”�ALLText allows you to set a WriteProtect property to prevent end user updates to the screen in a text retrieval mode. You can even choose whether or not to allow end-users to copy information to the clipboard.

Setting the WriteProtect property to ATX_Protect_Changes (-1) allows the user to select and copy portions of text, but still prevents him from modifying the text while ATX_Protect_Keyboard (1) prevents the user from interacting with ALLText in any way other than through your menus or other controls. This may be useful if you have proprietary information you want viewed on the screen but not easily distributed to non-users. Setting WriteProtect to FALSE allows full end-user editing. You should include the constants definition file in your VB project to capture the appropriate constant definitions.

Note that there is one more setting of the WriteProtect property used to prevent screen updates. See the section below “How to Prevent Screen Updates”.

To prevent editing of only specific portions of the document, tag those phrase using HTags, NTags or PTags. You can then read the appropriate property during the KeyDown and KeyPress events and determine whether to throw away the keystrokes.

How to Prevent Screen Updates�XE "WriteProtect Property"�

When formatting text in a visible ALLText control, you’ll probably want to avoid having the end-user see all your manipulations - changing select regions, changing fonts, etc. That’s fine. ALLText allows you to enter into a special mode preventing screen updates until you are ready. Simply set the WriteProtect property to a value of ATX_Protect_Screen (make sure you’ve included the constant definition file in your project). Then make your changes to the text, and finally reset the WriteProtect property to ATX_PROTECT_NONE, ATX_ PROTECT_KEYBOARD, or ATX_PROTECT_CHANGES in order to update the screen.

 Sub MakeChanges()

 wp%=ATX.WriteProtect

 ATX.WriteProtect=ATX_Protect_Screen

 ' < Make changes to content or formatting here >

 ALLText.Select=FALSE

 ATX.WriteProtect=wp%

 End Sub

Note that the Protect_Screen setting prevents any refreshing of the ALLText control window. If another window is moved in front and then away, ALLText will not redraw itself until WriteProtect is Reset.

How To Print� XE “Printing, How to”�

Printing of your document may be handled from the keyboard at run-time using the F3 key or programmatically using the internal API functions.

There are actually two sets of ALLText functions for printing, one set designed for simple programming requires only a single function call to print a paragraph range Print_AText or specified pages Print_ATextPages. The other print functions provide a great deal of flexibility but require interaction with various ALLText events.

The following properties are useful in printing:

F3On 	- Enables or Disables the F3 key for printing

ATX.DocWidth	- This is the word wrap width shown on screen. The same width is used when initiating printing with the F3 key.

ATX.PrinterDC	- Set to True in order to use the Printer Device Context for formatting the document on Screen.

ATX.PageHeight	- Specifies the height of a printed page - used when initiating -printing with the F3 key.

The following status codes may be returned by the printing functions:

 CODE NAME�� MEANING��ATX_PRINT_OK�0�Everything is OK.��ATX_PRINT_ERR_NODEFPRINTER�101�No default printer set.��ATX_PRINT_ERR_NOSUPPORTPRINTER�102�Printer not supported.��ATX_PRINT_ERR_INVALIDARGS�103�Invalid arguments set.��ATX_PRINT_ERR_NOROOM�104�Not enough memory.��ATX_PRINT_ERR_PRINTERROR�105�Printer error occured��ATX_PRINT_ERR_NOPRINTSTART�106�ATX_PRINT_START was not called.��ATX_PRINT_ERR_INVALIDSCALE�107�Values of the log_n% and rel_n% parameters are not equal to 1 in the ATX_PRINT_START function.��ATX_PRINT_ERR_INVALPAGAGRAPHRANGE�108�Invalid paragraph range was specified.��ATX_PRINT_ERR_REGIONTOOSMAL�109�Returned by ATX_Print_Region function when text is too small to fit in specified area.��ATX_PRINT_ERR_FATAL�113�Fatal error.��1. Using the F3 Key to Print the control content.� XE “Keyboard”�� XE “F3 Key”�

With the F3On property set to True, ALLText will interpret the F3 key as an instruction to send the complete content of the control to the default printer as defined by the Windows control panel settings

Hitting F3 may also be simulated using the SendKeys statement

	ALLText.SetFocus

	SendKeys “{F3}”, True

Note that the document will be printed without margins. The current DocWidth property value will be used to specify the location of line breaks (the same word wrap width as shown on screen). No events will be generated. The Back Picture will not be included in the output.

2. Using a single ALLText printing function to print to the default printer:� XE “Print_ATextPages Function”�� XE “Print_AText Function”�

The following two functions are built into the ALLText control. They must be declared in your Visual Basic Program (see: ATX4hAPI.BAS or ATX4SAPI.BAS).

Print_ATextPages - prints specified pages to the default printer

Print_AText - prints a range of paragraphs to the default printer

While easy to use, these functions do not provide any control over the printer dialog box, and always force a page eject after printing each page.

Note that the DocWidth property setting does not affect the text wrapping width when printing using the built in printer functions. This is independently set by the parameters of the print functions.

Also note that unless the PrinterDC property is TRUE, even with the width settings exactly the same, due to differences in printer resolution the output may line break a word prior to, or after the break shown in the control window.

These functions may be called as follows:

i% = Print_ATextPages(CntrlName, pTop&, pBottom&, pLeft&, pWidth&, pPages$, pFlag%)

i% = Print_AText(CntrlName, pTop&, pBottom&, pLeft&, pWidth&, PrintDoc_from_par%, PrintDoc_to_par%, PrintDoc_Flag%)

The Parameters are:

CntrlName - the Name of the control as in the Name property.

pTop&, pBottom& - Top and bottom margins in Twips

pLeft&, pWidth& - Left Margin and Line Length in Twips.

PrintDoc_from_par%, PrintDoc_to_par% - Specified range of paragraphs

pPages$ - A string indicating which pages are to be printed. ALLText scans this string and prints pages corresponding to non-blank elements in the string. ie: if the string consists of two blanks followed by a character, another blank and two characters, ALLText will print pages 3,5 and 6.

pFlag% - set to 1 to include the background bitmap, 0 otherwise.

3. Using advanced printing functions and events to provide full control over the output, including directing the output to any given printer device.

The following functions and events are built into the ALLText control. They allow complete control over printing including specification of the output device (even a picturebox), control over the printer progress dialog box, suppression of page breaks, printing of additional information such as headers and footers. These functions must be declared in your Visual Basic Program (see: ATX4hAPI.BAS or ATX4SAPI.BAS).

� XE “ATX_Print_Start Function”�ATX_Print_Start Function - initializes ALLText’s link to an output printing device. �	Depending on settings of the parameters, end-user access to the control during �	printing may be disabled, and the printer progress dialog box may be turned �	off.

� XE “ATX_Print_Finish Function”�ATX_Print_Finish Function - terminates ALLText’s link to an output printing device

� XE “ATX_Print_Title Function”�ATX_Print_Title Function - sets the text to be used in the printer progress dialog box.�	To prevent display of the PrinterDialog box the FormWnd parameter of �	ATX_Print_Start function should be set to 0.

� XE “ATX_Print Function”�ATX_Print Function - Prints a paragraph range, generating new pages as required.

� XE “ATX_Print_Region Function”�ATX_Print_Region Function - Prints within a specified region on a single page.

� XE “PrintThisPage Event”�PrintThisPage Event - This event is triggered for each page after calling the �	ATX_Print Function and before the ATX_PrintStartPage event

� XE “PrintStartPage Event”�PrintStartPage Event -This event is triggered just before printing each page.

� XE “PrintEndPage Event”�PrintEndPage Event - This event is triggered after printing each page.

The following describes the steps in using the Advanced Printing functions to control printing (The Third and fourth steps can be repeated numerous times):

Note that even with the width settings exactly the same, unless the PrinterDC property is set to TRUE, the output may line break a word prior to, or after the break shown in the control window. This is largely due to differences in printer resolution

1. If you are using the PRINTER OBJECT you should initialize it.

		Printer.EndDoc

		Printer.print “ ”

2. Call the ATX_PRINT_START function specifying the current form window handle and printer or BITMAP device context (DC).

		X% = Atx_Print_Start(Form.HWND, Printer.hDC,1,1)

	This function initializes ALLText link to the proper output device and presents ALLText’s standard print dialog box. Setting the first parameter to 0, will prevent display of the print dialog.

3. (Optional) Create a Title Page or initial information on a given page using standard coding techniques. This does not involve ALLText.

4. Call the ATX_Print or ATX_Print_Region function

4a.Call the ATX_PRINT function passing it the ALLText control handle for the source document. After calling this function, the specified ALLText window starts to generate printing events. For each printing page (except the last one) three following events are generated:

PrintThisPage (PageNumber As Integer, DialogString As String, SkipPageFlag As Integer)

	This event can be used to skip printing of some pages. For example you can use this event if you want to print only odd or only even pages. If you set SkipPageFlag parameter to TRUE during processing this event current page will not be printed and next two event will not come.

PrintStartPage (PageNumber As Integer, TopIndent As Long, LeftIndent As Long)

	This event can be used to change location of the printed page on printing media. It is called just before printing a given page.

PrintEndPage (PageNumber As Integer, SkipEndPageFlag As Integer)

	This event is called just after completing a page, before ALLText issues an end-page command. It may be used to print some additional information on the current page. This can be done with Visual Basic functions, WINAPI functions or ATX_PRINT_REGION function. Using these techniques it is possible to print Headers and Footers. Furthermore SkipEndPageFlag determines whether to print next page on the same sheet or not. If you set this flag to TRUE printing will be made on the same sheet.

4b. Call the The ATX_PRINT_REGION passing it the ALLText control handle for the source document. This function restricts output within a specified region on the page. If the text does not fit within a given region it will be truncated and an error code will be generated. No events occur while this function is operating.

5. (Optional) Add additional information to the printed page. Additional information on the page can be added with Visual Basic functions, WINAPI functions or the ATX_PRINT_REGION function. To do this you should use StartTop& parameter that tells where user can print additional text without spoiling text that has been already printed.

6. Call the ATX_PRINT_FINISH function. This function shuts printing dialog down and stops printing process for the ALLText. If you printing were sent to the PRINTER OBJECT you should call printer.EndDoc after calling this function.

Example:

	Sub Command1_Click ()

	'Call printer.Print to initialize the printer object

	' This is important for the ATX_PRINT_START call

	 printer.Print " "

	'Initiate link from ALLText to the Printer

	 i% = ATX_PRINT_START(Form1.hWnd, printer.hDC, 1, 1)

	'Specify margins etc and start to print

	 printfrm_StartTop& = 1440 	 ' 1 inch top margin

	 printfrm_top& = 1440		 ' top margin after 1st page

	 printfrm_left& = 1440 	 ' left margin

	 printfrm_TextOnPageY& = 2 * 1440 ' height of print area.

	 printfrm_width& = 6 * 1440 	 ' width of print area

	 i% = ATX_PRINT(atx4h1, printfrm_StartTop&, printfrm_top&,	printfrm_TextOnPageY&, �		printfrm_left&, printfrm_width&, 0, -1, 0)

	'Break connection to Printer

	 Call ATX_PRINT_FINISH

	

	 On Error Resume Next

	 printer.EndDoc

	End Sub

How to Control the Cursor Position & Select Text

Cursor Control�XE "Cursor Control"��XE "Current Position"�

ALLText provides full control over reading and setting cursor position and/or select region.

ALLText’s SelStart, SelLength� XE “SelStart Property”� � XE “SelLength Property”� properties work in a manner essentially the same as the standard textbox. SelStart points at the character offset from the start of the document. Setting SelStart=0 places the caret at the start of the document. Setting SelStart to the TextLength property places the caret at the end of the document. SelLength specifies describes the length of the select region.

Cursor positioning and selections may also be specified through paragraph and paragraph offset properties: CurParCurPar and CurCharCurChar � XE “CurPar Property”�� XE “CurPar Property”�define the current cursor location as well as the start of a select region in terms of the current paragraph number and current character offset within that paragraph. The end of a select region is specified in the same fashion using the SelToParSelToPar and SelToCharSelToChar properties. To select a text fragment, set the caret at one edge (start or finish) of this fragment by assigning appropriate values to CurPar and CurChar, and then designate the second edge of the desired range through assignment of values to SelToPar and SelToChar. The text selected in this manner has a starting point specified by CurPar, CurChar and final edge specified by SelToPar, SelToChar. Note that prior to setting a select region, SelToPar=CurPar, SelToChar=CurChar and Select=FALSE.

For example,

 ' Set caret 5 characters from the start of the 10th paragraph� ALLText1.CurPar = 9 'CurPar starts counting at 0� ALLText1.CurChar = 4 'Same for Curchar� 'Select to the end of the paragraph� 'Note that setting CurChar or SelToChar at the maximum possible value (ATX_MAXCHARS) will � 'result in automatic setting to the last character in the text.� ALLText1.SelToChar= ATX_MAXCHARS

Lastly cursor positioning may be specified by page number using the PageNumber, LineNumber and PageLineNumber Properties. Setting the PageNumber property moves the caret to the start of a given page (0,1,2,3..). Setting LineNumber moves the caret to the start of a given line counted from the beginning of the document. Setting PageLineNumber moves the caret to the start of a given line within a page.

One more property Select�XE "Select Property"�Select, may be used as a true/false flag to determine whether a select region is active. Setting Select to False is equivalent to setting the SelLength property to 0.

(((IMPORTANT: The SelStart property may not be set to a value pointing beyond the end of the current selected region. Doing so will result in an error. To avoid this error it is generally advised to set the Select property to FALSE prior to moving SelStart.

Content Manipulation

ALLText supports two distinct properties to manipulate selected text: � XE “SelText Property”�SelText, which SelTextsets or returns the selected text with no embedded formatting codes, and � XE “SelFText Property”�SelFTextSelFText, which functions in a manner similar to SelText but with embedded formattingFormattingCodes codes included within the string.

 Example:

 ' Replace 1st paragraph by a formatted string "ZeroOne"� ' Set the formatted string with embedded codes� Str$ = "\f0 \cf0 Zero \f1 \cf1 One" ' “Zero” will be black, “One” will be Blue� ' Set the select region to include the 1st paragraph� ALLText1.CurPar = 0:	ALLText1.CurChar = 0� ALLText1.SelToPar = 1: 	ALLText1.SelToChar = 0� ' Replace the contents of the first paragraph� ALLText1.SelFText = Str$

Note also that by properly setting the WriteProtect � XE “WriteProtect Property”�property, an end user need not see your changes in setting select regions.

 ' Read the first 15 characters of a 4th paragraph (ALLText starts counting with 0)� wp% = ALLText1. WriteProtect 			 ' save write protect setting� ALLText1. WriteProtect = ATX_PROTECT_KEYBOARD ' prevent display of selection bar� ALLText1.CurPar = 3: ALLText1.CurChar=0:ALLText1.SelToChar=14� s$=ALLText1.SelFText ' may be longer than 15 characters as it will include formatting codes� ALLText1.SelText = FALSE ' turn off select region� ALLText1. WriteProtect = wp% 			 ' return to former edit mode

To Summarize: Current position and selection properties are:

CurParCurPar	Current Paragraph or Paragraph specifying start of selected text.

CurCharCurChar	Number of Current Character within Current Paragraph text buffer or Character specifying start of selected text

SelToParSelToPar	Paragraph specifying end of selected text

SelToCharSelToChar	Character specifying end of selected text

SelTextSelText	String containing selected text without font and color control information.

SelFTextSelFText	String containing selected text with font and color control information.

SelectSelect 	Indicates that some fragment of Text is selected.

SelLengthSelLength	Sets or returns the Length of the Select region.

� XE “PageNumber Property”�PageNumberPageNumber - specifies the current page.

� XE “LineNumber Property”�LineNumberLineNumber - specifies the current line number from the top of the document

� XE “PageLineNumber Property”�PageLineNumberPageLineNumber - specifies the current line number within the current page

How to Programmatically Control Scrolling� XE “Scrolling, how to”�

ALLText offers complete programmatic control over scrolling. ScrollHorz and ScrollVert Properties determine the scrolled distance between the top left corner of the document and the top left corner of the ALLText window. Using these properties it is possible to scroll the window in increments as fine as allowed by the physical device.

 For I = 0 to 50� ALLText.ScrollVert = I * Screen.TwipsPerPixelY� Next I

ALLText � XE “ATXHScrollClick Event”�� XE “ATXVScrollClick Event”�ATXVScrollClick and ATXScrollHClick events offer additional control. These events are triggered after the control is scrolled with the scroll bar click. Normally ALLText responds to vertical scroll clicks by scrolling the control contents vertically by a fixed number of twips. Since each text line can be of some size determined by the fonts used it is not always going to be the case that this scroll distance corresponds to a integer number of lines. The result is that the top line of the textbox may be cut off in the middle as a result of scrolling. If desired, code can be written to set the ScrollVert property after a user click such that the top line is always lined up with the top of the control window (not cut off). Sample code is included below.

 Sub ALLText1_ATXVscrollClick (ScrollVert As Long)

	'Identify top line in textbox

	 X& = 0

	 Y& = ALLText1.ScrollVert

	 Ret_Code% = ATX_XYToCur(ALLText1, X&, Y&, p&, c%)

	'Identify top of top line in textbox

	 Ret_Code% = ATX_CurToXY(ALLText1, p&, c%, x1&, y1&)

	'Set ScrollVert to top of top line in textbox

	 ALLText1.ScrollVert = y1&

	End Sub

Note that this will not prevent the bottom line from cutting off in the middle. If this is a big concern, you’ll want to choose your fonts and line spacing such that an integral number of fonts fit in the textbox, or you can write similar code to identify the top of the line immediately below the client area of the control, and then dynamically adjust the textbox height. For best results in this sort of application, the control’s border should be turned off so that the end-user does not see the height changes.

Of course it is easy to turn the Scrollbars on and off, either at design time or run-time. ScrollBarH and ScrollBarV properties provide this support.�XE "ScrollBars"��XE "ScrollBarH Property"��XE "ScrollBarV Property"�

How to Add a Table� XE “Tables, How to”�

ALLText 4 does not currently support embedded Tables. We’re working on this.

ALLText HT/Pro can read in an RTF document with embedded Tables and will translate to tab delimited text, attempting to preserve the general look of the table.

Alternatively developers may embed OLE objects such as a section of an Excel spreadsheet to achieve the look of a table.

How to Add Header and Footer Support� XE “Headers/footers, How to”�

ALLText 4 supports the definition of Headers and Footers to be stored with the document. Headers and footers may be defined for the document as a whole, for even pages, for odd pages, or for the first page.

� XE “HeaderFText Property”�� XE “FooterFText Property”�To create a Header or footer set the appropriate HeaderFText or FooterFText property, Note that these are list properties. Thus :

	HeaderFText (0) specifies a header for the document as a whole�	HeaderFText (1) specifies a header for even pages�	HeaderFText (2) specifies a header for odd pages�	HeaderFText (3) specifies a header for the first page�These properties actually hold the Formatted text string corresponding to the header or footer. If you read in an RTF file with headers or footers, the headers and footers will NOT be shown in ALLText, but will be interpreted and stored by the HeaderFText and FooterFText properties. You can if you wish then add this text to secondary ALLText boxes. For Example:

Sub Command5_Click ()� ALLText1.DataType =3� ALLText1.FileName = Sample.RTF� ALLText1.FileLoad = ATX_IO_FAST

 For i = 0 To ALLText1.FontTableSize - 1 'copy font table to secondary controls� ret_code = FontTableGet (ALLText1, I,......)� ret_code = FontTablePut (ALLText2, I,......)� ret_code = FontTablePut (ALLText3, I,......)� Next I

 If Len(ALLText1.HeaderFText(ATX_HEADER_SIMPLE)) > 0 Then� ALLText2.FText = ALLText1.HeaderFText(ATX_HEADER_SIMPLE)� End If

 If Len(ALLText1.FooterFText(ATX_FOOTER_SIMPLE)) > 0 Then� ALLText3.FText = ALLText1.FooterFText(ATX_FOOTER_SIMPLE)� End If

End Sub

The ATXPrintRegion function can then be used to print the header and footers.

For further information refer to the sample project: PrintHF.

How to Cut, Copy & Paste

� XE “Clipboard”�� XE “ClipboardAction Property”�� XE “Cut, Copy, Paste”�� XE “Copy”�� XE “Paste”�ALLText supports formatted cut and paste between different sections of the document and different Windows applications such as MS Word™ or AMI Pro™. All font, color and paragraph formatting will be preserved when copying from applications which support RTF Clipboard operations (Word, WordPerfect, AmiPro). When copying from the clipboard, ALLText will not recognize formatting (such as tables) which it does not support. It will however do it's best to preserve the formatting. Likewise, certain ALLText formatting styles (such as custom shadowing and Hypertext tagging (HT/Pro only) are not supported by other applications and may be incorrrectly interpreted by them.

NOTE: In order to properly support cut and paste of embedded Pictures, you must have the ATXPIC.DLL present and REGISTERED.

KeyBoard support for Cut, Copy and Paste

ALLText automatically recognizes certain key combinations as a command to interact with the windows clipboard. Note that these keyboard operations may be ignored by ALLText depending on the WriteProtect property setting.

 Cut 	<Cntrl> X	or 	<Cntrl> <Delete>

 Copy	<Cntrl> C	or	<Cntrl> <Insert>

 Paste	<Cntrl> V	or	<Shift> <Insert>

Programmatic Support for Cut, Copy and Paste

The ALLText .ClipboardAction property provides for full clipboard support. The following property settings apply:

	ALLText .ClipboardAction =1 	' cut selected text and place in clipboard

	ALLText .ClipboardAction =2 	' copy selected text to clipboard

	ALLText .ClipboardAction =3	' paste text from clipboard.

Note that when pasting from the clipboard, text will be inserted at the current cursor location and will replace any text already selected when this property is set. The cursor will then be set immediately AFTER the newly inserted text.

DO NOT use Visual Basic’s ClipBoard object for cut and paste support - the text held by the Clipboard object is NOT formatted.

Using SelText, SelFText, Text and FText to copy between controls

� XE “SelText Property”�� XE “SelFText Property”�Copying Text from one location to another within a given ALLText document may also be accomplished by reading and setting the SelFText property. When copying between two distinct ALLText windows however this may very well result in unexpected results due to differences in the font table definitions held by distinct instances of the ALLText control (see font tables). Instead use the clipboard.

	Eg: ' copy selected text from start of document to end

	ALLText.SelStart = 0: ALLText.SelLength =5 'select first 5 characters.

	X$ = ALLText.SelFText	' get selected text with formatting codes

	ALLText.Select = False 	' turn off selection

	ALLText.SelText = ALLText.TextLength ' move cursor to end of document

	ALLText.SelFText = X$ 'insert formatted text at end of document

After setting SelText or SelFText, the newly inserted text will remain formatted.

How to Create a Transparent Background

� XE “BackStyle Property”�� XE “Transparency”�ALLText supports a BackStyle property which allows you to specify either a Transparent or Opaque background. It is important to note however that setting this property is really capturing a Static image of what lies behind ALLText. Visual Basic doesn’t send messages saying that items behind the control have changed. For instance, ALLText has no way of knowing when a form’s picture property is changed. Updating what lies behind ALLText will therefore have no immediate affect on the display. In many cases it may be better to place a bitmap image in the BackPicture property instead of working with the transparent background.

Ideally the BackStyle property should be set at Design time only via the properties window. There are however several situations when it is necessary to change the BackStyle in runtime mode. In this event, it is important to set the control’s Visible property to false when changing the background style at runtime. For example:

	Sub SwitchToOpaque (atx As Control)

	 atx.Visible = False

	 atx.BackStyle = ATX_Opaque

	 atx.Visible = True

	End Sub

	Sub SwitchToTransparent (atx As Control)

	 ALLText.Visible = False

	 ALLText.BackStyle = ATX_Transparent

	 ALLText.Visible = True

	End Sub

When items behind the control are changed, a transparent ALLText control should be 'manually' updated by resetting the backstyle to Transparent again, this could be done in the Form’s repaint event, or after specific actions such as changing the back picture.

	Sub NewFormPicture (Pict As Control)

	 Picture = Pict.Picture 'changes the form’s picture property

	 If ALLText.BackStyle = ATX_Transparent Then

	 	ALLText.BackStyle = ATX_Transparent

		End If

	End Sub

How to Add a Background BitMap

� XE “Watermark”�� XE “Background Bitmap”�� XE “BackPicture Property”�ALLText uniquely supports the display of a background image positioned between the standard control background and the text itself. The effect may be used in a variety of manners - simulating transparency, setting up a spot light, framing text within a set of curtains, combining text and pictures as in a cartoon, or simulating the sliding of a cardboard over an overhead transparency as in a presentation. For example: Set up ALLText with black text and a black background. Nothing shows up. Now set in a round white ball as an image using BackPicture. Move it around with BackPictureX and BackPictureY. The effect is that of a spotlight with the black text showing up wherever the circle is displayed.

The background image is set using the BackPicture Property. The picture itself is set by assignment to the BackPicture property either through use of the standard Visual Basic LoadPicture function, or by assignment based on the picture property of another control. Positioning of the background picture is supported through the BackPictureX and BackPictureY properties. The actual display location of the picture does not change with resetting of the x & y coordinates until refreshed by setting the BackPictureRefresh property.

Example

 ALLText1.BackPicture = Picture1.Picture� for i% = 1 to 10 � ALLText1.BackPictureX = i%*100� ALLText1.BackPictureY = i%*50� ALLText.BackPictureRefresh = 1

 Next

How to Size the Control to Display ALL the Text

� XE “Word Wrapping, how to”�� XE “Size”�Many applications call for a textbox sized such that all the text fits into the control without scrolling. The ALLText DocWidth property can be set to control wordwrapping within the control. For most applications the DocWidth should be set to a value of .85 to .95 times the control width. The ALLText DocHeight property can be read at run-time to determine the total height of the formatted text content in twips. The control’s Height property can then be set to a greater value.

How to Link to a Database

� XE “Database support”�ALLText HT/Pro can be bound to either a String, Memo or a Binary field. Note that the Standard version of ALLText is not a data aware control and can not be bound to a database.

The following standard properties are associated with the use of ALLText as a bound control:

	DataSource

	DataField

	DataChanged

These properties work in a maner analogous to the standard Visual Basic properties.

In addition, the format in which the document is to be accessed in the database is controlled by DataType property. DataType settings include:

Text format (0) can be used for Raw unformatted text, making it easy to read using any editor.

RTF format (3) may be useful if you have some other application which can read the database and can understand RTF.

ATX_F format (2) is generally preferred as storing the document and its font table in the most compact form.

ATX_S format (1) may be used in preference to ATX_F if your font table is set up by your application code using FontTableGet and FontTablePut Functions. ATX_S differs from ATX_F in that it does not include the font table. This may save some small amount of space in your database.

(((IMPORTANT: Note that if you wish to handle the database manipulations yourself (the only option if using the standard version of ALLText), you can grab the formatted text using the FText property, this will hold up to 32K including formatting codes.

If your document is larger than will fit in the FText property, you can use Low Level I/O to read and write the document to strings rather than disk files. Sample code is provided below:

� XE “ATXGet Event”�Sub GetText()

	'loads the the control with the data returned in ATX GET

	Dummy% = ALLText.ClearALL ' clear control

	ALLText.FontTableSize=0 ' remove all unneeded fonts

	ALLText.DataType = ATX_Format_F ' = 2

	ALLText.FileLoad =ATX_IO_LowLevel ' = 3 , triggers ATX_GET event

	End Sub

Sub atxInfo_ATXGet (Flag As Integer, UserSTR As String)

 ' get data from database . Event is triggered by FileLoad setting

	 Static position&

	Flag = 1

	UserSTR = kbase!HyperText.GetChunk(position&, 25000)

	position& = position& + 25000

 	If Len(UserSTR) = 0 Then

 Flag = 0

 position& = 0

 End If

 End Sub

� XE “ATXPut Event”�Sub SaveText()

	'Sends control content out by triggering ATX_Put event

	ALLText.FontTableSize=0 ' remove all unneeded fonts

	ALLText.DataType = ATX_Format_F ' = 2

	ALLText.SelStart = 0: ALLText.SelLength = ALLText.TextLength ' select all text

	ALLText.FileSave =ATX_IO_LowLevel ' = 3 ' triggers ATX_Put event

	End Sub

Sub atxInfo_ATXPut (Flag As Integer, UserSTR As String)

	'saves data in database. Triggered by FileSave setting

	 Static sFlag%

	 If sFlag% = 0 Then

	 kbase!HyperText = ""

	 End If

	 kbase!HyperText.AppendChunk UserSTR

	 sFlag% = Flag

	End Sub

(((IMPORTANT: Note that LowLevel I/O is restricted to passing not more than 32K of information in each call of the ATXPut or ATXGet events. Also ALLText can not process portions of images or OLE objects - these must be passed in a single piece. Thus the limit on the size of such objects is 32K when using Low Level I/O.

Note that none of this manual manipulation is necessary if you are using the HT/Pro edition and binding the control to the database field. It will all be handled for you automatically.

How to Set and Modify Tab positions (HT/Pro only)

� XE “Tabs, How To”�ALLText HT/Pro supports two forms of tab support: relative (served by the TabStep property discussed under paragraph formatting) and absolute (served by TabLocations, TabCount, TabAdd, and TabDel properties). Each paragraph can have its own tab configuration.

Tab Support is provided via the following properties

TabEnabled- enables the use of the TabKey as a trueTab rather than change of focus.

TabStep- Sets relative tab stepsize (distance between relative tabs) in twips.

TabLocationsTabLocations - An Array property holding all the absolute tab locations for current or selected paragraphs.

TabCountTabCount - Returns the max number of tabs in selected paragraphs of text. Also used in clearing tabs.

TabAddTabAdd - Adds a new tab into the current or selected paragraphs.

TabDelTabDel - Removes a tab from the current or selected paragraphs.

TabAlignmentTabAlignment - An array property holding the tab alignments for selected paragraphs (TabAlignment), indexed from 0 to TabCount-1. Also sets or reads the default alignment for TabAdd.

Relative Tabs are measured in twips from each other. For example, in the absense of absolute tab settings, Setting .TabStep =500, results in tabs positions of 500, 1000, 1500, 2000, ... twips from left margin of text.

Absolute tabs positions may be set as well. Use the TabAdd property to add a new tab setting.

	ALLText1.TabAdd = 150 'adds a tab location at 150 twips from the left margin.

Note that Absolute Tabs are specified by their positions measured in twips from left margin of the document (Not the paragraph margin). Thus a tab set at 150 twips is not affected by LeftIntent settings of less than 150 twips, while such a tab is ignored as unachievable for LeftIndent settings greater than 150 twips.

Each absolute tab location may have its own alignment. To set or change alignments the TabAlignment property may be used. This is a list oriented property whose index refers to a given tab location for a paragraph TabAlignment(0) for the first absolute tab location in a paragraph, TabAlignment(ALLText.TabCount) for the last tab position in a paragraph.

 ALLText1.TabAdd = 200: � ALLText1.TabAdd = 150: � ALLText1.TabAdd = 368

 'Note at this point there are three absolute tab positions, � ' The first at 150 twips, the second at 200 twips and the third at 368 twips.

 ALLText1.TabAlignment(0) = ATX_TAB_CENTRED ' Index 0 points at left-most tab� ALLText1.TabAlignment(1) = ATX_TAB_RIGHT ' 200� ALLText1.TabAlignment(2) = ATX_TAB_LEFT ' 368

Absolute tabs are of greater priority than relative tabs in the sense, that relative tab acts only to the positions after last absolute tab position. For example, setting

 ALLText1.TabStep = 150: ALLText1.TabAdd = 140: ALLText1.TabAdd = 280

forces the following tab positions: 150, 280, 300, 450, 600, ... up to paragraph’s right margin.

Tabs are measured with 16 pixels accuracy. If the position of a new tab specified by the TabAdd property is less than 16 pixels away from nearest existing tab, a new tab is not inserted, but the position of the old tab is modified. The constant 16 pixels is declared in ATX4SAPI.BAS or ATX4HAPI.BAS file as ATX_TAB_MIN_PIX. In addition, the tab positions will be rounded to the nearest multiple of the PixelsPerTwip setting for the current screen resolution.

NOTE: in previous versions of ALLText, Right and Centered tabs applied only to the word immediately following the tab character. ALLText 4 handles Right and Centered tabs in a manner more akin to stand alone applications - the alignment is applied to all further text on the same line up to the next tab location.

How to Change Case

� XE “Case, changing”�ALLText includes two functions to facilitate changing from Upper to Lower Case or Lower to Upper case. These functions are declared in the ATX4HAPI.BAS and ATX4SAPI.BAS file :

	ATX_ToLower and ATX_ToUpper.

Simply select the text whose case must be changed and call the appropriate function:

	Call ATX_ToLower (Cntrl_Name)

How to Search & HighLight, or Search & Replace

� XE “Searching”�� XE “Find_Phrase Function”�� XE “Find_PhraseEX Function”�ALLText has two built in search functions: Find_Phrase and Find_PhraseEX. Find_Phrase searches for the next occurance of a given phrase in the document, without regard for the formatting. Find_PhraseEX can be used to to search for text with specific formatting. In either case, the search begins at the current cursor position.

Input parameters of this function include specification of the control to search, the text to search for, the search direction, case sensitivity, and (for Find_PhraseEX) the formatting parameters for the text being sought. For a complete list of the parameters and sample code, refer to the technical descriptions section. Upon returning, the function sets the StartPos& and StopPos& functions to the location of the found phrase. The return value is True if the phrase is found, false otherwise.

To Search and Replace, use the Find_Phrase or Find_PhraseEX functions, select the text which is found and set SelText or SelFText to overwrite the selection.

A sample search and replace project is included in the samples directory FIND.

Note that you may also use the Find_HTag, Find_NTag and Find_PTag functions in ALLText HT/Pro to search for tagged phrases.

How to Select on DoubleClick

� XE “Double Click Selection, how to”�ALLText does NOT automatically select words on a double click. This is an intentional omission. The code required to support such a feature is minimal and adding it to ALLText would limit its flexibility to users who do not want such a feature.

To support Auto Select of a word on DoubleClick add the following code to the DoubleClick Event:

SendKeys “^{Right}”, TRUE ' Simulate keyboard entry of move to end of word

SendKeys “+^{Left}”, TRUE ' Simulate keyboard entry of Select to start of word.

Embedding OLE Objects, Images and VB Controls (HT/Pro Only)

� XE “Embedding, How to”�ALLText HT/Pro, ALLText/Forms, ALLText/HTML, and ALLText/Pen support the embedding of external objects such as Images, OLE Objects, Pen Inkings, and even other custom controls. Such embedding is handled with the aid of an External Object DLL (ExtObjDLL) library such as ATXPIC.DLL or ATXOLE.DLL.

Each external object appears in the document as a bitmap and takes the place of a single character when displayed within the text stream.

Embedded objects can be printed with the document, saved in standard RTF format and even cut, copied or pasted.

OLE Object embedding is supported through the ALLText External Object DLL, ATXOLE.DLL. Embedded OLE objects may be used for the linking of applications or for the simple display of non-textual data such as spreadsheets or charts within the text application. Note that no OLE server is required to veiw a document with embedded OLE objects. An OLE server is only required for the actual embedding process and to respond to an OLE action event such as a double click.

Picture embedding is supported through the ALLText External Object DLL, ATXPIC.DLL, provides full support for the direct embedding of images. No external OLE server is required. Supported picture formats include: BMP, DIB, WMF, JPG, and ICO. ATXPIC is responsible for the initial embedding of pictures, as well as for the manipulation of the objects: setting picture properties, displaying, printing, saving, restoring etc.

Custom Controls and Ink Objects may be embedded within an ALLText document only through the use of the ALLText External Object DLL, ATXCTL.DLL. Such support requires either ALLText/Forms, ALLText/HTML, or ALLText/Pen. Separate documentation and licensing is required.

TECHNIQUE

In general, working with embedded objects involves four activities.

1. Registering the External Object DLL to support the type of object desired.

2. Embedding the object

3. Setting any desired attributes for the object (does not apply to OLE objects)

4. Responding to any specific events associated with the object

Registering the External Object DLL is done using a call to the ATX_REGNEWEXTERN function. This function establishes a link between the ALLText control and the DLL. Once the link is established it remains in effect until ALLText is removed from memory. Thus the function need only be called once for each External Object DLL while ALLText is in memory. Usually this will be in the initialization routine of your application (such as in a Form_Load event).

	Sub Form_Load ()�		Ret_code = ATX_REGNEWEXTERN (-1, “atxpic.dll") �	�	End Sub

Embedding the object is handled by setting the OLEObject property. Note that the property name is a holdover from version 3 of ALLText when OLE objects were the only type of object which could be supported. Embedding of other objects such as pictures using the ATXPic External Object DLL, does not make use of OLE technology or require the overhead associated with OLE. Only objects embedded using the ATXOLE.DLL uses OLE technology.

To embed an object position the cursor to the insertion point (ex: ALLText.SelStart = 5) , or select a portion of text to be overwritten (ex: ALLText.SelLength =20), and then set the OLEObject property as follows:

	Ole Object - ALLText.OLEObject = OleServerName & "*" & FileName.

		'Example: inserting a Paintbrush document �			ALLText1.OLEObject="PBrush*d:\windows\cars.bmp"

		'Example: inserting a bitmap using default OLE server defined by Windows�			ALLText1.OLEObject="*d:\windows\cars.bmp" 	

		'Example: inserting a Word Document�			ALLText1.OLEObject="WordDocument*C:\Sample.Doc"

		'Example: Creating and inserting a NEW OLE object using Excel�			ALLText.oleobject = "Excelworksheet"	 				

	Ole Object - ALLText.OLEObject = External ObjectName & “:” & FileName

		'Example: Embeds CARS.BMP and then BLUESEDAN.WMF� 			ALLText.OleObject = "atxpic:\cars.bmp"

			ALLText.OleObject = "atxpic:blusedan.wmf"

		'Example: Embeds empty picture object (see section below on setting attributes)�			ALLText.OleObject = "atxpic:"

Reading or setting attributes of External Object

The attributes of OLE objects are set by the OLE server and can not be reset from within ALLText.

Picture objects have the following attributes accessible from ALLText through the ExtObjParam and ExtObjValue properties:

 “Width”		- Specifies the width of the picture in twips.

 “Height” 		- Specifies the height of the picture in twips.

 “Base Line Descent”	- Specifies an offset relative to the text base line in twips. �			(Positive values lower the object relative to the text).

 “Frame Type” 	- Specifies the type of the frame that will be drawn around the picture.�			 FrameType% = 0	No frame around the picture�			 FrameType% = 1	Single line around the picture�			 FrameType% = 2	Shadow frame�			 FrameType% = 3	Up 3D frame�			 FrameType% = 4	Down 3D frame

 “PictureHandle”	- Specifies a handle to a picture. The picture can be changed by setting �			 ExtObjPicture to a valid picture.

When first loading a picture object into an ALLText document, ALLText initializes the size and other attributes using settings read from the source picture file itself. Picture attributes then may be read or modified through the ExtObjValue property (supports Width, Height, FrameType, and Base Line Descent attributes) and the ExtObjPicture property (allows you to change the image).

1. First select the picture object or position the caret immediately before the picture object you wish to modify.

2. Next specify the attribute you wish to read or modify by setting ExtObjParam to a string containing the module name “atxpic”, a colon “:”, and the desired attribute name.

3. Now read or set the desired attribute using the ExtObjValue property, or the ExtObjPicture property to manipulate the picture:

		

		Syntax:	 ATX.ExtObjParam=“atxpic:<propname>“

			 ATX.ExtObjValue = Value

		Ex:	 ATX.OleObject = "atxpic:help.ico"

			 ATX.ExtObjParam=“atxpic:Width“

 ATX.ExtObjValue = Width%

		Ex:	 ATX.OleObject = "atxpic:"			'Create empty picture

			 ATX.SelStart = ATX.SelStart - 1	'position cursor

			 ATX.ExtObjParam="atxpic:PictureHandler"

			 ATX.ExtObjPicture = LoadPicture("\windows\arcade.bmp")

		 or	 ATX.ExtObjPicture = clipboard.GetData()

As you can see from the second example it is possible to create an empty picture object and then assign the picture at a later time.

Responding to events of external objects

Double clicking on embedded images and OLE objects triggers the following events.

An End-user double click upon a picture object will trigger a standard double click event, followed by an ATX_ExternOleAction event. Parameters of the ATX_ExternOle event which will be set include: OleAction = 6 and OleServer = “ATXPic”, other parameters may be ignored.

An End-user double click upon an OLE object will launch the OLE Server unless the OLEVerb property has been set to ATX_VERB_UNDEFINED.

Ex: 	ALLText1.OLEVerb=ATX_VERB_UNDEFINED 'Prevent user launch of OLE server

How to Manage the Palette

� XE “Palette Property”�By default, ALLText uses a Rainbow palette which should be suitable in most situations. Displaying high color resolution images on a 256 color system may however require a bit of fine tuning. For this purpose a Palette property has been added. This may be set to any valid BMP or DIB picture handle. For further information on Palette manipulations reference the file Palettes.Wri.

How to Use the TabKey

� XE “Tab key functions”�� XE “TabEnabled Property”�As a Word Processing control it is important that ALLText be able to correctly interpet the TAB key as a method of entering tab characters in the document. In various applications, however it may be desirable to process the tab key as a change focus request. To accomodate either mode of operation ALLText supports a TabEnabled property.

With TabEnabled set to a value of True, ALLText accepts the Tab character for insertion into the text. With TabEnabled set to a value of FALSE, ALLText treats the TabKey as a focus change mechanism similar to other controls.

How to Implement Drag & Drop

� XE “DropFileMode Property”�� XE “DropFileStart Event”�� XE “DropFile Event”�� XE “Drag and Drop, how to”�ALLText 4 supports standard VB DragDrop methods as well as support for the dropping of files from file manager style programs into ALLText. The OCX editions of ALLText also provide fully automated support for drag/drop of selected text and embedded objects within the document.

The standard VB DragDrop properties and events are supported for standard drag and drop. (See standard VB help for documentation information.)

In order to support dragging of files from FileManager, ALLText 4 includes a DropFileMode property as well as DropFileStart and DropFile events. The DropFileMode property determines whether ALLText will (=1) or will not (=0) respond to files dropped from File Manager. With DropFileMode ON, ALLText will first trigger the event ATX_DropFileStart providing X and Y coordinates for the drop location and a third parameter indicating the number of files being dropped. Next the ATX_DropFile event will be triggered once for each file dropped and will provide the name of the file being dropped.

How to Implement UNDO

� XE “UnDoAction Property”�� XE “<Alt> <Backspace>”�ALLText keeps track of end-user changes to the control's content as they take place. Reading the UnDoAction property will return the number of possible UnDo steps currently stored in the buffer. The maximum number of undo steps stored by ALLText is 100.

Setting the UnDoAction property to 1 will undo the last action. Setting to 0 will empty the buffer.

For example:

	ALLText.SelText = "fred"�	ALLText.atx.UnDoAction = 1 'Perform one step UnDo operation

The <Alt> <Backspace> keyboard combination is also recognized for end-user support.

How To Trap Special Keys

� XE “Trapping keys”�ALLText supports the standard KeyDown, KeyPress and KeyUp events. These may be used to trap special keys for processing.

For example

Sub ALLText_KeyPress (Key as Integer)

	If Key = 13 then PlainText1.Text = ALLText.FText

Exit sub

How to Setup BookMarks

� XE “Bookmarks, how to”�ALLText’s HTag and NTag properties may be used in conjunction with Find_HTag and Find_NTag functions to create bookmarks. The main difference between HTags and NTags is that by setting MouseHPointer property, a distinct mouse pointer may be shown over the HTag’d phrases.

In response to an end-user action such as a menu choice “Create BookMark”, check to see if any text is selected. If not, select a single character by setting SelLength = 1. Next set either the NTag or HTag properties to a long integer value. The text is now tagged.

In response to an end user action such as a menu choice “GoToBookMark”, turn off selected text (ALLText.Select = False), move the caret to the start of the text (ALLText.SelStart =0) and then call either the Find_NTag or Find_HTag functions to search for a specific tag, or simply the next tag.

 x% = Find_HTag(ALLText, 0, 1)�XE "FindHTag Function"� ' find the next tagged text

or x% = Find_HTag(ALLText, tag&, 1)�XE "FindHTag Function"� ' find a specific tag

How to set up “Mail Merge” fields (HT/Pro edition only)

� XE “Mail Merge, how to”�ALLText does not have merge fields per se, but this is easy to set up using ALLText HT/Pro’s NTag property.

To build such an application, assign an integer tag value to selected phrases in your document. Use embedded code “\ATXntNNN ” to identify start of region tagged with value NNN, and “\ATXnt0 ” to identify the end of the region. For example, if you have a phrase such as, "The amount of ####’s money is ****", You could tag the "****" with a value such as 30, and the #### with a value such as 40.

 ALLText.FText = "The amount of \ATXnt40 ##\ATXnt0 's money is \ATXnt30 **\ATXnt0 "

After loading the tagged document into ALLText, use the Find_NTag function in a loop to jump to each tagged phrase. Read off the NTag value and replace the tagged text with information from a database (or other information source) based on that value. Phrases tagged with number 30 would be replaced by data from one field and tag number 40 would be replaced by data from another field.

 Select Case ALLText.NTag�	 Case Is = 30

 ALLText.SelText = Text1.Text� ALLText.NTag = 0� Case Is = 40� ALLText.SelText = Text2.Text� ALLText.NTag = 0� End Select

Sample code may be found in the MailMerg directory installed with ALLText.

Note that to insert large blocks of text you may initiating a FileLoad without first clearing the control. This add text at the current location, or replace any currently selected text.

How To Build a Hypertext Application (HT/PRO edition only)

� XE “Hypertext, how to”�ALLText HT/Pro has been specifically designed to include features for the support of Hypertext systems. Specifically we have added the following Hypertext supporting enhancements to our standard ALLText product.

1. The ability to assign a hypertext tag phrase to any string. The general idea is to create a select region, and assign a Tag number using the HTag�XE "HTag Property"� property. Any string with an assigned tag is now a hot phrase and will be supported by the MouseHPointer, the Find_HTag�XE "Find_HTag Function"� function and the ATXChange event�XE "ATXChange Event"�.

2. The ability to assign a different mouse pointer which will automatically be displayed when passing over any hypertext tagged region. The MouseHPointer�XE "MouseHPointer Property"� property determines which mouse pointer will be associated with hypertext regions.

3. The ability to use ALLText as a bound control. ALLText HT/Pro is a data aware control. This means that you can use the data control to move between records, automatically updating the content of the ALLText control. One way to make use of this is to use the HTag value of any tagged phrase as a keyed index in a database. When a user double clicks on a tagged phrase, moving to the record pointed to by this value and display the new information.

4. The ability to take action when a user moves his cursor into a tagged phrase. The ATXChange�XE "ATXChange Event"�ATXChange event is triggered whenever the cursor moves into or out of a tagged phrase. The event parameters include the HTag value of both the previous and current region.

5. The ability to find a given hypertext phrase via the tag number�XE "Tag number"�. The Find_HTag�XE "Find_HTag Function"� function allows you to jump forward to any hypertext phrase.

ALLText HT/Pro was designed largely to address the needs of a large section of our users for Hypertext design functionality. To this end ALLText HT/Pro is a bound control, and supports hypertext tagging.

Selecting a phrase and then setting ALLText HT/Pro’s HTag property (ALLText1.HTag=22) creates a tagged region associated with a tag value. You can easily read off that tag value at any time, such as during a double click event when you may wish to use the value to pop up a definition window, move to a new document, or even initiate some other program.

Tagged phrases are automatically sensed when moving the cursor or the mouse. When moving the mouse over a HyperText tagged region, the mouse pointer will automatically change from that specified by the MousePointer property to that specified by ALLText’s MouseHPointer �XE "MouseHPointer Property"�property. Depending on the ChangeEventMask property, the movement of the cursor into or out of a tagged area may also generate an ATXChange event. Mouse movements will also trigger this event once MousePointer and MouseHPointer properties have been set to distinct values.

The Find_HTag function (make sure you have included the constants definition file in your project to capture this function declaration) may be used to locate and move to a given occurrence of a tagged region, or to select the entire current hypertext phrase (if the cursor is positioned within such a phrase).

 ALLText1_Click()

 If HTag =0 then exit sub

 x% = Find_HTag(CntrlName, TagNumber, 0)�XE "FindHTag Function"� ' select the current tagged phrase.

 End Sub

Note that Tagging may also be useful in other applications - For example you may wish to create a Write Protected field�XE "Write Protected Fields"�.�XE "WriteProtect Property"� Simply tag the field with a value and either set the writeprotect value during the ATXChange event �XE "ATXChange Event"�as the user enters or leaves the field, or check the Tag value during trap key press events to determine whether to allow a particular action. Using different tags will even allow you to create regions accessible for editing by different authors in a Multi-Author�XE "Multi-Author Editing"� environment.

How to Build a Word Processor

A basic Notepad Replacement

Adding A Ruler

Adding A Button Bar

Adding A Status Bar

�Chapter 3

ALLText Properties

There are many properties affecting the overall functioning and appearance of the ALLText control window. These are listed described below.

Standard Properties

These properties are the standard properties supported by Visual Basic. See the Visual Basic Language Reference or online Help for documentation on these properties

	BorderstyleBorderstyle	Specifies the border for the ALLText control

	EnabledEnabled	Specifies whether the control is enabled

	HeightHeight	Specifies height of the control

	HelpContextIDHelpContextID	Specifies context ID for link to an external help file

	HWNDHWND	Returns the handle to a control

	IndexIndex	Specifies a unique instance of the control within a control array

	LeftLeft	Specifies offset from left edge of ALLText’s container

	MousepointerMousepointer	Specifies the Mouse Pointer for use over the ALLText control

	NameName	Contains the Name of the ALLText control

	ParentParent	Returns parent

	TabindexTabindex	Specifies the position within the focus change order of controls on the form

	TabStopTabStop	Indicates whether the control can receive focus through use of the Tab key

	TagTag	Specifies a user defined string associated with the control

	TopTop	Specifies offset from top edge of ALLText’s container

	VisibleVisible	Specifies whether ALLText is Visible

	WidthWidth	Specifies the width of the ALLText control

ALLText Specific Properties

The following properties are specific to the ALLText control or behave differently when used with ALLText than for other controls. These are listed described below. (Properties requiring the HT/Pro edition are so noted)

	AlignmentAlignment	Specifies Paragraph Alignment

	BackcolorBackcolor	Specifies ALLText background color

	BackPictureBackPicture	Specifies a picture behind the text - a Watermark

	BackPictureRefresh	Upon setting, moves the background picture to the X,Y coordinates

	BackPictureXBackPictureX	Specifies horizontal offset of background picture

	BackPictureYBackPictureY	Specifies vertical offset of background picture

	BorderBorder	(HT/Pro) Specifies the border style for a paragraph

	BottomIndentBottomIndent	Specifies line spacing after a paragraph

	CaretWidthCaretWidth	Sets or returns the width of the ALLText current position marker.

	ChangeEventMaskChangeEventMask	Specifies events which will trigger the Change Property

	ClearAllClearAll	Empties the text box

	ClipboardActionClipboardAction	Supports Cut, Copy and Paste operations

	CurCharCurChar	Specifies cursor position relative to start of current paragraph

	CurParCurPar	Specifies current paragraph in which cursor is located

	DataChangedDatachanged	(HT/Pro) Indicates whether control content has changed

	DataFieldDatafield	(HT/Pro) Database field to which ALLText is bound

	DataSourceDataSource	(HT/Pro) Data Control to which ALLText is bound

	DataTypeDataType	Specifies format to use for file or database I/O

	DirectScreenOutDirectScreenOut	Specifies method in which ALLText prepares text for screen

	DocHeightDocHeight	Specifies the height of document within the control

	DocWidthDocWidth	Specifies the word wrap width of document

	DropFileModeDropFileMode	Specifies whether to allow file dropping

	ExtDataTypeExtDataType	(HT/Pro) Controls which formatting codes are used when conducting File or Database I/O with DataType set to 4.

	ExtObjParamExtObjParam	(HT/Pro) Specifies the an external object attribute to be accessed with the ExtObjValue property

	ExtObjPictureExtObjPicture	(HT/Pro) Specifies a picture value of an embedded picture object

	ExtObjValueExtObjValue	(HT/Pro) Specifies an attribute of an embedded external object

	F2OnF2On	Determines whether the control responds to the F2 Key by displaying the Windows Font Selection Dialog box

	F3ONF3ON	Determines whether the control responds to the F3 Key by sending the control contents to the default printer.

	FileLoadFileLoad	Initiates File I/O

	FileNameFileName	Specifies file name for File I/O

	FileSaveFileSave	Initiates File I/O

	FirstLineIndentFirstLineIndent	Specifies hanging indentation for a paragraph

	FontBoldFontBold	Specifies whether selected character is Bold

	FontColorFontColor	Specifies color of selected characters

	FontHiddenFontHidden	(HT/Pro) Specifies whether selected character is Hidden

	FontIndexFontIndex	Specifies font table entry for formatting of selected characters

	FontItalicFontItalic	Specifies whether selected character is Italic

	FontNameFontName	Specifies font family of selected characters

	FontShadowFontShadow	Specifies shadowing style for selected characters

	FontSizeFontSize	Specifies Font Family of selected characters

	FontSubSupFontSize	Specifies sub or superscript of selected characters

	FontStrikeFontStrike	Specifies whether selected character is RedLined

	FontTableSizeFontTableSize	Specifies number of entries in font table

	FontUnderFontUnder	Specifies underline style for selected characters

	FontWidthFontWidth	Specifies font width of selected characters

	FooterFTextFooterFText	(HT/Pro) Contains formatted footer text for the document

	FormatPasteFormatPaste	Determines whether copy and paste functions include interpreted font formatting codes.

	FTextFText	Contains first 32k of formatted content

	HeaderFTextHeaderFText	(HT/Pro) Contains formatted header text for the document

	HTagHTag	(HT/Pro) Specifies a Hypertext HotSpot Tag for selected text

	HTagLHTagL	(HT/Pro) Specifies a Hypertext HotSpot Tag for text to left of cursor

	IsHidden	(HT/Pro) Indicating whether hidden text is contained in the active selection

	LeftMargLeftMarg	Specifies a left margin for selected paragraph.

	LineNumberLineNumber	Specifies line number offset from start of document

	LineSpacingLineSpacing	Specifies the line spacing within selected paragraph

	MouseHPointerMouseHPointer	(HT/Pro) Specifies the MousePointer to use over hotspots

	NTagLNTagL	(HT/Pro) Specifies a bookmark Tag for text to left of cursor

	NTagNTag	(HT/Pro) Specifies a bookmark Tag for selected text

	NumParagraphsnumParagraphs	Returns number of paragraph within the document

	OLECodeOLECode	(HT/Pro) Specifies a character code to be returned within SelText string as a placeholder for embedded objects

	OleObjectOleObject	(HT/Pro) Controls embedding of external Objects

	OleVerbOleVerb	(HT/Pro) Controls action of a double click upon embedded OLE objects

	OvertypeOvertype	Specifies whether typing inserts new characters or replaces existing characters

	PageHeightPageHeight	Specifies height of a page of text

	PageLineNumberPageLineNumber	Specifies line number offset from start of current page

	PageNumberPageNumber	Specifies current page number

	Palette	Specifies the Palette in use by ALLText

	PrinterDCPrinterDC	Controls whether ALLText uses Printer DC for on-screen formatting

	PTagPTag	(HT/Pro) Specifies a Long Integer tag value for selected paragraph.

	RightMargRightMarg	Specifies a right margin for selected paragraph.

	ScrollBarHScrollBarH	Sets the presentation of the horizontal scroll bar either On, Off or Auto.

	ScrollBarVScrollBarV	Sets the presentation of the Vertical scroll bar either On, Off or Auto.

	ScrollHorzScrollVert	X-coordinate of edit window in relation to start of Text.

	ScrollVertScrollVert	Y-coordinate of edit window in relation to start of Text.

	SelectSelect	Determines whether select region is on or off.

	SelFTextSelFText	Specifies the selected text including embedded format codes

	SelFTypeSelFType	Specifies how formatting codes are interpreted for selected text

	SelLengthSelLength	Specifies the length of a select region

	SelStartSelStart	Specifies starting location for a select region

	SelTextSelText	Specifies the selected text without embedded codes

	SelToCharSelToChar	Specifies character offset within paragraph to which selection region extends

	SelToParSelToPar	Specifies paragraph to which selection region extends

	ShowHiddenShowHidden	(HT/Pro) Determines whether or not to show hidden text.

	TabAddTabAdd	(HT/Pro) Adds a defined tab stop for specified paragraph

	TabAlignmentTabAlignment	(HT/Pro) An array holding the alingment types of tabs defined for selected paragraph

	TabCountTabCount	(HT/Pro) Returns the number of tab positions defined for selected paragraph

	TabDelTabDel	(HT/Pro) Removes a tab stop location from the selected paragraph

	TabEnabledTabEnabled	(HT/Pro) Specifies the function of the Tab key

	TabLocationsTabLocations	An array holding locations of aligned tabs for selected paragraph

	TabStepTabStep	Specifies default tab step size for selected paragraph.

	TagReadSelect	Specifies whether ALLText should automatically extend selection when reading HTag or NTag

	TextFormattedTextFormatted	Indicates how much of a document has been fully formatted after I/O

	TextLengthTextLength	Returns the number of characters in the document

	TextText	Contains first 32k of content - unformatted, without embedded codes

	TopIndentTopIndent	Specifies spacing before a selected paragraph

	TransparentTransparent	Specifies whether ALLText’s background is Transparent

	UnDoActionUnDoAction	Triggers an Undo Action

	WriteProtectWriteProtect	Specifies the WriteProtect mode

�Alignment Property�XE "Alignment Property"�

Description

Sets or returns the Alignment of the current paragraph.

Usage

ALLText.Alignment= iParNum%�iParNum% = ALLText.Alignment

Access	

	Read	Write�Design	 -	 -�Execution	 +	 +

DataType

Integer

Values

ATX_LEFT (0)	for Left Aligned Paragraph�ATX_RIGHT (1)	for Right Aligned Paragraph�ATX_CENTERED (2)	for Centered Paragraph�ATX_JUSTIFIED (3)	for Justified Paragraph

Default

ATX_LEFT

Example

ALLText1.Alignment = ATX_CENTERED

BackColor property

Description

ALLText supports a pallete of up to 256 pure (undithered) colors for the Back Color. When set, ALLText chooses the nearest pure color and fills the background with this color.

Default

Default value is equal to system window background color.

Remarks

If you need a dithered color background you may use a Transparent ALLText placed on dithered form or over a dithered picturebox.

(It may be possible to use more than 256 colors depending on display driver and palette, but this has not yet been fully tested.)

BackPicture Property�XE "BackPicture Property"��XE "BackGround Picture"��XE "Watermark"�

Description

ALLText uniquely supports the display of a single background image which may be positioned between the standard control background and the text itself. This picture is set or read via the BackPicture Property.

The picture itself is set by assignment to the BackPicture property, either through use of the standard Visual Basic LoadPicture function, or by assignment based on the picture property of another control. Positioning of the background picture is supported through the BackPictureX and BackPictureY properties. The actual display location of the picture does not change with resetting of the x & y coordinates until refreshed by setting the BackPictureRefresh property.

Usage

ALLText.BackPicture = LoadPicture(FName$)

Picture1.Picture=ALLText1.BackPicture

Access	

	Read	Write�Design time	 +	 +�Run time	 +	 +

DataType

Picture

Values

Any picture available via the LoadPicture property or contained in the Picture property of another control.

Example

for i% = 1 to 10 � ALLText1.BackPictureX = i%*100� ALLText1.BackPictureY = i%*50� ALLText1.BackPicture = Picture1.Picture� Next

Remarks

The BackPicture property may be used for a variety of special effects. The easiest way to understand how the background picture is displayed is to imagine Black text on a Black background. Nothing shows up. Now set in a round white ball as an image using BackPicture. Move it around with BackPictureX and BackPictureY. The effect is that of a spotlight with the black text showing up wherever the circle is displayed. Other effects possible using the Background Picture include; framing text within a set of curtains, combining text and pictures as in a cartoon, simulating the sliding of a cardboard over an overhead transparency as in a presentation. We leave the rest to your imagination. Please let us know if you come up with any novel ideas.

BackPictureX, BackPictureY Properties�XE "BackPicture Property"��XE "BackGround Picture"�

Description

Set the top left corner coordinates of an included picture to paint on the Text background (coordinates are measured in relation to top left corner of Text).

Usage

ALLText.BackPictureX= x& ALLText.BackPictureY= y&�x& = ALLText.BackPictureX y& = ALLText.BackPictureY

Access

	Read	Write

Design time	 +	 +

Run time	 +	 +

DataType

Long (twips)

Values

-MaxTextWidth Ј XTwipsToPixels(x&) Ј MaxTextWidth�-MaxTextWidth Ј YTwipsToPixels(y&) Ј MaxTextHeight

Default

0

Remarks

When you set these properties nothing happens immediately. The result becomes visible only after setting of either the BackPicture property or the BackPictureRefresh property.

There are many situations when resulting paint will be without of scope. To be sure that result is always visible you must keep within the following constraints:

0 <= (x& - ALLText.ScrollHorz) <= ALLText.Width�0 <= (y& - ALLText.ScrollVert) <= ALLText.Height

BackPictureRefresh Property�XE "BackPicture Property"��XE "BackGround Picture"�

Description

Setting the BackPictureRefresh property to a value of 1 resets the background picture to the location defined by BackPictureX and BackPictureY properties.

Usage

ALLText.BackPictureRefresh = 1

Access	

	Read	Write�Design time	 -	 -�Run time	 -	 +

DataType

Integer

BackStyle Property�XE "BackStyle Property"� � XE “Transparency”�

Description

Specifies whether the background is transparent or opaque.

Usage

ALLText.BackStyle = ATX_TransParent

Notes

Setting this property is really capturing a Static image of what lies behind ALLText. Updating what lies behind ALLText will therefore have no immediate affect on the display. In many cases it may be better to place a bitmap image in the BackPicture property instead of working with the transparent background.

Ideally the BackStyle property should be set at Design time only via the properties window. The Visible property should be set to False whenever changing the BackStyle at RunTime.For example:

 Sub SwitchToOpaque (atx As Control)

 atx.Visible = False

 atx.BackStyle = ATX_Opaque

 atx.Visible = True

 End Sub

 Sub SwitchToTransparent (atx As Control)

 atx.Visible = False

 atx.BackStyle = ATX_Transparent

 atx.Visible = True

 End Sub

When items behind the control are changed, a transparent ALLText control should be 'manually' updated by resetting the backstyle to Transparent again, this could be done in the Form's repaint event, or after specific actions such as changing the back picture.

 Sub NewFormPicture (Pict As Control)

 Picture = Pict.Picture 'changes the form's picture property

 If atx.BackStyle = ATX_Transparent Then

 atx.BackStyle = ATX_Transparent

 End If

 End Sub

Border Property�XE "Border Property"� (HT/Pro Version)

Description

The Border property of ALLText HT/Pro sets or resets a border around current or selected paragraphs.

Paragraph borders are defined by a variety of characteristics including which sides are bordered and the nature of the border (eg: shadowed, thick, double).

The state of underlining is determined by the value of the BorderBorder property. A value of False indicates no borders . Other values may be built up or interpreted through the use of two ALLText functions: MAke_BorderMake_Border and Get_BorderGet_Border.

Usage

alltext.Border = b&:	b& = alltext.Border

Access

	R 	W

Design	-	 -

Runtime 	+ 	+

Data Type

long

Values

True may be used for single line not shadowed box border

False may be used to reset borders to the default value - unbordered.

In general, values depend on border configuration.

For setting or getting real values, ALLText's get_border and make_border functions are strongly recommended.

Default

0 (not bordered)

If Out of Range

Nothing happens.

Example

' Make the border configuration for last paragraph the same as for first one.

ALLText1.CurPar = 0

call get_border(ALLText1.Border, side%, shape%, shadow%)

ALLText1.CurPar = ATX_MAXPARAG

ALLText1.Border = make_border(side%, shape%, shadow%)

' Set the second paragraph's bordering to double line, shadowed, right

' and bottom lines only.

ALLText1.CurPar = 1

ALLText1.Border = make_border(ATX_BORDER_RIGHT+ATX_BORDER_BOTTOM, ATX_BORDER_LINE_DOUBLE, ATX_BORDER_STYLE_SHADOWED)

Remarks

If two paragraphs of text contain the same border configuration then their borders are joined. To split the borders of two paragraphs, insert an unbordered empty paragraph between them.

BottomIndent Property�XE "BottomIndent Property"�

Description

Sets or returns indent distance between the Bottom of the paragraph and the Top of the next Paragraph. (gets added to Topndent of nextparagraph)

Usage

ALLText.BottomIndent= n&�n& = ALLText.BottomIndent

Access	

	Read	Write�Design	 -	 -�Execution	 +	 +

DataType

Long (twips)

Values

0 Ј YTwipsToPixels(n&) Ј MaxTextHeight

Default

1

Example

ALLText1.BottomIndent = .5 * 1440 'set to Ѕ inch

Notes

The resolution of this property is dependent on the physical device. ALLText holds such information internally in Pixels such that

 ATX.BottomIndent = Screen.TwipsPerPixelX + 1

is equivalent to

 ATX.BottomIndent = Screen.TwipsPerPixelX

CaretWidth Property�XE "CaretWidth Property"�

Description

Determines the ALLText caret width in pixels.

Usage

n% = ALLText.CaretWidth

ALLText.CaretWidth = n%

Access

	R	W

Design 	+	+

Runtime 	+	+

Data Type

Integer (pixels)

Values

0 <= n% <= 100

Default

1

If Out of Range

A trappable error is generated, property value remains unchanged.

ChangeEventMask � XE “ChangeEventMask Property”�

Description

The ChangeEventMask property determines which ALLText state changes cause ALLText to trigger the ATXChange event.

The ALLText state refers to the state (formatting, tags, etc) of selected text or the state of text at the current caret position if no text is currently selected (SelLength=0).

Usage

ATX.ChangeEventMask = l&

l& = ATX.ChangeEventMask

Data Type

Long

Remarks

This property can be assigned with a combination (boolean OR, or arithmetic addition) of following values listed in ATX4HAPI.BAS or ATX4SAPI.BAS:

Global Constant�Value�Trigger Event in response to Change in:��ATXTAG_CHANGED_MASK�&H1&�Htag��ATXMOUSE_CHANGED_MASK�&H2&�Mouse cursor��ATXFONT_CHANGED_MASK�&H4&�Font, including font characteristics such as underline��ATXCOLOR_CHANGED_MASK�&H8&�Font color��ATXCURSORLOCATION_CHANGED_MASK�&H10&�Caret location��ATXSELECTION_CHANGED_MASK�&H20&�Selected area��ATXLOCATIONX_CHANGED_MASK�&H40&�X location of the ALLText window��ATXLOCATIONY_CHANGED_MASK�&H80&�Y location of the ALLText window��ATXSELPARAGS_CHANGED_MASK�&H100&�Selected paragraph area��ATXPARALIGNMENT_CHANGED_MASK�&H200&�Paragraph Alignment ��ATXMARGIONX_CHANGED_MASK�&H400&�Paragraph Margins: LeftMarg, RightMarg or FirstLineIndent��ATXSCROLLH_CHANGED_MASK�&H800&�Horizontal scroll��ATXSCROLLV_CHANGED_MASK�&H1000&�Vertical scroll��ATXPAGE_CHANGED_MASK�&H2000&�Current page number��ATXPAGELINE_CHANGED_MASK�&H4000&�Current Page Line Number��ATXLINE_CHANGED_MASK�&H8000&�Line number.��ATXFORMATED_CHANGED_MASK�&H10000�The value of the Textformatted property has changed - this may indicate progress in the background formatting process.��ATXCHANGED_CHANGED_MASK�&H20000�DataChanged property.��

Example

To trigger an ATXChanged event upon either the changing of caret location or upon changes to the current font the VB code would be:

ATX.ChangeEventMask = ATXCURSORLOCATION_CHANGED_MASK or ATXFONT_CHANGED_MASK

Data Type

Long

References

ATXChange event

Default

(ATXTAG_CHANGED_MASK or ATXMOUSE_CHANGED_MASK)

ClearAll Property�XE "ClearAll Property"�

Description

Upon reading the ClearAll property the control is reset, removing all Text and Paragraph structures (paragraphs, etc.). What remains is one empty paragraph. Returns a value of true upon success.

Usage

n% = ALLText.ClearAll ‘ Clears the control, but does not reset font table�	Returns a value of -1 upon success.

Access	

	Read	Write�Design	 -	 -�Execution	 +	 -

DataType

Integer	

Values

TRUE	The document has been successfully cleared.

FALSE	Error

Example

i% = ALLText1.ClearALL

Remarks

Clearing the control does not change the DocWidth property.

Clearing the control does not change the FontTableSize - This is a change from versions of ALLText prior to 3.0. To eliminate unused fonts from the system, set the FontTableSize property to a value of 0.

ClipboardAction property� XE “ClipboardAction Property”�� XE Cut, Copy and Paste�� XE Copy�� XE Paste�

Description

The ClipboardAction property allows easy programmatic access to the clipboard (Cut, Copy and Paste) by assigning a value to this property.

Usage

ALLText.ClipBoardAction = x%

Access	

	Read	Write�Design	 -	 -�Execution	 -	 +

Values

ATX_CUT=1

ATX_COPY=2

ATX_PASTE=3

(See constants in atx4hapi.bas or atx4sapi.bas file.)

Remarks

The ClipboardAction Property provides full Formatted cut and paste support between applications. Note that Visual Basic’s clipboard object does not support Formatted text. Use of GetText or SetText methods will only support the Raw Text.

Note that After Pasting, the Caret will be located BEFORE the pasted text.

ClipControls Property� XE “ClipControls Property”�

Description

Standard property (see Visual Basic Help), sets or returns a value that determines whether graphics methods in Paint events repaint the entire object or only newly exposed areas. Also determines whether the Microsoft Windows operating environment creates a clipping region that excludes nongraphical controls contained by the object. Read-only at run time.

Usage

atx.CLIPCONTROLS = <true/False>

b% = atx.CLIPCONTROLS

Data Type

BOOL

Default

TRUE

References

CurChar Property�XE "CurChar Property"��XE "Current Position"�� XE “Scrolling”�

Description

Setting moves the cursor/caret to the nth character within the current paragraph (as defined by the CurPar property), simultaneously determining the starting edge of a select region.

Returns either the current cursor/caret offset into a paragraph (if Select property is False), or the character offset of the starting edge of the select region (if Select property is set True)

Usage

ALLText.CurChar = n%�n% = ALLText.CurChar

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer

Values

0 <= n% <= Number of Characters in the Paragraph specified by CurPar property

Default

0

Remarks

If out of range this property is set to last Character of the Paragraph specified by CurPar property.�Setting CurPar reset CurChar to 0.�Setting CurChar resets SeltoPar and SelToChar to 0.

CurPar Property�XE "CurPar Property"��XE "Current Position"�� XE “Scrolling”�

Description

Sets the cursor/caret location to the start of a given paragraph, automatically reseting CurChar to 0.�Generally returns the paragraph number of the current cursor/caret location, except when a select region is active (ALLText.Select=True) in which case CurPar returns the paragraph number containing the the start of the select region.

Usage

ALLText.CurPar = iParNum&�iParNum& = ALLText.CurPar

Access

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

LONG

Values

0 <= iParNum& < ALLText.NumParagraphs

Default

0

Example

' Set caret into last Paragraph of the Text� ALLText1.CurPar = ALLText.NumParagraphs�' Set caret into last Character of the Paragraph �' specified above.� ALLText1.CurChar = ATX_MAXCHARS

Remarks

If out of range this property is set to last Paragraph of the Text.�Setting CurPar will automatically reset CurChar, SeltoPar and SelToChar to 0.

DataChanged Property�XE "DataChanged Property"� (HT/Pro Version)

Description

The datachanged property works as per the standard VB DataChanged property, with the exception that it is not automatically set TRUE upon chages to the control content. This discrepancy is expected to be corrected in the next release of ALLText.

Usage

 n% = alltext.datachanged

 alltext.datachanged = true|false

Access

	R	W

Design	 -	 -	

Runtime 	 + 	 +

DataType

Integer(Boolean)

Values

True - Data is changed

False - Data not changed

DataType Property�XE "DataType Property"�

Description

Defines how strings, including embedded codes, are formed or interpreted by the ALLText control during I/O in particular, this affects file or database I/O.

Usage

n% = ALLText.DataType

ALLText.DataType = n%

Access

	R 	W 	

 Design 	+ 	+ 	

 Runtime 	 +	 +

DataType

 Integer (ENUM)

Values (Constants may be found in file ATX4SAPI.BAS or ATX4HAPI.BAS for HT/Pro version)

 0 - ATX_FORMAT_TEXT	- TextPlainTextSupport

 1 - ATX_FORMAT_S 	- ALLText special formatATXSupport

 2 - ATX_FORMAT_F 	- ALLText full formatATXSupport

 3 - ATX_FORMAT_RTF 	- Rich Text formatRTFSupport (HT/PRO edition only)

 4 - ATX_FORMAT_FLX 	- Flexible / User Defined, �	 Interpret codes based on ExtDataType property (HT/PRO)

Default

0

If Out of Range

A trapable error is generated. The property value is unchanged.

Remarks

The setting ATX_FORMAT_FLX is quite powerful as it allows the code to determine which formatting codes to interpret or include in an output file based upon the setting of the ExtDataType property. See the example included with the description of ExtDataType.

Example

The following two code snippets are equivalent and will save any Selected text to a file “Full.ATX”

 atx1.FileName="FULL.ATX"

 atx1.DataType=ATX_FORMAT_FLX

 atx1.ExtDataType=ATXF_MASK

 atx1.FileSave = ATX_IO_FAST

 atx1.FileName="FULL.ATX"

 atx1.DataType=ATX_FORMAT_F

 atx1.FileSave = ATX_IO_FAST

DirectScreenOut Property� XE “DirectScreenOut Property”�

Description

Determines whether ALLText display text directly (DirectScreenOut = TRUE) or should make use of an internal buffer for preparing text before presenting it on the screen (DirectScreenOut = FALSE).

Visual Basic

ATX.DirectScreenOut = <True/False>

b% = ATX.DirectScreenOut

Default

FALSE

Remarks

Use of an internal buffer prevents blinking of the text string being edited. It also results in smoother output of other objects when using ALLText/Pen features. Note that the internal buffer takes additional memory and may result in slower output on some computers.

References

DocHeight Property�XE "DocHeight Property"�

Description

Returns the total height of the text within the control. If greater than the window height, a vertical scroll bar will automatically be activated.

Usage

n&=ALLText.DocHeight

Access	

	Read	Write�Design	 -	 -�Execution	 +	 -

DataType

Long (twips)	

Values

0 Ј YTwipsToPixels(n%) Ј MaxTextHeight

Example

if ALLText1.DocHeight > ALLText1.Height then � print "This text does not fit into window"� end if	

Note:

The DocHeight property may not be accurate immediately after loading a file, adding a large amount of text from the clipboard or performing major formatting modifications. This is because of the background formatting process. To assure that the property value is stable, check that the TextFormatted property is set to -1.

DocWidth Property�XE "DocWidth Property"�

Description

Changes or returns the width of Text displayed within the control window.�Text is automatically word-wrapped to fit within the specified DocWidth. To turn word wrapping off, set DocWidth to ATX_MAXTEXTWIDTH.

Usage

ALLText.DocWidth = n&�n& = ALLText.DocWidth

Access

	Read	Write

Design	 +	 +�Execution	 +	 +

DataType

Long (twips)	

Values

MinTextWidth Ј XTwipsToPixels(n&) Ј MaxTextWidth

resolution = Screen.TwipsPerPixelX

Default

XTwipsToPixels(400)

Example

If ALLText1.DocWidth > ALLText1.Width-1 then

' Word Wrap wrap�ALLText1.DocWidth = ALLText1.Width-1�end if

Remarks

Attempts to set DocWidth to an out of range value will be ignored by ALLText.

Note that reading the DocWidth property may return a slightly different value than it was set to. This is because DocWidth settings are limited in resolution to the number of Twips per pixel in the horizontal direction.

Upon setting DocWidth, paragraphs are reformatted, and their widths are changed to keep their margin indents the same. DocWidth may never be set to a value less than the maximum sum among all paragraphs of left plus right indents.

The DocWidth property setting does not affect the text wrapping width when printing using the built in printer functions. This is independently set by the parameters of the print functions.

The DocWidth property may be reset by ALLText when loading in a document using FileLoad, or when the control content is changed as a result of repositioning a data control to which the control is bound. In this case ALLText will read in the width of the document as specified in the stored file. You should reset the DocWidth after reading or in the Data.Reposition event if you want to insure a specific Word Wrap width.

DropFileMode Property� XE “DropFileMode Property”�

Description

The setting of this property determines whether ALLText will accept files Dropped from File Manager, triggering DropFile and DropFileStart Events.

Usage

ATX.DropFileMode = <0,1>

e% = ATX.DropFileMode

Settings

DropFileMode = 0	Do not accept files dropped from File Manager

DropFileMode = 1	Accept files dropped from File Manager

Default

1

Data Type

Enum

References

DROPFILESTART event

DROPFILE event

ExtDataType Property (HT/Pro only) � XE “ExtDataType Property”�

Description

The ExtDataType (External Data Type) property determines what RTF data (embedded codes) will be saved with the text during File or Database I/O.

This property can only be set when the DataType property is set to a value of ATX_DATATYPE_RTF (4).

Usage

ATX.ExtDataType = n%

n% = ATX.ExtDataType

Remarks

The values of property ExtDataType are OR’d from the following table (Global Constants are defined in the file ATX4hAPI.BAS)

ATX_FNTTBL_MASK = 1�Save font table��ATX_CLRTBL_MASK = 2�Save color table ��ATX_PRGSET_MASK = 4�Save text and paragraph formatting codes (alignment, indenting, etc.)��ATX_OLEOBJ_MASK = 8�Expand embedded ole objects with full details necessary for reading back. Without this flag, only the code identifying the location of an OLE object is saved.��ATX_RTFSTD_MASK = 16�Save as real 7 bit RTF with symbol conversion

This mask causes ALLText to generate an RTF output including initial ("{\rtf1\ansi\deff0\deflang1033") and final ("}") for RTF compatibility. In addition all special symbols such as endash, emdash, non breaking space, etc. will be converted into the standard RTF form. The output generated without this mask cannot be read by foreign RTF readers.�����FULLRTF_MASK = 31�Based on logical OR of ATXF_MASK, ATX_CLRTBL_MASK, and ATX_RTFSTD_MASK��ATXS_MASK = 4�Same as ATX_PRGSETMASK, but name intended to show compatibility with ALLText 3 ATX_S format.��ATXF_MASK = 13�Compatible with ALLText 3’s ATX_F Format.

Based on logical OR of ATXS_MASK, ATX_FNTTBL_MASK, and ATX_OLEOBJ_MASK. ��

Data Type

Integer

Default

= 0

Example

The following two Visual Basic code snippets both save any selected text to a file, but the first one will not save the font table in the “NOFNTTBL.ATX” file.

 atx1.FileName="NOFNTTBL.ATX"

 atx1.DataType=ATX_FORMAT_FLX

 atx1.ExtDataType=ATX_PRGSET_MASK or ATX_OLEOBJ_MASK

 atx1.FileSave = ATX_IO_FAST

 atx1.FileName="FULL.ATX"

 atx1.DataType=ATX_FORMAT_FLX

 atx1.ExtDataType=ATXF_MASK

 atx1.FileSave = ATX_IO_FAST

ExtObjParam Property� XE “ExtObjParam Property”�

Description

This property determines which attribute of an embedded external object, such as a picture, is to be accessed via either the ExtObjValue or ExtObjPicture properties.

Usage

ATX.ExtObjParam = s$

s$ = ATX.ExtObjParam

Default

Empty string

Values

The valid values of this property depend upon the external object to be addressed. For Picture objects embedded with the ATXPicDLL, the following values are valid:

 “Width”		- Specifies the width of the picture in twips.

 “Height” 		- Specifies the height of the picture in twips.

 “Base Line Descent”	- Specifies an offset relative to the text base line in twips. �			(Positive values lower the object relative to the text).

 “Frame Type” 	- Specifies the type of the frame that will be drawn around the picture.�			 FrameType% = 0	No frame around the picture�			 FrameType% = 1	Single line around the picture�			 FrameType% = 2	Shadow frame�			 FrameType% = 3	Up 3D frame�			 FrameType% = 4	Down 3D frame

 “PictureHandler”	- Specifies a handle to a picture. The picture can be changed by setting �			 ExtObjPicture to a valid picture.

Example

For any of these objects we could try to set some property. For example if we want to set width for an object we discussed we should write

 ATX.ExtObjParam = "Width"� ATX.ExtObjValue = str(10000)

 ATX.ExtObjParam = "PictureHandler"� ATX.ExtObjPicture = Picture1.Picture

Remarks

Note the spaces in the values “Frame Type” and “Base Line Descent”

There is no error triggered by setting an invalid value. This is to allow for support of future External Object DLL’s.

Data Type

String

References

ExtObjPicture -- property

ExtObjValue -- property

ExtObjValue Property� XE “ExtObjValueProperty”�

Description

This property sets or returns an attribute of an external object. The attribute accessed is specified by the ExtObjParam property.

If a select region is active, the object accessed is the first object within the select region for which the desired attribute (as specified by ExtObjParam) is valid. If no select region is active, the property accesses the object at the current cursor location.

Usage

ATX.ExtObjValue = s$

s$ = ATX.ExtObjValue

Example

Place a frame around a picture:

	ALLText.ExtObjParam = "Frame Type"�	ALLText.extobjvalue = "1"

Remarks

The value should be passed as a string.

Data Type

String

Default

empty String

References

ExtObjParam -- property

ExtObjPicture -- property

ExtObjPicture Property� XE “ExtObjPicture Property”�

Description

Sets or returns the value of the PICTURE attribute for the first external picture object within a select region, or the external object PICTURE after cursor if no select region is active. The appropriate property name (a string) for the External Object must first be defined in the ExtObjParam property.

Usage

ATX.ExtObjPicture = CTL.picture

CTL.picture = ATX.ExtObjPicture

Example

Embed an empty picture, move the cursor back before the picture and set the picture

	ATX.OLEObject = “atxpic:”�	ATX.SelStart= ATX.SelStart-1 �	ATX.ExtObjParam = "PictureHandler"�	ATX.ExtObjPicture = Picture1.Picture

Data Type

Picture

References

ExtObjParam - property

ExtObjValue - property

F2On�XE "F2On Property"� and F3On Properties�XE "Font Selection Key"��XE "F2On Property"��XE "F3On Property"��XE "Printing"�

Description

By default, the F2 key will call up the standard windows font dialog box when in runtime mode the ALLText control has the focus. To prevent this action, set F2On to False.

Similarly, the F3 key will initiate printing of the control content when in runtime mode the ALLText control has the focus. To prevent this action, set F3On to False.

Usage

ALLText.F2On = n%�n% = ALLText.F2On

Access	

	Read	Write

Design time	 +	 +

Run time	 +	 +

DataType

Logical

Values

True/False

Default

True

FileName Property�XE "FileName Property"�

Description

In FAST load and save modes, the FileName property determines the Full Path Name of the file read from, or written to by ALLText. The programmer need not open or close the file via VB Code - this is fully automatic.

Usage

path$ = ALLText.FileName

ALLText.FileName = path$

Access

	R	W

 Design 	+ 	 +

 Runtime 	+ 	 +

DataType

String

Default

 ""

If Out of Range

Trapable error is generated. Property value is unchanged.

FileLoad Property�XE "FileLoad Property"�

Description

Setting FileLoad switches ALLText into state of loading new content at the current cursor position, or replacing content of active select region. The value of FileLoad determines how loading is handled. In standard and low level mode an ATXGetATXGet event is triggered for each chunk of document being read in. (At the time of this writing, a chunk is defined as up to 2000 characters, this may be subject to change however). In Fast mode, the ATXGet event is not triggered and loading from a file procedes automatically as determined from the FileNameFileName and DataTypeDataType properties.

Usage

 ALLText.FileLoad = LoadMode%

 LoadStatus% = ALLText.FileLoad

Access

	R 	W

 Design 	 -	 -

 Runtime 	 +	 -

DataType

 Integer

Values - (see constants definitions in ATX4SAPI.BAS or ATX4HAPI.BAS for HT/Pro version)

On setting:

 ATX_IO_FAST - fast loading mode is activated

 ATX_IO_STANDARD - standard loading mode is activated

 ATX_IO_LOWLEVEL - low level loading mode is activated

On reading:

 ATX_IO_COMPLETED - loading operation is completed successfully.

 < 0 - error on loading.

DEFAULT

ATX_IO_COMPLETED

Remarks

The first reading of the FileLoad property after a load operation will return either ATX_IO_COMPLETED, or a negative value error code. Following readings return 0.

Reading a file may change the current DocWidth setting to that of the document loaded.

Example: Fast Loading

Sub load_from_file (file_name$, file_format%)

 alltext1.WriteProtect = -1

 alltext1.FontTableSize = 0 ' adjust font table to remove unused entries

 i% = alltext1.ClearAll ' empty the control, otherwise will file merge.

 alltext1.DataType = file_format% ' set the file type

 alltext1.FileName = file_name$ ' set the file name

 alltext1.FileLoad = ATX_IO_FAST ' initiate automated loading

 ' Note, the ATXGet event is not generated.

End Sub

FileSave Property�XE "FileSave Property"�

Description

Switches ALLText into state of forming strings for saving from selected area. In standard and low level mode an ATXPutATXPut event is generated each time when next ALLText line is ready for saving another chunk of information (at this time, the highly technical term 'chunk' may be taken as consisting of up to 2000 characters, this is however subject to change in future versions). In fast mode no ATXPut event is triggered, and saving to a file (see FileNameFileName property) procedes automatically according to the file format set by the DataTypeDataType property.

Usage

 ALLText.FileSave = SaveMode%

 SaveStatus% = ALLText.FileSave

Access

	R 	W

 Design 	 -	 -

 Runtime 	 +	 -

DataType

 Integer

Values

 On setting:

 ATX_IO_FAST - fast loading mode is activated � ATX_IO_STANDARD - standard loading mode is activated

 ATX_IO_LOWLEVEL - low level loading mode is activated

On reading:

 ATX_IO_COMPLETED - loading operation is completed successfully.

 < 0 - error on loading.

DEFAULT

 ATX_IO_COMPLETED

Remarks

If saving is completed with error then first reading of FileLoad property returns negative value error code. Following readings return 0.

Note that ALLText will only save the Selected text region.

Example: FAST SAVING�XE "FAST SAVING - example"�

 Sub save_to_file (file_name$, file_format%)

 ' Don't allow end user modifications during the save.

 wp% = alltext1.WriteProtect: alltext1.WriteProtect = 2

 ' select the region of text to save, recalling old select settings

 alltext1.SelStart = 0: alltext1.SelLength = 2000000

 ' Initiate automated Saving in desired file format

 ' Note that the ATXPut event is not generated.

 alltext1.DataType = file_format%

 alltext1.FileName = file_name$

 alltext1.FileSave = ATX_IO_FAST

 ' Return to originial configuration

 alltext1.WriteProtect = w%

 End Sub

FirstLineIndent Property�XE "FirstLineIndent Property"��XE "Hanging Indents"�

Description

Sets or returns indent of the first text line in a paragraph from the left edge of the rest of the paragraph. Designed for support of hanging indents.

Usage

ALLText.FirstLineIndent= n&�n& = ALLText.FirstLineIndent

Access	

	Read	Write�Design	 -	 -�Execution	 +	 +

DataType

Long (twips)

Default

1

Values

-32000 <= n& <= DocWidth

Notes

The resolution of this property is dependent on the physical device. ALLText holds such information internally in Pixels such that

 ATX.FirstLineIndent = Screen.TwipsPerPixelX + 1

is equivalent to

 ATX.FirstLineIndent = Screen.TwipsPerPixelX

FontBold Property�XE "FontBold Property"�

Description

Sets the current font to Bold. Any currently selected text is changed to bold. Other details remain unchanged.��Returns TRUE or FALSE depending on current font is Bold or not. For a select region containing text of mixed bold and unbold characters this property returns ATX_UNDEFINED.

Usage

ALLText.FontBold = n%�n% = ALLText.FontBold

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer	

Values

True	current font is Bold, �False	current font is not Bold.�ATX_UNDEFINED	current font is undefined

Default

False

Example

SUB MENU_BOLD_CLICK()

 ALLText1.FontBold=Not ALLText1.FontBold

 End Sub

FontColor Property�XE "FontColor Property"�

Description

Set or returns the foreground color for a select region or the current cursor position. Other details remain unchanged. Returns ATX_COLOR_UNDEFINED for regions with mixed color settings.

Usage

ALLText.FontColor = c&�c& = ALLText.FontColor

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Long (RGBcolor)

Values

QBcolor(0) < c < QBcolor(15) or ATX_UNDEFINED

Example

ALLText1.FontColor = QBColor(ATX_LT_Blue)

Remarks

If you use VB 3.0 You can also manipulate colors using the constants specified in file CONSTANT.TXT. Otherwise the ATX constants are defined in the constants declaration file shipped with ALLText.

FontFamily Property�XE "FontFamily Property"�

Description

Sets or returns the current font family.

The Aim of this property is to help the user to manipulate with fonts reliably across end-user environments with different installed fonts. Generally there is no need to use it directly. But if the VB Developer has no assurance that End-User's computer will have the desired fonts installed, he or she may ensure that the font chosen by Windows will be at least of the same family.

Usage

ALLText.FontFamily = i%�i% = ALLText.FontFamily

Access

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer

Values

ATX_DONTCARE	family is chosen by system itself�ATX_ROMAN	Roman family�ATX_SWISS	Swiss family�ATX_MODERN	Modern family�ATX_SCRIPT	Script family�ATX_DECORATIVE	Decorative family

Default

ATX_DONTCARE

Example

ALLText1.FontName = "Arial"�ALLText1.FontFamily = "Sans Serif"

Remarks

It is recommended to use this property only for reading, to verify the proper family of font has been chose.

FontHidden Property (HT/Pro only)� XE “FontHidden Property”�

Description

Specifies whether the currently selected text is assigned a Hidden attribute. Text with the Hidden attribute will be visible only when the ShowHidden property is True. Otherwise such text is not visible.

For a select region containing a mixture of italic and non-italic text this property returns ATX_UNDEFINED.

Usage

ALLText.FontHidden = n%�n% = ALLText.FontHidden

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer	

Values

True	current font is Hidden, �False	current font is not Hidden.�ATX_UNDEFINED	current font is undefined

Remarks

To retrieve hidden text when ShowHidden is False, OR the SelFType property with 4 and 8, and read either the FText or SelFText property.

Default

FALSE	

FontItalic Property�XE "FontItalic Property"�

Description

Set current font Italic. Sets any currently selected text to Italic. Other details remain unchanged.�

 Returns True or False depending on current font is Italic or not. For a select region containing a mixture of italic and non-italic text this property returns ATX_UNDEFINED.

Usage

ALLText.FontItalic = n%�n% = ALLText.FontItalic

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer	

Values

True	current font is Italic, �False	current font is not Italic.�ATX_UNDEFINED	current font is undefined

Default

FALSE	

Example

i% = ALLText1.FontItalic�' Select text� ALLText1.SelToPar = ALLText1.CurPar+1� ALLText1.SelToChar = 0

' Set Selected text Italic� ALLText1.FontItalic = TRUE

' Return to previous value.� ALLText1.FontItalic = i%

FontIndex Property�XE "FontIndex Property"�

Description

The FontIndex property applies font characteristics as specified by a given entry of the font table to the current character location or to a select region.

If a selection region is active, setting this property will change all font properties (FontName, FontSize, FontFamily, FontWidth, FontUnderline, FontItalics, FontBold, and FontStrikeThrough) of the selected text to those specified by the designated entry from the Font Table. It will not affect the FontColor property of the text which is separately controlled.

Reading this property value will cause the ALLText control to search for the current font in Font Table. If the current font is not presented in Font Table, it is automatically added and the assigned index is returned.

Usage

ALLText.FontIndex = n%�n% = ALLText.FontIndex

Access

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

Integer	

Values

0 <= n% < ALLText.FontTableSize

Default

0

Example 1

' Copy the text characteristic formatting from one location �' and apply it to text being pasted in another location.

' 1) read current font from one location�x=ALLText1.FontIndex	

' 2) Create an embedded code to replicate the font characteristics.�FormatCode = "\f" &Mid$(Str$(x), 2) & " "

' 3) Move cursor to another location�ALLText1.CurChar=532

' 4) paste in some string with the same font characteristics as the initial string.�ALLText1.SeLFText = FormatCode & "some string"

Example 2

' Identify the components which make up the a given entry in a font table.

' 1) set the current font to the font table entry in question�ALLText1.FontIndex = X

' 2) Inquire of each individual font characteristic property.�A=ATX.FontBold: B=ATX.FontItalic: C=ATX.FontName

Remarks

Assignment statements setting FontIndex to an out of range value are ignored, the current font remaining unchanged.

As per the example, the font index may be translated into a string, prepended with the "\f" sequence and followed by a single space to create an embeddable code for use in pasting a given text in a desired font style.

FontName Property�XE "FontName Property"�

Description

Sets or returns the current font name - ie: the font applied to the current select region or cursor location . An empty string, "", is returned if an active select region contains text of mixed font name.

Usage

ALLText.FontName = s$�s$ = ALLText.FontName

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

String

Default

system

Example	

Remarks

If the control is empty this property is set to "SYSTEM." Otherwise this property designates the font placed at the start of Text.

Unlike the standard Textbox, setting FontName does not change the font for the entire textbox, only for text at the current location, or for currently selected text.

FontShadow Property�XE "FontShadow Property"�

Description

Sets or returns the Shadowing characteristics (as an integer value) for text at the current caret position or within a selected text region. ALLText supports a unique shadow characteristic echoing up to two copies of a character, each offset by some distance (to the upper left and lower right of the base positioning) and each with a different color.

Manipulation of the shadowing requires use of API Functions Make_Shadow and Get_Shadow. A value of FALSE may however be readily used as indicating the absense of shadowing. Likewise reading a value of ATX_UNDEFINED indicates a select region with mixed shadowing characteristics.

Usage

ALLText.FontShadow= n%�n% = ALLText.FontShadow

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer

Values

Specially organized values are used to define the shadowing. False indicates no shadowing, Other values may be composed or interpreted using the Make_Shadow and Get_Shadow funcitons.

Default

FALSE

Example

ALLText1.FontShadow = make_shadow(1,1,0,15)For more details see Additional functions section.

FontSize Property�XE "FontSize Property"�

Description

Sets or returns the current font size. For a select region with fonts of mixed sizes this property returns ATX_UNDEFINED.

Usage

ALLText.FontSize = n%�n% = ALLText.FontSize

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

Integer (points)

Values

0..n%

Default

ATX_DEFAULT

Remarks

Actually designates font height.

At the start of program if Text is empty this property is set to ATX_DEFAULT else this property designates font is placed at the start of Text.

FontStrike Property�XE "FontStrike Property"�

Description

Sets current font to Strikethrough. Strikes-through any currently selected text. Returns True or False depending on current font is Strikethrough or not.

If some text is selected and its font is either not set, or of mixed character, this property returns ATX_UNDEFINED.

Usage

ALLText.FontStrike = n%�n% = ALLText.FontStrike

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer	

Values

True	current font is Strikethrough, �False	current font is not Strikethrough.�ATX_UNDEFINED	current font is undefined

Default

False

FontSubSup Property�XE "FontSubSup Property"�

Description

Sets super/subscript attributes for text entered at current cursor location, or within select region, to super (if >0) or sub (if <0) - script. Other details remain unchanged. Returns super/subscript value for current font.

Usage

ALLText.FontSubSup = n%�n% = ALLText.FontSubSup

Access

	Read	Write

Design time	 -	-

Run time	 +	+

DataType	

Integer (half points)

Values

-500 < n% < 500 	- NOTE: only EVEN numbers are available.

n% > 0	- current font is superscript,

n% < 0	- current font is subscript.

ATX_UNDEFINED	- selected text contains various super-subscript degrees, possibly including plain text.

Default

0

Remarks

If out of range, a trappable error is generated.

FontTableSize Property�XE "FontTableSize Property"�

Description

Returns number of entries in the Font Table.�Setting to 0 updates the Font Table, removing fonts not in use.

Usage

n% = ALLText.FontTableSize�ALLText.FontTableSize = 0	

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

Integer

Values

1 <= n% <= ~ 3,500

Default

1

Example

n% = ALLText.FontTableSize�ALLText.FontTableSize = 0�m% = ALLText.FontTableSize�if n%<>m% then � print "Unused Fonts have been removed"� End If

Remarks

There is always at least one font in the Font Table. This font is entry number 0, the "System" font of default size. It is not necessary to save and load this font.��Setting FontTableSize to 0 removes any fonts not in use. Upon the next reading of FontTableSize, the value read will reflect the number of fonts left in the table. Setting FontTableSize to any other value will trigger a trappable error.

FontUnder Property�XE "FontUnder Property"�

Description

Sets or returns the underline style at the current caret position or selected text region. ALLText supports a very flexible underlining scheme whereby various styles of underlining may be set (Color, single or double, solid, dashed or dotted).

Note that settings of True/False may be used for the simple case of a single black underline. More complex styles are associated with other values. ALLText API Functions, Make_Underlinemake_underline and Get_Underlineget_underline have been provided to handle such values.

Usage

n% = ALLText.FontUnder

ALLText.FontUnder = n%

x%=Get_Underline(ALLText.FontUnder, shape%, dblflag%, ncolor%)

ALLText.FontUnder=Make_Underline(shape%, dblflag%, ncolor%)

Access

	R 	W

Design 	- 	-

Runtime 	+ 	+

Data Type

Integer

Values

Defined by value set returned by make_underline function.

True corresponds to a single black solid underline.

False corresponds to no underlining.

Default

0 - FALSE

If Out of Range

VB Overflow error, property value remains unchanged.

FontWidth Property�XE "FontWidth Property"�

Description

Sets or returns the current font width at the cursor location, or within an active select region. A value of ATX_UNDEFINED is returned if an active select region contains text of mixed width.

The FontWidth property is intended only to serve for support of special effects. Usually the value of this property is best left as ATX�_DEFAULT (0) allowing the system to choose the actual width of the font itself. Use this property in those rare situations when you need to achieve high narrow characters.

Usage

ALLText.FontWidth = n%�n% = ALLText.FontWidth

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

Integer (points)

Values

0 ..ATX_MAXFONTSIZE

Default

ATX_DEFAULT

Remarks

This property is intended only to serve for support of special effects. Usually the value of this property is best left as ATX_DEFAULT allowing the system to choose the actual width of the font itself. Use this property in those rare situations where you need to achieve narrow or wide characters.

FooterFText Property (HT/Pro only)� XE “FooterFText Property”�

Description

Contains document Footer that set by the user or read from document file.

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

Values	

Reading

 S$ = atx.FooterFText(0) 'returns Footer for document

S$ = atx.FooterFText(1) 'returns Footer for left (even) pages

S$ = atx.FooterFText(2) 'returns Footer for right (odd) pages

S$ = atx.FooterFText(3) 'returns Footer for first page

Setting:

atx.FooterFText(n%) = s$

Set footer for the corresponding page (Doc, Left pages, Right pages or First page)

Example

See Example in PRINT\tst.mak file.

Constants (See ATX4hAPI.bas)

 Global Const ATX_FOOTER_SIMPLE = 0

 Global Const ATX_FOOTER_LEFT = 1 (even pages)

 Global Const ATX_FOOTER_RIGHT = 2 (odd pages)

 Global Const ATX_FOOTER_FIRST = 3

FormatPaste Property�XE "FormatPaste Property"�

Description

The Format Paste property determines whether ALLText includes and interprets font formatting codes when pasting text from the clipboard.

Usage

ALLText.FormatPaste = n%

n% = ALLText.FormatPaste

Access	

	Read	Write

Design time	 +	 +

Run time	 +	 +

DataType

Integer (points)

Values

True, FormatPaste = -1	Any \cf or \f strings embedded in the clipboard text will be interpreted as formatting codes when pasting into ALLText.

Off, FormatPaste=0	ALLText will treat any embedded formatting code as simple ASCII text during a paste operation. The pasted text will take on the properties set for the current cursor position into which the paste occurs.

Default	

True

FText Property� XE “FText Property”�

Description

Sets or returns the first 30,000 characters of an ALLText control as a string including or interpreting embedded codes as defined by the SelFType property. If the text length of the control exceeds 30,000 characters, then only the first 30,000 characters are returned.

Usage

ATX.FText = s$

s$ = ATX.FText

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

Remarks

Note that the formatting codes included in, or interpreted by FText are determined by the setting of the SelFType property. Set SelFType to ATXS_Mask or ATX_FMask for compatibility with ALLText 3.

Visual C

Remarks

References

SelFType - property

Text - property

HeaderFText Property (HT/Pro only)� XE “HeaderFText Property”�

Description

The HeaderFText property contains a formatted header text string for a document.

Note that this is a list property, headers can be defined for WholeDocument, OddPages, EvenPages, FirstPage.

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

Values

Reading: Get's the formatted header string

 S$ = atx.HeaderFText(0) 'returns header for document

 S$ = atx.HeaderFText(1) 'returns header for left pages

 S$ = atx.HeaderFText(2) 'returns header for right pages

 S$ = atx.HeaderFText(3) 'returns header for first page

Setting: Set the formatted header string

 atx.HeaderFText(n%) = s$ ‘Set header string for the corresponding page �	(Doc, Left pages, Right pages or First page)

Example:

See Example in PrintHF\tst.mak file.

Constants (See ATX4hAPI.bas)

 Global Const ATX_HEADER_SIMPLE = 0

 Global Const ATX_HEADER_LEFT = 1 (even pages)

 Global Const ATX_HEADER_RIGHT = 2 (odd pages)

 Global Const ATX_HEADER_FIRST = 3

HTAG Property�XE "HTag Property"� (HT/Pro Version)

Description

The HTag property associates an integer valued Hypertext Tag with a string within ALLText. It is set and read in a manner analagous to Font properties (FontBold, etc). This is very useful for Hypertext applications, and in fact mouse movements over HTagged text may result in ATXChange events (depending on the ChangeEventMask property) and will trigger a change in the MousePointer to that defined by the MouseHPointer property.

Setting ALLText.Htag=x& assigns a tag value of x& to the selected area. �If no selection is active (ALLText.Select is FALSE) then the tag value is assigned to any characters then typed by the end-user at that location. The tag value can not however remain without a character to be assigned to - Setting HTag without selected text and then changing the cursor location invalidates the tag.

Reading x&=ALLText.Htag returns the tag value to the Right of the caret (use HTagL to get the value to the left), or if text is selected, returns the tag value of the selected text. If the current selection covers more than one tag value, then the property returns a value of ATX_TAG_UNDEFINED (0x80000000).

Access

Runtime only, Read/Write

Remarks

Setting a HTag value other than 0 creates a Hypertext region. The mouse displayed over such a region is controlled via the MouseHPointerMouseHPointer property. Moving into or out of such a region triggers the ATXChangeATXChange event.

Specific Tagged regions may be found using the Find_HTagFind_HTag function

Setting a HTag value of 0 undoes these effects.

Note that reading the HTag value may also extend the selection if the TagReadSelect property is set to 1. If no text is selected and current position is within some tag area then the tagged area is automatically selected. Also a selection contains only one tag value and previously spanned only a portion of the text with that value, then reading HTag with the TagReadSelect property will automatically extend the selection to include the full contiguous region with that tag value. No extension to the selected region occurs if the initial selection included text of varied tag values or if the tag value of the selected text is 0.

HTagL & NTagL Properties - (HT/Pro edition Only)� XE “HTagL Property”�� XE “NTagL Property”�

Description:

HTagL and NTagL perform the same function as Htag or NTag, but on reading they return the value of the previous character tag (character before caret) rather than the tag of the character following the caret. Write operations are the same as for HTag.

Usage

ATX.htagl = l&

l& = ATX.htagl

Visual C:

Remarks

HTagL and NTagL were introduced for the following reason. When clicking on a character, the caret is moved to the start of that character. You can then read the HTag property to determine its tag value. If you start typing now however, new text entered will take on the characteristics of the prior character (HTag value as well as other characteristics such as FontName and FontColor). While FontName and FontColor always return the value of the prior character (what you would now be typing in) HTag returns the value of the next character (the one you clicked).

Data Type

Long

Default =0	

References

IsHidden Property�XE "IsHidden Property"�

Description

Returns a True/False value indicating whether the active selection text contains hidden text.

Usage

n% = ALLText.IsHidden

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 -

DataType

Boolean

Values

-1 True		The selection contains hidden text

 0 False	The selection does not contain hidden text

LeftIndent Property�XE "LeftIndent Property"�

Description

Sets or returns Left indent for Paragraph

Usage

ALLText.LeftIndent= n&�n& = ALLText.LeftIndent

Access	

	Read	Write�Design	 -	 -�Execution	 +	 +

DataType

Long (twips)

Values

0 Ј XTwipsToPixels(n&) Ј (ALLText.DocWidth-ALLText.RightIndent)

Default

0

Example

ALLText1.LeftIndent= .25 * 1440 'set to 1/4 inch

Remarks

The resolution of this property is dependent on the physical device. ALLText holds such information internally in Pixels such that

 ATX.LeftIndent = Screen.TwipsPerPixelX + 1

is equivalent to

 ATX.LeftIndent = Screen.TwipsPerPixelX

LineNumber Property� XE “LineNumber Property”�

Description

Defines the number of lines from the beginning of text to the current caret location (see SelStart, CurChar, CurPar).

Syntax

 ATX.LineNumber = l&

 l& = ATX.LineNumber

Remarks

On setting this property the caret is moved to the appropriate line of text and SelStart and other Selection properties are set accordingly.

References

LineSpacing Property�XE "LineSpacing Property"�

Description

Sets or returns the linespacing (in Twips) used within a paragraph.

Usage

ALLText.LineSpacing = n&�n& = ALLText.LineSpacing

Access	

	Read	Write�Design	 -	 -�Execution	 +	 +

DataType

Long (twips)

Default

0

Values

 0 <= n% <= PixelsToTwips(ATX_MAXSPACING)

Out of Range

Trapable error is generated, Value remains unchanged

Example

ALLText1.LineSpacing = .25 * 1440 'set to 1/4 inch

MouseHPointer�XE "MouseHPointer Property"� (HT/Pro Version)

Description

Determines which mouse pointer is displayed when the mouse is over an area marked by a non-zero Htag value.

Usage

ALLText.MouseHPointer = n%�n% = ALLText.MouseHPointer

Access

	Read	Write

Design	+	+

Execution	+	+

DataType

Integer

Values

0 < n% < 11	standard mouse pointers �	(the same as for MousePointer property.)

11 < n% < ATX_MAXMOUSEHPOINTER	nonstandard mouse pointers�	(used by ALLText HT/Pro only)

Default

0

Remarks

Note: If out of range then nothing happens, error message is generated.

Constants presenting property values are specified in file ATX4SAPI.BAS or ATX4HAPI.BAS for HT/PRO version.

Setting MouseHPointer to a value different than the MousePointer property setting, enables the triggering of the ATXChange�XE "ATXChange Event"� event upon the movement of the mouse into or out of a Hypertext tagged region.

NewHtag Property�XE "NewHTag Property"� (HT/Pro Version)

Description

The NewHtag property is a read-only property returning the lowest possible tag value not yet in use within the current content of the control.

Usage

n& = ALLText.NewHtag

Access

	Read	Write

Design	-	-

Execution	+	-

DataType

Long

Values

1 < n& < ATX_MAXNEWHTAG

Default

1

Example

Alltext1.CurChar = 0�Alltext1.SelToChar=0�for i%=0 to Alltext1.NumOfParagraphs - 1�Alltext1.CurPar = i%�Alltext1.SelToPar = i+1�t& = Alltext1.NewHtag�Alltext1.Htag = t&�Next

Remarks

If all available tag values (from 1 up to ATX_MaxNewHTag) are already in use within the Text the property returns a value of 0.

Note that tag values can be any long integer. The limitation to ATX_MaxNewHTag is a limitation only on the NewHTag property, not on the HTag property itself.

NTag Property (HT/Pro edition only)� XE “NTag Property”�

Description:

NTag sets or returns a long integer tag value (a bookmark) associated with the following character or selected text. NTag functions exactly like HTag except that text tagged with an NTag will not trigger a change in the mousepointer.

Syntax

ATX.NTag = l&

l& = ATX.Ntag

Visual C:

Remarks

NTag was introduced to allow invisible tagging of characters without triggering a change in the mouse pointer. Bookmarks may also be added to the document using the embedded code “\ATXnt#### ” and ending the region with “\ATXnt0 ”

Example

ALLText.NTag = “Some of this \ATXnt5 text is tagged \ATXnt0. ”

 Data Type

Long

Default

0

NumParagraphs Property�XE "NumParagraphs Property"�

Description

Returns number of paragraphs within the text currently held by ALLText.

Usage

ALLText.NumParagraphs = n&�n& = ALLText.NumParagraphs

Access	

	Read	Write�Design	 -	 -�Execution	 +	 -

DataType

integer

Values

0 Ј n& Ј MaxNumberOfParagraphs

OLEcode Property (HT/Pro edition Only� XE “OLEcode Property”�)

Description

Defines what character code will be generated as a place holder for external objects (pictures or OLE objects) when READING the SelText property. If this is set to 0 then no character will be generated.

Usage

 n = ALLText.OLEcode

 ALLText.OLEcode = n

Access

	Read	Write

Design	-	-

Execution	+	-

DataType

 Integer

Values

 0 <= n <= 254

Default

 @

If Out Of Range

 generates trappable error

OLEObject Property�XE "OLEObject Property"� (HT/Pro version)

Description

Setting this property causes ALLText to call the specified External Object DLL to create and embed an External Object (eg: OLE Object or Picture) at the current caret location, overwriting any currently selected portion of the document. The type of object created is specified by the assigned string, ObjName$.

When read, this property returns a string indicating the name of the External Object DLL (ATXPic, ATXOLE,...) supporting the object and an object number. If the object is an OLE object and the OLEVerb is set to anything other than ATX_Verb_Undefined, the OLE Server will be launched to executes this verb (ATX.OLEVERB) on this object. Note that this is true only for objects found immediately after caret, or an object marked with ink grabber frame when using ALLText/Pen.

The name of this property is a hold over from earlier versions of ALLText. In truth, the OLEObject property only initiates an OLE Link when calling the ATXOLE.DLL External Object DLL. Other external object libraries do not rely upon of OLE technology.

Access

	R	W

 Design 	- 	-

 Runtime 	+ 	+

Usage ' (see further notes below under Values)

ALLText.OleObject = s$

s$ = ALLText.OleObject

DataType

STRING

Values

On reading, ALLText returns a string identifying the Exteral Object DLL and the specific instance of the external object, ex: "ATXOLE ATXObj. #00001" or "ATXPic 0006"

When setting, the string s$ may be one of several forms depending upon the type of external object being embedded.

	Ole Object - ALLText.OLEObject = OleServerName & "*" & FileName.

	Ole Object - ALLText.OLEObject = External Object DLL Name & “:” & FileName

For OLE Objects, s$ should be of the form : [ServerName$]& [“*” & OleDocName$]

 ServerName$ - the name of an existing OLE server to be called for object embedding.�		(If left out, ALLText will attempt to identify an OLE server based �		on the entry in the Windows Registration database)

 *OleDocName$ - the full path of the file to embed as an OLE object �		(if left out, the OLE server will be called to create a new object)

For embedded pictures, s$ should be of the form : "ATXPic:” & ObjectFileName$

 where ObjectFileName$ is the name of a valid image file (BMP, WMF, JPG, DIB or JPG). �		(if left out, a blank picture object will be inserted as a placeholder)

Default

""

If Out of Range

Trapable error is generated, nothing happens.

Examples

ATX.OLEObject = "ATXPIC:\Fred.BMP”	'Embeds a picture of Fred using the ATXPIC DLL

ATX.OLEObject = "ATXPIC:”		'Creates an empty picture object

ATX.OLEObject = "Pbrush*bfly.bmp" 	'load bfly.bmp as an OLE Object using Pbrush as OLE server

ATX.OLEObject = "*bfly.bmp" 	'load bfly.bmp using default OLE server

ATX.OLEObject="WordDocument*C:\Sample.Doc" 	' Insert a word document

ATX.OLEObject = "Excelworksheet"	'Creating and inserting a NEW OLE object using Excel

ATX.OLEObject = “*”	'Opens Windows Standard OLE Object dialog (32 bit OCX version only)

Remarks

For OLE Objects, The Server Name should be present in the [embedding] section of the WIN.INI file.

Setting the OLEObject property to embed an OLE object without providing the name of a datafile to be embedded, launches the OLE server to create a new object. After exiting the server the object will be inserted at the current caret position.

OLEVerb Property�XE "OLEVerb PROPERTY"� (HT/Pro version)

Description

The OleVerb property specifies an operation to perform when any OLE object is activated by double click. Reading the OleObject property will also activate an OLE object at the current cursor postion or within the selection region.

Usage

 ALLText.OleVerb = 1

 n% = ALLText.OleVerb

Access

	R	W

Design	+	+

Runtime	+	+

DataType

Integer

Values

Depends on the OLE server.

OleVerb = ATX_VERB_UNDEFINED is a special value. While the OLEVerb property is set to this value, the server application will NOT be activated and OLE objects behave as ordinary images, responding to a double click with a simple double click event.

See OleObject property description for details.

Default

0

OverType Property�XE "OverType Property"��XE "Insert"�

Description

The OverType property determines whether keyboard entry overwrites the current control contents or inserts new text at the current cursor position.

Usage

ALLText.OverType = n%�n% = ALLText.OverType

Access	

	Read	Write

Design time	 +	 +

Run time	 +	 +

DataType

Integer (points)

Values

True/False

Default

False

PageHeight Property� XE “PageHeight Property”�

Description

Determines the height of the page. If the value of the PageHeight property is greater than maximum value for the current printer it is set to the maximum value supported by the current printer.

Usage

ATX.PageHeight = l&

l& = ATX.PageHeight

Default

MAX_LONG

Remarks

If text was not formatted using the printer device context (PrinterDC=False), the value of this property is equal to MAX_LONG.

PageLineNumber Property� XE “PageLineNumber Property”�� XE “LineNumber Property”�

Description

Determines the cursor position in terms of a given line on the current page. The number of the first line on a page is equal to 0.

Usage

 ATX.PageLineNumber = l&

 l& = ATX.PageLineNumber

Remarks

If text was not formatted using the printer device context (PrinterDC=False), ALLText assumes that the content of the control occupies a single page whose length is equal to MAX_LONG. In this case the value of PageLineNumber property is equal to number of lines from the start of the document to the current cursor position (ie the LineNumber property).

On setting this property the caret is positioned to the specified line number on the current page (see PageNumber property).

References

PageNumber Property� XE “PageNumber Property”�

Description

Sets or Returns the current page number. Page numbering begins from 0.

Usage

ATX.PageNumber = n%

n% = ATX.PageNumber

Remarks

If text is not formatted using the printer device context (PrintDC=FALSE) , ALLText assumes that the contents of the control occupy a single page with length equal to MAX_LONG. In this case, the value of the PageNumber property is always equal to zero.

Setting this property repositions the caret to the specified page number.

Palette Property�xe “Palette Property"�

Description

Sets the current Palette in use by ALLText. This property is particularly useful when loading images of high color resolution into a system with a lower color resolution setting. Also useful when loading multiple images with different palettes into a single document, or in order to ensure that a specific back color setting can be represented.

Usage

ATX.Palette = Picture1.Picture

ATX.Palette = LoadPicture (FName$)

Remarks

ALLText is initially loaded with a Rainbow palette suitable for most images. This property allows the developer to reset the palette to any valid BMP or DIB picture handle. Setting the property using any other picture type will have no result.

When using the HT/Pro edition, it is possible to set AllText palette to a palette from a given picture contained within an ALLText document. This may be useful if you have several pictures with different palettes within a single document. In a click event you can then allow the ALLText control to adjust the palette for an image clicked upon

Example:

	ATX.ExtObjParam = “PictureHandler”�	ATX.Palette =ATX.ExtObjPicture �

PrinterDC Property� XE “PrinterDC Property”�� XE “WYSIWYG”�

Description

Determines whether ALLText uses the Printer Device Context for formatting text on the screen. If this property is set to TRUE the hard copy output and the display will be the same (True WYSIWYG). If set to FALSE, ALLText uses the proper device context for the screen resulting in an enhanced on-screen presentation. (this may cause the on-screen word wrapping to be different from printed word wrapping

Usage

ATX.PrinterDC = False

b% = ATX.PrinterDC

Default

FALSE

Data Type

Boolean

Remarks

The following properties are affected by setting of the PrinterDC property.

 PageHeight - always set to Max_Long, if PrinterDC = False

 PageLineNumber - is equal to LineNumber, if PrinterDC = False

 PageNumber - is set to 0 , if PrinterDC = False

References

PTag (HT/Pro edition Only)� XE “PTag Property”�

Description

A long integer tag value associated with the current paragraph or selected paragraphs.

Usage

ATX.PTag = l&

l& = ATX.Ptag

Remarks

PTag was introduced to allow invisible tagging of an entire paragraph. (It may be useful in building a style sheet.) The Find_PTag function may also be used to locate

Data Type

Long

References

Default =0

RightIndent Property�XE "RightIndent Property"�

Description

Sets or returns Right indent for Paragraph being designed.

Usage

ALLText.RightIndent= n&

n& = ALLText.RightIndent

Access	

	Read	Write�Design	 -	 -�Execution	 +	 +

DataType

Long (twips)

Values

0 Ј XTwipsToPixels(n&) Ј (ALLText.DocWidth - ALLText.LeftIndent)

Default

0

Example

ALLText1.RightIndent = .25 * 1440 'set to 1/4 inch

Remarks

The resolution of this property is dependent on the physical device. ALLText holds such information internally in Pixels such that

 ATX.LeftIndent = Screen.TwipsPerPixelX + 1

is equivalent to

 ATX.LeftIndent = Screen.TwipsPerPixelX

ScrollBarH and ScrollBarV properties�XE "ScrollBars"��XE "ScrollBarH Property"��XE "ScrollBarV Property"�

Description

Sets the presentation of the horizontal and vertical scroll bars as either Automatic (ALLText displays the scroll bar when text does not fit in the windows), Invisible, or Visible.

Usage	

ALLText1.ScrollBarH = n%	ALLText1.ScrollBarV = n%�n% = ALLText1.ScrollBarH	n% = ALLText1.ScrollBarV

Access

	Read	Write�Design	 +	 +�Execution	 +	 +

DataType

Integer

Values

	0- Auto	Scrollbar appears as and when necessary

1 - Not Show	Scrollbar is not shown

2 - Show	Scrollbar is shown

Default

Auto

ScrollHorz and ScrollVert Properties�XE "Scrolling"�

Description

Scrolls the text without affecting the current cursor position. Changes or returns difference between the document's left margin and the left edge of the control window (ScrollHorz), or the documment's upper margin and the control window's upper edge (ScrollVert).

Usage

ALLText.ScrollHorz= x& ALLText.ScrollVert= y&�x& = ALLText.ScrollHorz y& = ALLText.ScrollVert

Access	

	Read	Write�Design	 +	 +�Execution	 +	 +

DataType

Long (twips)

Values

0 Ј XTwipsToPixels(x&) Ј MaxTextWidth�0 Ј YTwipsToPixels(y&) Ј MaxTextHeight

Default

0

Example

Sub Command1.Click()� ALLText1.ScrollHorz = 0� ALLText1.ScrollVert = 0�End Sub

Remarks

The caret position within the Text is not changed

If out of range then these properties are reset to 0.

Select Property�XE "Select Property"�

Description

The Select property may be used as a flag. It returns a value of TRUE when a select region is active and FALSE if no region is currently selected.

The property may also be set in order to turn off a select region. On setting Select to 0, the caret is repositioned to the start of the selected area and text is then deselected. On setting Select to 1 the caret is moved the end of the selected area and the text is deselected..

Usage

n% = ALLText.Select	

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer

Values

 -1 (TRUE)	Some text is selected. This value may NOT be set.� 0 (FALSE)	No text is currently selected. Setting to 0 deselects text and �	 moves cursor to Start of select region.� 1 (Move to end)	No text is currently selected. Setting to 1 deselects text and �	 moves cursor to end of select region. �	 This value is never returned when reading the property.

Example

if ALLText1.Select<>TRUE then� ALLText1.SelToPar = ALLText1.CurPar+1� ALLText1.SelToChar = 0� end if

Example

Select will be turned off whenever the SelLength has a value of 0. Examples SelStart=SelStart+SelLength, or setting CurPar = SelToPar and CurChar=SelToChar.

SelFText Property�XE "SelFText Property"�

Description

The SelFText Property is ALLText's formatted version of the SelText property. It may be similarly used with the exception that reading of SelFText will return formatted text with embedded formatting codes, and setting of SelFText will interpret any embedded formatting codes.

SelFText replaces selected text by s$, or inserts text specified by s$ into caret position if no text is first selected. In either instance, any embedded string sequences which may be interpreted as formatting codes such as font and color information codes are so interpreted

Returns string of characters containing the current selected text including any embedded formatting codes.

Note that the formatting codes included in, or interpreted by SelFText are determined by the setting of the SelFType property. Set SelFType to ATXS_Mask or ATX_FMask for compatibility with ALLText 3.

Usage

ALLText.SelFText = s$�s$ = ALLText.SelFText

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

String

Default

""

Example

Some_String$ = ALLText1.SelFText

Remarks

Use SelText if you do not want formatting characters interpreted or included in the returned string.

Note that after setting the SelFText property, the SelLength is NOT reset to 0, but rather is set to include all the newly inserted text. (this is different from ALLText 1.x and 2.x versions). You may wish to set Select = False, or SelLength =0 after setting SelFText.

SelFType Property� XE “SelFType Property”�

Description

Determines what RTF data (embedded formatting codes) will be included when reading either SelFText or FText properties. Also determines how RTF strings will be interpreted by ALLText when setting either of these properties.

Visual Basic

ATX.SelFType = n%

n% = ATX.SelFType

Visual C

Data Type

Integer

Remarks

Values for SelFType may be constructed by OR’g elements from the following table.

ATX_FNTTBL_MASK = 1�Include font table��ATX_CLRTBL_MASK = 2�Include color table ��ATX_PRGSET_MASK = 4�Save text and paragraph settings (alignment, indenting, etc.)��ATX_OLEOBJ_MASK = 8�Expand embedded ole objects with full description for proper handling. If this mask is absent then OLE object is presented only as a code \ATXoNX, where X is the OLE object number within the ALLText window.��ATX_RTFSTD_MASK = 16�Save as real 7 bit RTF with symbol conversion

This mask causes ALLText to generate an RTF output including initial ("{\rtf1\ansi\deff0\deflang1033") and final ("}") for RTF compatibility. In addition all special symbols such as endash, emdash, non breaking space, etc. will be converted into the standard RTF form. The output generated without this mask cannot be read by foreign RTF readers.�����FULLRTF_MASK = 31�Based on logical OR of ATXF_MASK, ATX_CLRTBL_MASK, and ATX_RTFSTD_MASK��ATXS_MASK = 4�Same as ATX_PRGSETMASK, but name intended to show compatibility with ALLText 3 ATX_S format.��ATXF_MASK = 13

�Compatible with ALLText 3’s ATX_F Format.

Based on logical OR of ATXS_MASK, ATX_FNTTBL_MASK, and ATX_OLEOBJ_MASK. ��

Note that the formatting codes included in, or interpreted by SelFText are determined by the setting of the SelFType property. Set SelFType to ATXS_Mask or ATX_FMask for compatibility with ALLText 3.

If you set the value of the SelFType property to 0 only plain text will be returned by the SelFText and FText properties and all RTF embedded codes will be treated as simple ascii text when setting either property.

References

ExtDataType -- property

SelFText -- property

FText - property

Default

ATXS_MASK

SelLength Property�XE "SelLength Property"�

Description

The SelLength property may be used to read or set the length of a select region.

Usage

ALLText.SelLength = n%�n% = ALLText.SelLength

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

Integer

Values

0 <= n% <= ALLText.TextLength

Default

0

Example

ALLText1.CurPar = 0�ALLText1.CurChar = 0�ALLText1.SelLength = 100

Remarks

ALLText Copy, Cut, and Paste operations are limited to 32,767 characters. Attempting larger clipboard manipulations will generate a trappable VB error.

Setting SelLength will automatically update the SelToPar and SelToChar properties, likewise settting SelToPar and SelToChar will automatically cause SelLength to change. Setting SelLength to 0 automatically resets the Select property to FALSE.

Use of the SelToPar and SelToChar properties is faster than setting SelLength.

SelStart Property�XE "SelStart Property"�

Description

The SelStart property sets or returns the current cursor/caret position as defined by character count offset from the beginning of the text content. Setting SelStart automatically resets the CurPar and CurChar properties.

Usage

ALLText.SelStart = n&

n& = ALLText.SelStart

Access

	Read	Write	

Design time	-	-

Run time	+	+	

DataType

Long

Values	

0 < n& < ALLText.TextLength

n& <= SelStart+SelLength

Default

0

Example

' Text property emulation�SelStart = 0�SelLength = ALLText.TextLength ‘select all the text�s$ = SelText

Remarks

The SelStart property should never be set to a value greater than SelStart + SelLength. Incorrectly setting SelStart to a larger value will result in a trappable error. To always avoid such errors, you may set Select to False before moving the cursor with SelStart.

Note: SelStart considers the end of a paragraph as two characters. (chr$(13) & Chr$(10))

Note: If n& > ALLText.TextLength the caret is positioned into last position of the Text.

If n& < 0 then caret is positioned into first position of the Text and SelStart is reset to 0.

Setting SelStart to the end of the select region (as specified by SelStart+SelLength or SelToPar and SelToChar) results in a SelLength value of 0 and Select being set to FALSE.

Use of the CurPar and CurChar properties is faster than SelStart.

SelText Property�XE "SelText Property"�

Description

ALLText's SelText property generally works as per the standard text box with a few exceptions related largely to the formatted nature of ALLText.

Setting SelText replaces selected text by s$ if Select property is True or inserts text specified by s$ into caret position otherwise. In either instance, embedded formatting are not interpreted but are treated as standard text.

Reading SelText returns a string of characters containing the current selected text, without including any font and color control information.

Usage

ALLText.SelText = s$�s$ = ALLText.SelText

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

String

Default

""

Remarks

Use SelFText if you want to insert formatted text.

Note that after setting the SelText property, the region remains selected (this is different from ALLText 1.x and 2.x versions). This is useful if you then wish to set the formatting for newly entered text using FontName, FontSize, FontColor, LeftIndent, etc.

SelToChar Property�XE "SelToChar Property"�

Description

Defines and returns the final edge of the select region as the nth Character within Paragraph specified by the SelToPar property.

Usage

ALLText.SelToChar = n%�n% = ALLText.SelToChar

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer

Values

0 <= n% <= Number of Characters in the Paragraph specified by CurPar property

Default

0

Remarks

If out of range this property is set to last Character of the Paragraph specified by SelToPar property. This behavior may be usefully employed: setting SelToChar to ATX_MAXCHARS will set SelToChar to the last character in the paragraph.

This property is reset to 0 by setting any of the following SelToPar, CurPar, CurChar.

SelToPar Property�XE "SelToPar Property"�

Description

Sets the paragraph number designating final edge of selected selection region., automatically resetting SelToChar property to 0, and setting SelLength as appropriate.�Returns the paragraph number of the final edge of a select region.

Usage

ALLText.SelToPar = n&�n& = ALLText.SelToPar

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

Long

Values

ALLText.CurPar <= n& < ALLText.NumParagraphs

Default

0

Example

' get number of last paragraph of selected text.� i& = ALLText1.SelToPar�' get number of last character of selected text.� j& = ALLText1.SelToChar

Remarks

If out of range, this property is set to first (if<0) or last (if>0) Paragraph of the Text.

ShowHidden Property (HT/Pro only)� XE “ShowHidden Property”�

Description

Specifies whether ALLText displays hidden text (see FontHidden Property). Text with the Hidden attribute wil be visible only when the ShowHidden property is True. Otherwise such text is not visible.

Usage

ALLText.ShowHidden = True / False

Access	

	Read	Write�Design time	 -	 -�Run time	 +	 +

DataType

Integer	

Default

FALSE	

Remarks

When shown, text having its hidden attribut set, looks just like any other text. You may wish to modify some other property such as font color or underline in conjunction with all hidden text.�Setting CurPar or CurChar will reset SeltoPar to 0.

TabAdd Property (HT/Pro only)�XE "TabAdd Property"�

Description

The TabAdd property adds a new absolute tab definition for the current or selected paragraphs using the current default tab alignment (see TabAlignment).

Usage

ALLText.TabAdd = newtabloc&

Access

	R	W

Design	 -	 -

Runtime	 -	 +

DataType

long

Values

0 to maxlong

If Out of Range

If < 0 trapable error is generated.

If distance between newtabloc and nearest existing tab < 16 pixels then�	The nearest tab changes its location to newtabloc istead setting of new tab,�	No error condition is triggered.

TabAlignment�XE "TabAlignment Property"�, dpTabAlignment Property (HT/Pro only)

Description

The TabAlignment property is used to set or read the alignment of any absolute tab positions defined for a paragraph. The property holds an array of tab alignments or for dp structure (dpTabAlignment), indexed from 0 to TabCount-1, for the selected paragraphs. Each element in the array corresponds to one of the absolute tab positions for the paragraph.

Accessing a negative array index within the TabAlignment array property, sets or reads the default alignment for the dpTabAdd ot TabAdd property but does not affect any existing tab settings.

Usage

alignment& = alltext.TabAlignment(index%)

alltext.TabAlignment(index%) = alignment&

Access

	R	W

 Design 	 -	 -

 Runtime 	 +	 +

Data Type

 integer

Values

 ATX_TAB_LEFT	left aligned tab

 ATX_TAB_CENTRED	centered tab

 ATX_TAB_RIGHT	right tab

 ATX_TAB_UNDEFINED	undefined tab, value returned upon reading TabAlignment while several paragraphs are selected having different tab alignments.

Default

 ATX_TAB_LEFT

If Out of Range

 A trapable error is generated.

Example

 'change first tab alignment to right, set default to right also

 alltext.TabAlignment(0) = ATX_TAB_RIGHT

 'add new right tab

 alltext.TabAdd = 3000

 ' add new centered tab

 alltext.TabAlignment(-1) = ATX_TAB_CENTRED 'sets default alignment for the TabAdd property)

 alltext.TabAdd = 2000

TabCount Property (HT/Pro only)�XE "TabCount Property"�

Description

Returns the number of absolute tab locations set in the selected or current paragraph.

Setting this property to 0 clears all tabs in selected paragraphs of text.

Usage

nt% = alltext.TabCount

alltext.TabCount = 0

Access

	R	W

Design 	 -	 -

Runtime 	 +	 +

DataType

integer

Values

0 to 2000

Default

0

If Out of Range

A trappable error is generated if an attempt is made to set TabCount to a value other than 0.

TabDel, dpTabDel Property (HT/Pro only)�XE "TabDel Property"�

Description

Setting TabDel will remove the absolute Tab definition for the nearest Tab location, but only if such a tab setting exists within 16 pixels of the specified value.

Usage

alltext.TabDel = tabloc&

Access

	R	W�Design 	 -	 -

Runtime 	 -	 +

DataType

long

Values

0 to maxlong

If Out of Range

If < 0 then trapable error is generated.

If there is no tab closer than 16 pixels no tabs settings are deleted - Note that in this case there is NO trappable error is generated.

TabEnabled Property �XE "TabEnabled Property"�

Description

Determines how ALLText handles the Tab Key. With TabEnabled set to a value of True, ALLText accepts the Tab character for insertion into the text. With TabEnabled set to a value of FALSE, ALLText treats the TabKey as a focus change mechanism similar to other controls.

Usage

ALLText.TabEnabled=False

Access	

	Read	Write�Design	 +	 +�Execution	 +	 +

DataType

Logical

Values

TRUE	The tab key inserts a tab character into the document.

FALSE	The tab key serves as a change of focus mechanism.

Default

TRUE

If Out of Range

Value is set to True

Remarks

If TabEnabled is set to FALSE ALLText will lose focus upon entry of the tab key. In this case the developer may wish to trap the <control> <tab> sequence in the KeyDown or KeyUp events and use this to insert a tab character.

TabLocations Property (HT/Pro only)�XE "TabLocations Property"�

Description

The TabLocations property is an array of long integer values used to set or return the absolute tab locations for current or selected paragraphs. TabLocations(0) holds the tab location for the leftmost tab setting. TabLocations(1) holds the value for the next location. TabLocations(ALLText.TabCount-1) holds the tab location for the last tab.

Usage

li& = alltext.TabLocations(i%)

alltext.TabLocations(i%) = li&

Access

	R	W

Design 	 -	 -

Runtime 	 +	 +

DataType

long

Values

 0 <= li& <= MAXLONG

 0 <= i% <= alltext.TabCount-1

If Out of Range

A trappable error is generated if there is no tab corresponding to the array index specified.

A trapable error is also generated if a negative index is specified.

Remarks

TabLocations(i) returns a value of ATX_TAB_UNDEFINED if more than one paragraph is selected, and the value for TabLocation(i) is different for paragraphs in the set

Tab locations can not be within 16 pixels of each other. If the distance between a tablocation specified by setting this property and the nearest existing tab is less than 16 pixels a trappable Error will be generated, and the tab location will NOT be changed.

TabStep Property�XE "TabStep Property"�

Description

Sets or returns Tabulation step size in twips. Note that ALLText rounds this value to the nearest 16 pixels - Read back the TabStep property after setting to verify the actual tabsize.

Usage

ALLText.TabStep= n%�n% =ALLText.TabStep

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

Integer (Twips)

Values

XPixelsToTwips(ATX_MINTABSET) Ј n% Ј ATX_MAXTABSET

Default

XPixelsToTwips(ATX_MINTABSET)

Remarks

The ASCII code for a character is 9. ALLText recognizes chr$(9) as a tab when found in the text string. ALLText also interprets keyboard input of the <Cntrl> <Tab> combination as a tab.

The first tab location will be measured from the left margin of the document, not from the left margin of the paragraph - thus if the paragraph margin is set at 1/4 inch and the tab setting is for 1/2 inch, the first Tab location will be 1/4 inch into the paragraph. The next tab will be a half inch beyond that.

TagReadSelect Property�XE "TagReadSelect Property"�

Description

Controls whether reading NTag or HTag properties automatically selects the tagged region

Usage

ALLText.TagReadSelect= n%

Access	

	Read	Write

Design time	 -	 -

Run time	 +	 +

DataType

Integer

Values

0 OFF		Reading HTag or NTag will NOT automatically extend the selection

1 ON (default)	Extends the selection region when reading HTag or NTag to include the entire contiguously tagged region under the following conditions: If no text is selected and current position is within some tag area then the tagged area is automatically selected. Also a selection contains only one tag value and previously spanned only a portion of the text with that value, then reading HTag with the TagReadSelect property will automatically extend the selection to include the full contiguous region with that tag value. No extension to the selected region occurs if the initial selection included text of varied tag values or if the tag value of the selected text is 0.

Text Property �XE "Text Property"�

Description

Holds the unformatted textual content of the first 32,767 characters of the control.

Usage

n$ = ALLText.Text�ALLText.Text="Please spread the word about ALLText"

Access

	Read	Write

Design	 -	 -

Execution	 +	 +

DataType

String

NOTE:

Setting the Text property, has the effect of removing any text beyond the first 32,767 characters from the control content. To add text beyond 32,767 characters us the FileLoad or SelText properties.

Setting the Text property also results in Unformatted text. To add Formatted text use the FText or SelFText properties.

TextFormatted Property� XE “TextFormatted Property”�� XE “File I/O”�

Description

Text modifications that cause reformatting of the entire text can take a lot of time if you have a large document. For this reason ALLText formats only the visible part of text immediately upon loading, while the rest of the text is being formatted as a background task after the first screenful is presented.

After a FileLoad operation, ALLText sets the value of the TextFormatted property to specify the number of paragraphs which have been fully formatted internally. When formatting has been completed, the property is then set by ALLText to TRUE (-1).

You can check the value of TextFormatted at any time. You can also set TextFormatted = TRUE in order to force ALLText to complete interpretation of the formatting before proceeding to the next task. If you set TextFormatted property to some other value, ALLText will format text from the beginning of the document to the paragraph number indicated. While text is being formatted no another action can be performed by ALLText.

Usage

 ATX.TextFormatted = l&

 l& = ATX.TextFormatted

Visual C

Remarks

While this property can be set, it is generally best to handle it in a read only mode. This will help you to avoid possible problems .

Setting the ChangeEventMask to the Global constant ATXFORMATED_CHANGED_MASK will cause ALLText to trigger an ATXChanged event in response to changes in the TextFormatted property. In this way you can easily identify progress in the background loading operation.

Properties and functions which rely upon the formatting of the complete document may not be reliable unless the TextFormatted property is True. For instance, the DocHeight property indicates the total height (in twips) of the document. This can not be determined until formatting has been completed.

Example

 ret% = ALLText.ClearAll

 ALLText.FileLoad = ATX_IO_LOWLEVEL

 ALLText.TextFormatted = True

 Label1.Caption = Str$(ALLText.DocHeight)

References

TextLength Property�XE "TextLength Property"�

Description	

Returns the number of characters currently held in the control (length of the textual content).

Usage

n% = ALLText.TextLenth

Access

	Read	Write

Design	 -	 -

Execution	 +	 -

DataType	

Integer

Remarks

This is a read-Only property.

Carriage Return/LineFeed combinations delimiting paragraphs are counted as two characters.

Example

‘Insert text at the end of the control

ALLText.Select = false ‘ turn off selection

ALLText.SelStart = ALLText.TextLength

TopIndent Property�XE "TopIndent Property"�

Description

Sets or returns the vertical distance between the top of the paragraph and the bottom of previous Paragraph. (gets added to BottomIndent of previous paragraph)

Usage

ALLText.TopIndent= n&�n& = ALLText.TopIndent

Access	

	Read	Write�Design	 -	 -�Execution	 +	 +

DataType

Long (twips)

Values

0 Ј YTwipsToPixels(n&) Ј MaxTextHeight

Default

1

Example

ALLText1.TopIndent = .25 * 1440 'set to 1/4 inch

Values

The resolution of this property is dependent on the physical device. ALLText holds such information internally in Pixels such that

 ATX.TopIndent = Screen.TwipsPerPixelX + 1

is equivalent to

 ATX.TopIndent = Screen.TwipsPerPixelX

UnDoAction Property� XE “UnDoAction Property”�

Description

Controls the UnDo buffer. �Setting UnDoAction either undoes the last end-user action (set to 1) or clears the buffer (set to 0).�Reading the UnDoAction property returns the number of possible Undo Steps stored in the buffer.

Access

	Read	Write

Design	 -	 -

Execution	 +	 -

Syntax:

n% = atx.UnDoAction ' check number of available Undo Steps.

atx.UnDoAction = 0 'Empty undo buffer.

atx.UnDoAction = 1 'UnDo last end-user action.

Note:

In order to perform several undo operations, set ALLText.UnDoAction=1 several times.

The <Alt> <Backspace> keyboard combination is also recognized for end-user support.

The maximum number of end-user actions which can be stored in the UnDo buffer is 100.

WriteProtect Property�XE "WriteProtect Property"�

Description	

Enables or disables end-user editing actions upon the control. �Several levels of write protection are available depending on the value set.

Usage

ALLText.WriteProtect = n%

n% = ALLText.WriteProtect

Access

	Read	Write

Design	 +	 +

Execution	 +	 +

DataType	

Integer

Values	

 0 ATX_PROTECT_NONE 	The caret is shown, all editing actions are enabled.

-1 ATX_PROTECT_CHANGES	The caret is shown, all actions are enabled except those changing the text.

 1 ATX_PROTECT_KEYBOARD	The caret is hidden, selection is reset, all changes are available through properties only.

 2 ATX_PROTECT_SCREEN	Just like ATX_PROTECT_KEYBOARD with the additional feature that changes to the text made through properties are not visible on the screen while in this setting. NOTE that the ALLText control will NOT refresh the screen while WriteProtect is set to a value of 2.

Default

False

Remarks

True may be used instead of PROTECT_CHANGES, False may be used instead of PROTECT_NONE

Note: If out of range then this property is set to PROTECT_CHANGES

It is a good idea to set WriteProtect when loading and saving a document, when parsing text, or when performing any lengthy manipulation which the end-user should not be permitted to interupt.

�Chapter 4

ALLText Functions

The following API functions are supported by ALLText. Functions requiring the HT/Pro edition are noted.

Function declarations and constants useful in manipulating the parameters may be found in the file ATX4SAPI.BAS for ALLText standard edition, or ATX4HAPI.BAS for ALLText HT/Pro.

 ATX_CurToXY	- translates from a cursor position to X&, Y& coordinates .

 ATX_Print	- prints specified text, and initiates printer events

 ATX_PrintCancel	- aborts printing operation

 ATX_Print_Finish	- terminates ALLText's connection to the printer.

 ATX_Print_Region	- prints to specified region of a page

 Atx_Print_Start	- initializes ALLText link to printer device

 ATX_Print_Title	- provides control over print dialog text

 ATX_ToLower	- this function converts selected text to Lower Case.

 ATX_ToUpper	- this function converts selected text to Upper Case.

 ATX_XYToCur	-translates X/Y coordinates to paragraph and character location.

 ATX_RegNewExtern	- (HT/Pro) registers external object DLL

 Find_Htag	- (HT/Pro) searches for the nth occurrence of specified HotSpot

 Find_Ntag	- (HT/Pro) searches for the nth occurrence of specified BookMark

 Find_Phrase	- searches for a specified text string within the control’s content

 Find_PhraseEX 	- searches for a specified text string of specified format

 FontTableGet	- reads an entry from the Font Table

 FontTablePut	- sets an entry in the Font Table

 Get_Border	- (HT/Pro) translates a border configuration value into component features

 Get_LineTopHeight	- gets line formatting details for a specified line

 Get_ParDet	- get’s all Paragraph formatting details for a given paragraph

 Get_Shadow	- translates a Shadow value into workable component features.

 Get_Underline	- translates an Underline value into workable component features.

 Make_Border	- (HT/Pro) creates border value from components.

 Make_Shadow	- creates shadow value from components.

 Make_UnderLine	- creates underline value from components.

 Print_AText	- prints specified paragraph range

 Print_ATextPages	- prints specified pages

�ATX_CurToXY Function� XE “ATX_CurToXY Function”�

Description

Translates from a cursor position specified by paragraph& and character% parameters into X&, Y& coordinates in twips designating displacement of upper left corner of character specified from upper left corner of text.

Syntax

 x% = ATX_CurToXY (ATXName, paragraph&, character%, X&, Y&)

Returns

The ASCII code for the character located at the position specified if such a character exists, or -1 otherwise.

Input Parameters

ATXName - ALLText control name

paragraph& - paragraph where position is placed

character% - character of paragraph where position is placed

Output Parameters

X&, Y& - coordinates in twips designating displacement of upper left corner of character specified from upper left corner of text.

Remarks

This function may be used to scroll the window to show a particular character in a given location. For instance, to scroll the control so that the first character of paragraph 17 is at the top.

	Ret_Code% = ATXCurToXY(ALLText1, 17,0, x&, y&)

	ALLText1.ScrollVert = y&

See Also

ATX_XYToCur Function

ATX_Print Function� XE “ATX_Print Function”��XE "Printing"�

Description:

This function initiates printing of the content of an ALLText control from a given paragraph to a destination paragraph.

Usage

x%= ATX_PRINT (Control , StartTop&, TopMargin&, PageHeight&, LeftMargin&, �		 PageWidth&, ParFrom&, ParTo&, Flags%)

Parameters

Control	- ALLText control containing source document.

StartTop&	- Upon return, ALLText resets this parameter to a value specifying the � location (in twips) of the bottom of the last printed line in twips.

TopMargin&	- Top indent

PageHeight&	- Vertical space for the text on the page

LeftMargin& 	- Left margin in twips

PageWidth& 	- Document width in twips

ParFrom& 	- Specifies first paragraph in range to be printed

ParTo& 	- Specifies at last paragraph in range to be printed

Flags% 	- Not currently used in this function.

	

 � EMBED Word.Picture.6 ���

Notes:

This function may only be called AFTER the ATX_PRINT_START function and before ATX_Print_Finish.

After calling this function, the following events are triggered sequentially for each page.

 PrintThisPage Event

 PrintStartPage Event

 PrintEndPage Event

To insure that printing is confined to a specific region on a given page, use the ATX_Print_Region function instead of this function.

AtxPrintCancel Function� XE “ATXPrintCancel Function”��XE "Printing"�

Description:

This function aborts the printing method and should be followed by the Printer.EndDoc method. It may be useful in trapping errors as in the following routine:

Usage

X% = ATX_PRINT_CANCEL (ControlName$)

Example:

Sub PrintSomething(...)

 On Error Goto Printing_Error

 ' Print something with ALLTEXT, Printer.Print etc

 Exit Sub

Printing_Error: ' Error occured in the Printer object

 AtxPrintCancel atxControl

End Sub

Atx_Print_Finish Function� XE “ATXPrintFinish Function”��XE "Printing"�

Description:

This function terminates ALLText's connection to the printer.

Usage

X% = ATX_PRINT_FINISH

Parameters

None

Notes:

This function should generally be followed by the Printer.EndDoc method to signify that printing is over and the page should be ejected.

ATX_Print_Region Function� XE “ATX_Print_Region Function”��XE "Printing"�

Description:

This function prints text on the current page inside an area defined by parameters. It differes from the ATX_Print Function in that it will not generate any events and will not continue printing on another page if the text to be printed does not fit within the specified area of the printed page.

Usage

x% = ATX_PRINT_REGION (ALLText, StartTop&, PageHeight&, LeftMargin&, � PageWidth&, ParFrom&, ParTo&, Flags%)

Parameters

hctl 	- ALLText control containing source document.

StartTop&	- Top indent.

PageHeight&	- Vertical space for the text on the page

LeftMargin& 	- Left margin in twips

PageWidth& 	- Document width in twips

ParFrom& 	- Specifies first paragraph in range to be printed

ParTo& 	- Specifies at last paragraph in range to be printed

Flags% 	- Not currently used in this function.

Notes

If the Text to be printed does not fit within the specified area, ALLText prints what can fit, and the function returns the error code 109, “ATX_PRINT_ERR_REGIONTOOSMALL”.

Note that the ATX_Print_Region function is particularly useful when printing to a device without page feed ability such as a picturebox. This will insure that the text fits within the desired window.

Atx_Print_Start Function� XE “ATX_Print_Start Function”��XE "Printing"�

Description:

This function initializes ALLText's link to the proper output device.

Usage

X% = ATX_PRINT_START (FormWnd%, hdc%, log_n%, rel_n%)

Parameters

atxControl, 	- Handle to the Form containing the ALLText control.

hdc% 	- Handle of print output destination

log_n%	- Not Currently used

rel_n%	- Not Currently used, set to 1

Notes:

Parameters log_n% and rel_n% are not used here and should always be set to 1.

The FormWnd% parameter refers to the Form’s control handle. This is used to disable the specified form during printing to prevent unexpected user actions, and to set the parent for the print progress dialog box. The form is re-enabled after completing the ATX_Print_Finish function.

Setting FormWnd% to 0 prevents disabling of the form and surpresses the PrintProgress Dialog box.

After calling this function with a valid FormWnd, ALLText displays the print dialog box.

Setting FormWnd% to the handle of a non-existant form may lead to an unstable condition.

ATX_Print_Title Function� XE “ATX_Print_Title Function”��XE "Printing"�

Description:

This function can be used to specify the text in the dialog box which appears during printing.

Usage

X% = ATX_PRINT_TITLE (TitleString$)

Parameters

TitleString$ - String to be displayed as a title in the PrinterProgress Dialog Box.

Notes:

This function may only be called AFTER the ATX_PRINT_START function and before ATX_Print_Finish.

The printer progress dialog box only appears if the document is to be printed on a physical printer device - not when printing to the screen or a bitmap.

To prevent display of the PrinterDialog box the FormWnd parameter of the ATX_Print_Start function should be set to 0.

ATX_ToLower Function� XE “ATX_ToLower Function”�

Description

This function converts all Selected text in the textbox to Lower Case.

Usage

Call ATX_TOLower (hctl As Control)

Input Parameters

Cntrl Name - the name of the ALLText control to be acted upon

Example

Sub Cmd_Click()

 ALLText.SelLength = 50 ‘ select next fifty characters� Call ATX_TOLower(ALLText)� End Sub

ATX_ToUpper Function� XE “ATX_ToUpper Function”�

Description

This function converts all Selected text in the textbox to Upper Case.

Usage

Call ATX_TOUPPER (ControlName$)

Input Parameters

Cntrl Name - the name of the ALLText control to be acted upon

Example

Sub Cmd_Click()

 Call ATX_ToUpper(ALLText)

 End Sub

ATX_XYToCur Function� XE “ATX_XYToCur Function”�

Description

Translates X&, Y& coordinates (in twips) from upper left corner of document into cursor position specified by paragraph& and character% .

Syntax

x% = ATX_XYToCur (ATXName , X&, Y&, paragraph&, character%)

Returns

The ASCII code for the character located at the position specified by paragraph& and character% parameters if such a character exists or -1 otherwise.

Input Parameters

X&, Y& - coordinates in twips designating displacement of upper left corner of character needed from upper left corner of text.

Output Parameters

ATXName - ALLText control name

paragraph& - paragraph where position is placed

character% - character of paragraph where position is placed

Remarks

This even may be very useful during MouseMove events. Note however that MouseMove provides X,Y coordinates from Top Left of control window, while the function expects coordinates with regard to top of text document. Offsets between the two systems are specified by ScrollVert and ScrollHorz properties.

See Also

ATX_CurToXYTo Function

ATX_RegNewExtern Function� XE “ATX_RegNewExtern Function”�

Description

Loads specified external Object DLL and registers it with ALLText.

Usage

Ret_code% = ATX_REGNEWEXTERN (noMsg%, lpstrModule$)

Parameters

noMsg% = FALSE - Display message box if the specified DLL is not found in the PATH.

noMsg% = TRUE - Show no error message

lpstrModule$ - Path to the ExtObjDLL for example "ATXPIC.DLL" or "C:\tmp\ATXPIC.DLL".

Example:

 Sub Form_Load ()

 X = ATX_REGNEWEXTERN(ByVal False, "ATXOLE.DLL")

 X = ATX_REGNEWEXTERN(ByVal False, "ATXOLE.PIC")

 End Sub

Returns

0	if OK

< >0	if an error occurred

Remarks

External object DLL’s must be registered before they can be used. They only need to be registered once each time the ALLText control is loaded into memory (not for each instance, or even for each form containing ALLText).

Find_Htag Function�XE "Find_HTag Function"� �XE "Searching"�(HT/Pro Version)

Description

Searches for the count%-th occurrence (relative to the current location) of a particular tagged region (as specified by the Htag& tag value). If found, the caret is repositioned and count% is returned. If there is no occurrence of Htag& within the Text - then nothing happens, the function returns 0. If an insufficient count of the sought phrase exists in the document - the caret is positioned on the last occurrence of Htag&, and the actual occurrence number is returned.

Note that the search takes place starting from the current position and looks forward in the text.

Syntax of call

%=Find_Htag(CntrlName, Htag&, count%)

Parameters

CntrlName - the control name. Find_HTag can operate on any ALLText control in the application.

Htag& 	- Tag # to find. .

count%	- counter of tags, designates what occurrence of Htag& is needed. Can be of values {1..32000} or {-1..-32000}. If count% > 0 then searches forward, else backward.

Return Value

 Actual occurance number (generally = Count% unless only a lower number of tags of the desired value can be found).

 0 - indicates that no further tags of the desired value were found.

 0x80000000 - indicates an ambiguous condition �This may occur as a result of setting HTag without previously selecting text. The cursor position thus is ready to accept the next typed characters as tagged, but there is actually no tagged text at the location.

Remark

Searching for the 0th occurance of the current tag (the value of HTag at the current cursor position) will act to select the complete tagged phrase, ex: x% = Find_HTag(atx1, Atx1.HTag ,0) .

Example

Let's say there are 100 sentences marked by Htag=4 and 30 phrases marked by Htag=9 placed arbitrarily within the text. With the caret initially positioned between 50th and 51th phrases of Htag=4 and between 10th and 11th phrases of Htag=9:

	Find_HTag(atx1, 4,5) positions caret on 55th (50+5) phrase of Htag=4, returns 5.

	Find_HTag(atx1, 9,11) positions caret on 21th phrase of Htag=9, returns 11.

	Find_HTag(atx1,4,200) positions caret on last phrase marked by Htag=4, �	NOTE: returns 50.

	Find_HTag(atx1,9,-100) positions caret on first phrase of Htag=9, NOTE: returns -10

	Find_HTag(atx1,9,1) positions caret on 11th phrase of Htag=9, returns 1.

	Find_HTag(atx1,9,-1) positions caret on 10th phrase of Htag=9, returns -1.

	Find_HTag(atx1,0,1) positions caret forward on next tagged area �	without 	regard of tag # (skip forward), returns 1.

	Find_HTag(atx1,0,-1) positions caret backward on previous tagged area �	without regard of tag # (skip backward), returns -1.

Find_Ntag Function�XE "Find_NTag Function"� �XE "Searching"�(HT/Pro Version)

Description

Searches for the count%-th occurrence of a particular tagged region, as specified by the tag value (Ntag&). If found, the caret is repositioned and count% is returned. If there is no occurrence of NTag& within the Text - then nothing happens, the function returns 0. If an insufficient count of the sought phrase exists in the document - the caret is positioned on the last occurrence of NTag&, and the actual occurrence number is returned.

See Find_HTag for further details

Find_PTag Function�XE "Find_PTag Function"� �XE "Searching"�(HT/Pro Version)

Description

Searches for the count%-th occurrence of a particular tagged paragraph, as specified by the tag value (Ptag&). If found, the caret is repositioned and count% is returned. If there is no occurrence of PTag& within the Text - then nothing happens, the function returns 0. If an insufficient count of the sought paragraph exists in the document - the caret is positioned on the last occurrence of PTag&, and the actual occurrence number is returned.

See PTag property and Find_HTag function for further details

Find_Phrase Function�XE "Find_Phrase Function"��XE "Searching"�

Description

The FIND_PHRASE function searches for a specified text string within the control’s content. The search begins at the current caret position and proceeds forward or backward according to the Direction% parameter.

If found, the function returns a positive long value or 0, designating the character count offset of the search string from the beginning of the ALLText content; else returns ATX_UNDEFINED.

Syntax

Pos& = Find_phrase(CntrlName, FindWhat$, Direction%, CaseSensitive%)

Input Parameters	

CntrlName 	- Name of the ALLText control window being searched

What$ 	- String containing the phrase to find.

Direction% 	- Integer (Boolean) value. If True, then search forward else search backward.

CaseSensitive% 	- Integer (Boolean) value. If True, then case sensitive search �	 else case ignored.

Example

Sub SearchText (ATX1 As Control, CaretGoToFlag%, PhraseMarkFlag%)

 ss& = ATX1.SelStart

 sl& = ATX1.SelLength

 wp% = ATX1.WriteProtect

 ATX1.WriteProtect = ATX_PROTECT_SCREEN

 posfound& = find_phrase(ATX1, TextToSearch, SearchForward, SearchCaseSen)

 If posfound& < 0 Then

 MsgBox "phrase not found"

 Else

 If NOT CaretGoToFlag% then exit Sub

 ss& = posfound&

 sl& = 0

 If PhraseMarkFlag% then sl& = Len(TextToSearch)

 End If

 ATX1.SelStart = ss&

 ATX1.SelLength = sl&

 ATX1.WriteProtect = wp%

End Sub

Find_PhraseEX Function�XE "Find_PhraseEx Function"��XE "Searching"�

Description

This is an enhanced search function supporting a search for text of specified format.

Syntax

Res& = Find_PhraseEX (alltext, FindWhat As String, Direction%, CaseSensitive%, �		SearchFontName$, SearchFontSize%, SearchFontWidth%, SearchFontBld%, �		SearchFontItalic%, SearchFontUnder%, SearchFontStrike%, �		SearchFontShadow%, SearchFontSubSup%, SearchFontColor&, �		SearchFontHidden%, SearchHTag&, FoundPos&, FoundLen&)

Return Value

TRUE	1 - if search is successiful

UNDEF	 = - 4096 = &HFFFFF000&)- phrase not found

Input Parameters

alltext	- Specifies which ALLText control the search should be performed upon.

FindWhat	- Text to be found. If this string is empty (= “”) Find_PhraseEX will look for � any text with the specified formatting attributes.

Direction	- Search direction (Forward if 1 or Backward if 0).

CaseSensFlag	- Case sensitivity flag (Case sensitive if 1 and Case insensitive if 0).

 NOTE: The following input parameters specify font formatting to be used as a filter during the search. The search will ignore a particular formatting parameter if the string value (SearchFontName) is set to an empty string, or the numberic value is set to ATX_UNDEFINED (= -4096).

SearchFontName	- Font name of the search string. The font will be ignored during the search if this parameter contains an empty string.

SearchSize% 	- Font Height

SearchWidth% 	- Font Width.

SearchBold% 	- Font bold.

SearchItalic% 	- Font Italic

SearchFontUl%	- Font underline.

SearchStrike% 	- Strikedtrough font

SearchShadow%	- Font shadow

SearchSubSup%	- Super or Subscript font

SearchHidden%	- This value is not used in current version of ALLText.

SearchColor&	- Foreground font color.

SearchFontHid%	- (HT/Pro edition only, ignored for S) � Font Hidden Property. If ATX_UNDEFINED (= -4096 = &HFFFFF000&)

SearchHTag&	- (HT/Pro edition only, ignored for Standard edition) � The value of Htag to find

Output Parameters

FoundPos& - Starting location where phrase was found,

FoundLen& - Length of the phrase found

Example

Dim ATX As Control

Set ATX = form.ATX

TextToSearch = "String"

Direction% = 1			' Search Forward

CaseSensitive% = TRUE		' Case Sensitive search

SFontName = "Times New Roman"	' Find only Times New Roman text

SFontHt = 10: SBold = 1		' Find only Only 10pt bold text

‘Ignore all other character related attributes

SWidth = &HF000: SItalic = &HF000: SUnderl = &HF000: SStrike = &HF000:

SShadow = &HF000: SScript = &HF000: SHidden = &HF000: SColor = &HFFFFF000

SHTag = &HFFFFF000&	

Res& = Find_PhraseEX (ATX, TextToSearch, Direction%, CaseSensitive%, �		SFontName, SearchFontHt, SWidth, SBold, SItalic, SUnderl, SStrike, �		SShadow%, SScript%, SColor&, SHidden%, SHTag&, FoundPos&, FoundLen&)

If res& < 0 Then

 MsgBox "phrase not found"

 End If

REMARKS

Setting the Numeric values for formatting parameters to ATX_UNDEFINED will cause ALLText to disregard that formatting when conducting it’s search.

FontTableGet Function� XE “FontTableGet Function”�

Description

This function retrieves the characteristics of a particular entry from the ALLText font table .

Usage

X= FontTableGet(ControlName$, EntryNumber%, FontFamily%, FontCharSet, FontName$, �		 FontSize%, FontWidth%, FontBold%, FontItalics, FontUnderline%, �		 FontStrike%, FontShadow%, FontSubSup%)

Retun Value

True if the specified entry exists, False otherwise.

Input Parameter

ATXName 	- ALLText control name

EntryNum% 	- Font table entry number.

Output Parameters

Fontfamily% 	- Font family

FontCharSet% 	- Font character set

FontName$	- Font name

FontSize% 	- Font size

FontWidth%	- Font width

FontBold% 	- True if font is bold

FontItalic%	- True if font is Italic

FontUnder% 	- Value characterizing font's underlining.

FontStrike%	- True if font is Striked out

FontShadow%	- Value characterizing font's Shadowing.

FontSubSup%	- Value characterizing Super-SubScript.

FontTablePut Function� XE “FontTablePut Function”�

Description

This function sets the specified ALLText FontTable Entry based on the values of each parameter and returns the Fonttable entry number that was actually updated.

Syntax

x% = FontTablePut (ATXName, EntryNum%, Fontfamily%, FontCharSet%, FontName$, �		 FontSize%, FontWidth%, FontBold%, FontItalic%, FontUnderline%, �		 FontStrikeOut%, FontShadow%, FontSubSup%)

Returns

 Entry number where it is actually set (see Remark).

Input Parameters

ATXName 	- ALLText control name

Bold%	- True if font is bold

EntryNum% 	- Number of font table entry.

Italic%	- True if font is Italic

family% 	- Font family

Underline%	- Value characterizing font's underlining.

CharSet% 	- Font character set

StrikeOut%	- True if font is Striked out

FontName$ 	- Font name

Shadow%	- Value characterizing font's Shadowing.

Size% 	- Font size

SubSup%	- Value characterizing Super-SubScript.

Width% 	- Font width

Example

 '-get details for 3-rd entry

 FontTableGet (ALLText1, 3, family%, CharSet%, Name$, Size%, Width%, Bold%, Italic%, Underline%, StrikeOut%, Shadow%, SubSup%)

 '-change some parameters

 Bold%=Not Bold% ' Toggle Bold

 Italic%=Not Italic%' Toggle Italic

 '-Add new entry to font table

 SetasIndex% = FontTablePut (ALLText1, 32767, family%, CharSet%, Name$, Size%, Width%, Bold%, Italic%, Underline%, StrikeOut%, Shadow%, SubSup%)

 '-use the new entry

	ALLText.SelText = “SomeText”

	ALLText.FontIndex = SetAsIndex%

Remarks

If EntryNum% is less than 0 then the first (0-th) entry is assumed and the characteristics of this entry are replaced.

If EntryNum% is greater than the last existing entry number, then a new font table entry is created based on the function input parameters. The set of Font Table Entry numbers must be continuous. If the EntryNum% value is larger than FontTableSize +1, it will be reset by ALLText and the actual entry number used will be returned. For example if you try to set parameters for the 10th entry in a fonttable that has only five entries, ALLText will update the last fonttable entry in this case and return value will be 5-1=4.

Get_Border Function �XE "Get_Border Function"�(HT/Pro Version Only)

Description

The Get_Border function translates a border configuration value as used by the Border Property into individual side%, shape% and shadow% values.

Syntax

Call get_border(border&, side%, shape%, shadow%)

Input Parameters

border& - paragraph border (see border property above).

Output Parameters

side% - The sides of paragraph rectangle where bordering lines are set: �ATX_BORDER_NONE or ATX_BORDER_BOX

 or superposition of constants: �ATX_BORDER_LEFT, ATX_BORDER_RIGHT, �ATX_BORDER_TOP, ATX_BORDER_BOTTOM.

shape% - bordering shape:�ATX_BORDER_SHAPE_STANDARD or�ATX_BORDER_SHAPE_THICK or�ATX_BORDER_SHAPE_DOUBLE.

shadow% - border is shadowed or not:�ATX_BORDER_NOTSHADOWED or�ATX_BORDER_SHADOWED

Returns

none

Example

b& = alltext1.border

call get_border(b&, side%, shape%, shadow%)

Get_LineTopHeight Function�xe "Get_LineTopHeight Function"�

Description

Gets line formatting details for a specified line within a specified paragraph

Usage

get_linetopheight(alltext, Paragraph&, Line&, top&, height&)

Input Parameters

alltext 	- ALLText control

Paragraph& 	- paragraph number within ALLText

Line&	- line number within Paragraph&

Output Parameters

top& 	- Line top (twips)

height& 	- Line height (twips)

Get_ParDet Function�xe "Get_ParDet Function"�

Description

Gets paragraph formatting details for a given paragraph

Usage

get_pardet(alltext, Paragraph&, top&, height&, FirstLineIndent&, LineSpace&, SpaceAfter&, �		 SpaceBefore&)

Input Parameters

alltext	- ALLText control

Paragraph& 	- paragraph number within ALLText

Output Parameters

top& 	- Paragraph top (twips)

height& 	- Paragraph height (twips)

FirstLineIndent& 	- Paragraph FirstLineIndent (twips)

LineSpace& 	- Paragraph LineSpace (twips)

SpaceAfter&	- Paragraph SpaceAfter (twips)

SpaceBefore& 	- Paragraph SpaceBefore (twips)

Example

Call GET_PARDET(ALLText1, (ALLText1.CurPar), part, parh, a1, a2, a3, a4)

parb = part + parh ' distance from top of document to bottom of paragraph

Get_Shadow Function�XE "Get_Shadow Function"�

Description	

This function is intended to facilitate FontShadow property manipulations, translating a ShadowValue as read via the FontShadow Property, into it's more workable component features.

Syntax	

x%= Get_Shadow(ALLText1.FontShadow, delta1%, delta2%, color1%, color2%)

Input Parameters

shadow%	- Integer value received by readyng FontShadow property.

Output Parameters

delta1%	- Top shadow displacement, to upper left from base

delta2%	- Down shadow displacement, to lower right from base.

color1%	- Top shadow color.

color2%	- Top shadow color.

Return

None

Example

	' Set shadowing of second Paragraph equal to first.�ALLText1.Cur Par = 0�get_shadow(ALLText1.FontShadow, d1%,d2%,c1%,c2%)�ALLText1.Cur Par = 1�ALLText1.Sel Par = 1�ALLText1.Sel Char = 32000�ALLText1.FontShadow = make_shadow(d1%,d2%,c1%,c2%)

Equivalent Visual Basic code

Sub get_shadow (shadow%, delta1%, delta2%, color1%, color2%)

 delta1% = (shadow% And (7 * 256 * 16)) / (256 * 16)

 delta2% = (shadow% And (7 * 256)) / (256)

 color1% = (shadow% And (15 * 16)) / (16)

 color2% = (shadow% And (15))

End Sub

Get_Underline Function�XE "Get_Underline Function"�

Description

This function translates an underline value as read via the FontUnderline Property, into it's more workable component features.

Syntax

x% = Get_underline (ALLText.FontUnder, shape%, dblflag%, ncolor%)

Input Parameters

UnderValue - underline value

Output Parameters

shape% - ATX_NONE | ATX_SOLID | ATX_DASH | ATX_DOT | ATX_DASHDOT | ATX_DASHDOTDOT.

dblflag% - ATX_SINGLE | ATX_DOUBLE.

ncolor% - ATX_Black | ATX_Blue | etc.

Example

' toggle single/double underlining

 GetUnderline(ALLText1.FontUnder, Shp%, Dbf%, Clr%)

 If Dbf%=ATX_SINGLE then Dbf%=ATX_DOUBLE else Dbf%=ATX_SINGLE

 ALLText1.FontUnder = make_underline (Shp%, Dbf%, Clr%).

Make_Border Function �XE "Make_Border Function"�(HT/Pro Version Only)

Description

The Make_Border function creates a value acceptible to the Border Property from the individual border components: side, shape and shadow.

Syntax

b& = make_border(side%, shape%, shadow%)

Input Parameters

 side% - The sides of paragraph rectangle where bordering lines are set: ATX_BORDER_NONE or ATX_BORDER_BOX

 or superposition of constants: �ATX_BORDER_LEFT, ATX_BORDER_RIGHT, �ATX_BORDER_TOP, ATX_BORDER_BOTTOM.

shape% - bordering shape:� ATX_BORDER_SHAPE_STANDARD or� ATX_BORDER_SHAPE_THICK or� ATX_BORDER_SHAPE_DOUBLE.

shadow% - border is shadowed or not:� ATX_BORDER_NOTSHADOWED or� ATX_BORDER_SHADOWED

Output parameters

returns long value specifying resulting border

Example

b& = alltext1.border

call get_border(border&, side%, shape%, shadow%)

alltext1.border = make_border(side%, shape%, 1)

Make_Shadow Function �XE "Make_Shadow Function"�

Description	

This function is intended to facilitate FontShadow property manipulations, translating desired component features of a shadow font into a value acceptable to the FontShadow property.

Syntax

ALLText1.FontShadow=Make_Shadow% (delta1%, delta2%, color1%, color2%)

See the file ATX4SAPI.BAS or ATX4HAPI.BAS for the appropriate function declaration

Input Parameters

delta1%	Top shadow displacement - to upper left from base.

delta2%	Down shadow displacement - to lower right from base.

color1%	Top shadow color.

color2%	Top shadow color.

Return	

An integer value is used to set FontShadow property (see FontShadow property description).

Example	

ALLText1.FontShadow = make_shadow(1,1,0,15)

Equivalent Visual Basic Code:

Function make_shadow% (delta1%, delta2%, color1%, color2%)

 If delta1% < 0 Or delta1% > 15 Then Exit Function

 If delta2% < 0 Or delta2% > 15 Then Exit Function

 If color1% < 0 Or color1% > 15 Then Exit Function

 If color2% < 0 Or color2% > 15 Then Exit Function

 lShadow& = 256& * 16 * delta1% + 256 * delta2% + 16 * Color1% + color2%

 If lShadow& > &H7FFF Then lShadow& = lShadow& - &H10000

 make_shadow% = lShadow&

End Function

Make_UnderLine Function�XE "Make_UnderLine Function"�

Description

The Make_Underline function creates an underline value for us as an embedded code, or to set the FontUnderline property.

Syntax

ALLText1.FontUnder = make_underline (shape%, dblflag%, ncolor%)

Input Parameters

shape% 	- ATX_NONE | ATX_SOLID | ATX_DASH | ATX_DOT | ATX_DASHDOT | � ATX_DASHDOTDOT.

dblflag% 	- ATX_SINGLE | ATX_DOUBLE.

ncolor% 	- ATX_Black | ATX_Blue | etc.

Example

ALLText1.FontUnder = make_underline (ATX_SOLID, ATX_SINGLE, color_index(alltext1.fontcolor).

��Chapter 5

ALLText Events

The following Events are supported by ALLText. �	 Events requiring the HT/Pro edition are so noted:

 ATXChange 	 - triggered by a change of state

 ATXGet 	 - triggered by the setting of the FileLoad property. �	 Supports Low Level I/O

 ATXPut 	 - triggered by the setting of the FileSave property. �	 Supports Low level I/O

 ATXHScrollClick 	 - triggered by click on Horizontal Scroll bar

 ATXVScrollClick 	 - triggered by click on Vertical Scroll bar

 DragDrop 	 - standard Visual Basic Event

 DragOver 	 - standard Visual Basic Event

 DropFileStart 	 - (HT/Pro) triggered by the dropping of a file on the control.

 DropFile 	 - (HT/Pro) triggered by the dropping of a file on the control.

 ExternOLEAction 	 - (HT/Pro) provides data exchange with embedded objects.

 PrintThisPage 	 - triggered prior to printing each page.

 PrintStartPage 	 - triggered prior to the start of each printed page .

 PrintEndPage 	 - triggered upon completion of the printing of each page of text

�ATXCHANGE Event�XE "ATXChange Event"�

Description

This event is triggered by changes in the state of the ALLText control. Triggering of the event is controlled by the ChangeEventMask property.

Uses - This event can be used to update a ruler, status bar, or button bar. It may also be used to pop up a window or a “help Bubble” when moving the mouse over a key phrase. It is intended to support the display of current parameters pertaining to caret position or selected text region (eg: cursor location or current font name).

Syntax

ATXChange(ChangedMask As Long, Param1 As Long, Param2 As Long)

Parameters

	ChangedMask As Long 	- Presents reason for the event to occur.

	Param 1 as Long 		- State of ALLText before change

	Param2 As Long 		- Current state of ALLText.

See the following table for specific details.

 Global Constant�Event Triggered � in response to Change in:�Param 1 Contains�Param2�Contains��ATXTag_Changed	= 1 �Htag Value�Old HTag�New HTag��ATXMouse_Changed 	= 2 �Mouse cursor�Old Mouse Cursor�New Mouse Cursor��ATXFont_Changed 	= 3�Font or font characteristics�Old FontIndex�New FontIndex��ATXColor_Changed 	= 4�Font color�Old Color�New Color��ATXCursorLocationChanged 	= 5 �Caret location�0�0��ATXSelection_Changed 	= 6�Selected area�1 if selected, 0 if not�0��ATXLocationX_Changed 	= 7�X location of the ALLText window in Pixels.�Old X�New X��ATXLocationY_Changed 	= 8�Y location of the ALLText window in Pixels.�Old Y�New Y��ATXSelParags_Changed 	= 9 �Selected paragraph area�0�0��ATXParAlignment_Changed 	= 10�Paragraph Alignment �Old Alignment�New Align��ATXMarginX_Changed 	= 11�Paragraph Margins: LeftMarg, RightMarg or FirstLineIndent�0�0��ATXScrollH_Changed 	= 12�Horizontal scroll�0�0��ATXScrollV_Changed 	= 13�Vertical scroll�0�0��ATXPage_Changed 	= 14�Current page number�Old Page #�New Page #��ATXPageLine_Changed 	= 15�Current Page Line Number�Old line number�New Line��ATXLine_Changed 	= 16�Line number.�Old line number�New Line��ATXFormatted_Changed 	= 17�Textformatted property, �This may indicate progress in the background formatting process.�Par #�Par #��ATXChanged_CHANGED 	= 18�DataChanged property.�Old�New��Remarks

It is possible to prevent generation of ATXChange event by setting corresponded bits of the ChangeEventMask to zero.

All events specified by the ChangeEventMask property will be triggered in following cases:

 New Window was created.

 New data is loaded from a bound database.

 ChangeEventMask property was changed.

 A File is loaded with FileLoad property.

 NewDoc property was changed.

This event occurs after completing some changes in the ALLText while it is idle (that is not busy of some work like processing fast keyboard input).

References

ChangeEventMask -- property

ATXGet Event�XE "ATXGet Event"�

Description

The ATXGet event offers the developer an opportunity to set or modify the input stream being fed to ALLText. It is triggered during I/O when the FileLoadFileLoad property is set into ATX_IO_STANDARD or ATX_IO_LOWLEVEL.

In Standard Mode�XE "Standard Mode I/O"�, the user will first set a filename and open the file. ALLText will read in some portion of the file (currently 2000 characters, but this is subject to change), and then trigger the event. The developer may then modify the input string UserSTR which is added to the ALLText document content upon return from the event subroutine.

In LowLevel �XE "LowLevel I/O"�mode ALLText does not read from a file at all, but triggers the ATXGet event to allow the user to set the UserSTR parameter (possibly from a serial I/O stream).

The ATXGet event subroutine uses a flag parameter (FLAG) to provide the programmer with the possibility to interrupt loading process.

In standard I/O mode the FLAG is automatically initialized to 1 upon entry to the subroutine each time there is data read from the file. When the end of the file is reached, the event is triggered once more with UserStr parameter set to 0 indicating an EOF condition. Manually set the flag to 0 in order to interrupt the loading process.

In low level mode, the FLAG is automatically initialized to 0 (stop) upon each entry to the event procedure and must be programmatically set to 1 before exiting the procedure in order to process the input text and continue triggering additional ATXGet events. No text will be processed during an ATXGet event where the FLAG is 0 upon exit from the routine.

Syntax

Sub ALLText_ATXGet(flag As Integer, UserSTR As String)

Input Parameters

flag As Integer 1 - file contains data, 0 - file is empty

Output Parameters

flag As Integer 1 - continue file loading, 0 - break file loading

UserSTR As String - the string read from file (and modified if necessary) that will be taken by ALLText.

Remarks

The FileSave and FileLoad properties cannot be called within ATXGet event subroutine.

Example 1: STANDARD LOADING�XE "Standard Mode I/O"�

 ...

 alltext1.DataType = file_format% ' set the file type

 alltext1.FileName = file_name$ ' set the file name

 alltext1.FileLoad = ATX_IO_STANDARD

 Sub ALLText1_ATXGet (flag As Integer, UserSTR As String)� ' interupt file loading if more than desired number of charcters� If Len(UserStr)>ATX_MAXCHARS Then

	 flag = 0

 GoTo ATX_GET_err

 EndIf

 UserSTR = UserSTR + Chr$(13) + Chr$(10) ‘ assumes datatype = 1, 2, or 3 else “\par “

 Exit Sub

 ATX_GET_err:

 Exit Sub

 End Sub

Example 2: Low Level LOADING�XE "LowLevel I/O"�

Sub load_from_file (file_name$, file_format%)

 wp% = alltext1.WriteProtect: alltext1.WriteProtect = 2

 i% = alltext1.ClearAll ' Clear the control content

 alltext1.FontTableSize = 0 ' Remove unused fonts from font table

 take actions to initialize modem, sending appropriate ESC sequences

 alltext1.DataType = file_format%

 alltext1.FileLoad = ATX_IO_LOWLEVEL ' generates an ATXGet event for each chunk loaded

 take actions to reset the modem, sending appropriate ESC sequences. ...

 alltext1.WriteProtect = wp%

 End Sub

Sub ALLText1_ATXGet (flag As Integer, UserSTR As String)

 UserStr = AModemReadingFunction()

 Select Case Len(UserStr)

 Case is > ATX_MAXCHARS 'ALLText paragraph size limit reached

 flag = 0 ‘ ignore any UserStr data and terminate I/O

 ' handle condition as desired.

 Case =0 ' No input from modem

 flag = 0 ‘ ignore any UserStr data and terminate I/O

 Case Other

	 If DataType = 0 then

		UserSTR = UserSTR & Chr$(13) & Chr$(10)

		Else

		UserSTR = UserSTR & “\par “

		End If

 flag =1 ' Add UserStr content to ALLText and continue receiving input

		

 End Select

End Sub

ATXPut Event�XE "ATXPut Event"�

Syntax

Sub ALLText1_ATXPut(Flag As Integer, UserSTR As String)

Description

In a manor analogous to the ATXGet event, ATXPut presents the developer an opportunity to set or modify the output stream being read from ALLText. It is triggered during I/O when the FileSave property is set into ATX_IO_STANDARD or ATX_IO_LOWLEVEL.

In Standard Mode, the user will first set a filename and open the file. ALLText will trigger the event after preparing to write some chunk of content (currently up to 30,000 characters, but this is subject to change), passing that content to the event procedure in the parameter UserStr. The developer may then modify the string. ALLText then write out to the file upon return from the event. This continues until the document has been fully processed or until the control flag is set to 1 according to the VB code.

In LowLevel mode ALLText does not write to a file at all, but triggers the ATXPut event to allow the user to handle the output UserSTR parameter as desired (possibly directing it to a serial I/O stream).

The ATXPut event subroutine uses a flag parameter to provide the programmer with the possibility to interrupt saving process. Each time the event is called to save data, the flag is initialized to 1. Upon reaching the end of the document, the event will be called a last time and the Flag value initialized as 0. If the programmer wishes to interrupt the saving process he should set flag=0 manually.

Input Parameters

Flag As Integer

1 - if Userstr is not empty, 0 - Userstr=""

UserSTR As String - String containing part of ALLText content in format depending on DataType.

Output Parameters

Flag As Integer

1 - continue file saving, 0 - break saving process.

Example: LOW LEVEL SAVING

Sub save_to_file (file_name$, file_format%)

 wp% = alltext1.WriteProtect: alltext1.WriteProtect = 2

 ' Select text to save

 alltext1.SelStart = 0 : alltext1.SelLength = ALLText1. TextLength

 fn% = FreeFile

 Open file_name$ For Output As fn%

 On Error GoTo 0

 alltext1.DataType = file_format%

 alltext1.FileSave =ATX_IO_LowLevel

 Close RTFfn%

 alltext1.WriteProtect = w%

End Sub

Sub ALLText1_ATXPut (flag As Integer, UserSTR As String)

 If DataType =0 then �		crlf$ = Chr$(13) + Chr$(10)�	Else�		crlf$ = “\par ”� ulen% = Len(UserSTR)

 Print #fn%, UserSTR;

 On Error GoTo li_err

 If Right$(UserSTR, 2) = crlf$ Then

 blklen% = 0

 Else

 blklen% = ulen% + blklen%

 If blklen% > 200 Then

 Print #fn%, crlf$;

 On Error GoTo li_err

 blklen% = 0

 End If

 End If

 goto li_ok

li_err:

 flag = 0

 Resume li_ok

li_ok:

End Sub

ATXVScrollClick & ATXHScrollClick Events� XE “ATXVScrollClick Event”�� XE “ATXHScrollClick Event”�

Description

These events are triggered when the end-user clicks on the Vertical or Horizontal Scrollbar.

Syntax

ALLText_ATXVscrollClick (ScrollValue As Long)

ALLText_ATXHscrollClick (ScrollValue As Long)

Parameters

ScrollValue - value characterizing new position of the scrollbar

 (the same as can be got reading ScrollHorz or ScrollVert property).

DragDrop Event� XE “DragDrop Event”�

Description

Standard Visual Basic Event

Syntax

Sub ATX_DragDrop (Source As Control, X As Single, Y As Single)

References

DragOver Event� XE “DragOver Event”�

Description

Standard Visual Basic Event

Visual Basic

ATX_DragOver (Source As Control, X As Single, Y As Single, State As Integer)

DropFileStart Event� XE “DropFileStart Event”�

Description

This event occurs every time you drop one or more files from File Manager before you get any DROPFILE event. It is triggered only if allowed by the DropFileMode property.

Visual Basic

Sub ALLText_DropFileStart(X As Long, Y As Long, FNumber As Integer)

Remarks

This event provides access to the X and Y coordinates where the Left mouse button was released while performing Drag-n-Drop operation. The value of parameter FNumber is equal the number of files taken from File Manager. You can change FNumber if your application does not support multiple file Drag-n-Drop operation. (For example you can set FNumber to 0)

References

DropFile -- event

DropFileMode -- property

DropFile Event� XE “DropFile Event”�

Description

This event occurs each time ALLText window receives DROPFILE event. It is triggered only if allowed by the DropFileMode property.

Visual Basic

Sub ALLText_DropFile(X As Long, Y As Long, FName As String, FIndex As Integer)

Remarks

This event provides access to the X and Y coordinates where the Left mouse button was released while performing Drag-n-Drop operation. Parameter FName contains file name being dropped to the ALLText window. Parameter FIndex can be used to break Drag and Drop processing if an error occurred. This can be done by setting Findex flag to (1).

References

DropFileStart -- event

DropFileMode -- property

ExternOleAction Event� XE “ExternOleAction Event”� (used by ALLText/Forms edition)

Description

This event provides data exchange between an ALLText External Object and the application. The use of this event depends on details of the particular ExtObject DLL. It is applicable only to the ALLText/Forms edition.

Visual Basic

Sub ATX_ExternOleAction, (OleAction As Integer, OleServer As String, OleCTL As Long, OleNumber As Long, IntParam As Integer, LongParam As Long, StrParam As String)

Parameters

	OLEAction

	OLEServer

	OLECTL

	OLENumber

	IntParam

	LongParam

	StrParam

Remarks

Variables that could affect the External object Object DLL are listed below:

OleCtl

OleNumber

LongParam

StrParam

OleAction	Parameter is equal to 6

iVerb	Parameter is equal to the value of the verb performed on Picture object

OleServer	Parameter contains string “atxpic” which is the module name of the atxpic.dll

LongParam	Parameter pointer to the C string containing name of the picture file

PrintEndPage Event� XE “PrintEndPage Event”��XE "Printing"�

Description

This event is triggered upon completion of each page of text submitted with the ATX_Print function

Here the programmer can print any additional information before the page is ejected. This can be done by means of Visual Basic functions, WINAPI functions or ATX_PRINT_REGION function. In particular, the ATX_Print_Region function may be used to print Footers.

Syntax

ALLText_PrintEndPage(PageNumber As Integer, SkipEndPageFlag As Integer)

Input Parameters

PageNumber - the current page number

SkipEndPageFlag - On entry into this event, the flag is set to 1 for the last page, or 0 otherwise.

OutPut Parameters

SkipEndPageFlag - controls end-of page pagebreak. Set this flag to TRUE printing in order to continue printing on the same sheet, otherwise a page break will be inserted and printing will continue on the next page.

Remarks

It is possible to identify the last page of a document by checking the SkipEndPage flag. This is initialized to 1 for the last page.

Parameter SkipEndPageFlag is used by ALLText to determine if it has to print the next page on the same sheet of paper as it just completed printing. If you want to print several small documents without page breaks between them, you should set SkipEndPage flag to TRUE for the final page of each document.

AtxPrintChangeDialogTitle(atxcontrol, DialogTitle$)

NOT LONGER AVAILABLE? Use ATX_Print_Title instead.

AtxPrintText -

NO LONGER AVAILABLE - use ATX_Print instead

PrintStartPage Event� XE “PrintStartPage Event”��XE "Printing"�

Description:

This event is triggered immediately after each PrintThisPage event, but just before printing each page. It can be used to change location of the printed page on printing media.

Synatx

ALLText_PrintStartPage(PageNumber As Integer, TopIndent As Long, LeftIndent As Long)

Parameters

PageNumber - the current page number

TopIndent - The top margin for the current page (this can be changed within the event)

LeftIndent - The left margin for the current page (this can be changed within the event)

Remarks

This event can be used to set left and top indents for the current page. For example you can print your document as multiple columns on the page or you can just print Header of the page while processing this event.

This event is NOT triggered if the SkipPageFlag was set True in the PrintThisPage event.

PrintThisPage Event� XE “PrintThisPage Event”��XE "Printing"�

Description:

This event is triggered prior to printing each page after calling the ATX_Print Function. It may be used to skip pages (for instance in printing only even pages), or to change the text within the printer dialog box.

Syntax

ALLText_PrintThisPage(PageNumber As Integer, DialogString As String, SkipPageFlag As Integer)

Parameters

PageNumber - the current page number to be printed

DialogString - contains the string to be displayed in the dialog box when printing.

SkipPageFlag - if True, indicates that the current page should be skipped (not printed).

Remarks

This event can be used in order to skip printing of the current page. For example you can use this event if you want to print only odd or only even pages. This can be done by setting SkipPageFlag to TRUE. Otherwise this event is followed by the PrintStartPage event.

On input Dialog String contains the value set by the ATX_Print_Title function.

Setting DialogString to an empty string will prevent display of the printer dialog box

Setting to True prevents triggering of the ATX_PrintStartPage and ATX_PrintEndPage events

��Appendix 1

TroubleShooting� XE “TroubleShooting”�

Pictures lost in document when I transferring using the clipboard.� XE “Pictures, Trouble shooting”�

This is most probably due to improperly registering or not registering the ATXPIC.DLL. This DLL provides Picture handling support to ALLText.

Make sure you have registered the DLL using the ATX_RegNewExtern function in your VB Project:

Declare Function ATX_REGNEWEXTERN Lib "atx40h" (ByVal noMsg%, ByVal lpstrModule$) As Integer

X% = ATX_REGNEWEXTERN (0, “ATXPic.DLL”)

Formatting lost during cut & paste.� XE “Formatting Trouble shooting”�

This may be the result of copying from an application which did not support RTF to the clipboard. Applications such as MS Write can not exchange formatted data with ALLText, but will only copy the raw text.

Another possible source of the problem is the improper use of SelFText to move strings between ALLText controls. The formatting codes included in SelFText strings rely on the FontTable definitions associated with a particular instance of the control. Copying a string from one ALLText control to another by using SelFText may lose or change the formatting due to differences in the Font Table definitions. Either use the clipboard (ClipboardAction Property) to exchange formatted text between ALLText controls, or use FontTableGet and FontTablePut functions to synchronize the two font tables.

Carriage returns lost when setting FText or SelFText, or when reading a file.� XE “Carriage Returns, Trouble shooting”�

ALLText is an RTF oriented control. When setting SelFText or FText, or when reading in a file with the datatype set to anything other than 0, all carriage return/line feed combinations (CHR$(13) + CHR$(10)) will be ignored. The correct RTF or ATX format code for a paragraph break (new line) is “\par ”.

Loosing Fonts when working with a database.� XE “Database, Trouble shooting”�

This is usually due to having an incorrect DataType setting when using ALLText as a bound control. A DataType of 2 is usually most appropriate. If you know in advance all the fonts and font attributes your application may need, you may wish to use the FontTableGet and FontTablePut functions to hard code the font table. Then you can use DataType of 1 and save some space in the database.

I don’t want to see ALLText’s Print Dialog Box. What can I do?

Set the first parameter of the ATX_Print_Start Function to 0.

DocWidth is changing unpredictably when changing Database records or reading in a new file.� XE “DocWidth, Trouble shooting”�

Depending on how you’ve saved your data, it is likely that the setting of the DocWidth property is stored with the data. When you change to a new record, the DocWidth is therefore updated by the new data. If you want to insure a specific Word Wrap width, reset the DocWidth after reading the file or in the Data.Reposition event

Various properties such as DocHeight seem unreliable after loading a large file or paste a large section from the clipboard.� XE “TextFormatted”�

This is probably due to ALLText’s dynamic formatting. In order to speed the initial display of large documents, ALLText initially formats only enough of the document to allow proper viewing within the control window. Additional formatting is carried on as a background task.

ALLText’s dynamic text formatting may result in some ALLText properties returning incorrect values for a short period. This may trigger ATXChange events which are not associated with real user actions. For example on loading huge text into ALLText window and pressing CTRL+END we will get several ATXChange events with ATXSCROLLV_CHANGED flag set.

To prevent this situation set the TextFormatted property to -1 (forcing ALLText to complete the formatting operation) or wait for the property to reach this value (If TextFormatted >0 it reflects the number of formatted paragraphs).

Getting Technical Support� XE “Tech Support”�

We are here to help.

If you experience difficulty in use of the ALLText control or believe that the control is not behaving propertly please let us know.

	Send us a Sample Project illustrating the problem. �	Include details of your operating environment (win 3.1, win 95, NT) and programming language.�	Include any details of past communications relating to this problem.�	We can’t help unless we can replicate the problem.

Technical support is available by phone, by fax and by electronic mail.

	Bennet-Tec Information Systems, Inc.

	50 Jericho Tpk, Jericho NY 11753

	Phone (516) 997-5596

	Fax (516) 997-5597

	E-Mail: Controls@Bennet-Tec.Com or via Compuserve 71201,1075

Updates correcting problems with the ALLText control are available free of charge through Compuserve (GO BENNET-TEC, file name AT4H_UPD.ZIP or ATS_UPD.ZIP) and through our Web Site (http://www.bennet-tec.com).

Please DO NOT request technical support via our compuserve forum sectionFree Technical Support is Limited to 30 minutes per call, with a Total of 2 hrs during first 30 days. This limit does not apply to problem reports

. This section is maintained for the posting of updates, and for communication between our users. We do not check this site frequently enough to provide support. Compuserve users should instead send electronic mail directly to our compuserve address 71201,1075.

�Appendix 2

Embedded Format Codes�XE "Format Codes"��XE "Embedded Format Codes"�

The codes described below are used by ALLText in reading and writing ATX formatted files, and in support of direct formatted content manipulation through the SelFText property. Note that numeric codes are terminated by a space. Note too, that where a single backslash is needed in the text, it is read and written by ALLText as a double backslash sequence.

\ATXsh<N>	- Switch shadowing on (N<>0) or off (N=0)�See the Make_Shadow function for more details.

\ATXul<N>	- Switch underlined on (N<>0) or off (N=0) �The Make_Underline function may be used to compute an underline value.

\ATXwd<N>	- Set current font width.

\b<N>	- Switch bold on (N<>0) or off (N=0)

\i<N>	- Switch italic on (N<>0) or off (N=0)

\strike<N> 	- Switch strikethrough on (N<>0) or off (N=0)

\up<N>,\dn<N> 	- Switch superscript, subscript on (N<>0) or off (N=0).

\fs<N> 	- Specifies a Font Size in half points (32 = 16 pt type).�ALLText currently supports only integral point sizes.

\f<N>	- Set current font to N-th of ATX font table (Not RTF!)

\cf<N>	- Set current color to N-th of ATX color table (Not RTF!)

\ql,\qr,\qc,\qj 	- paragraph alignment settings

\li,\ri,\fi 	- indents: left, right, firstline

\sl,\sb,\sa 	-vertical spacings: Line spacing (within a paragraph), �Space before paragraph , Space after paragraph

\ATXts<N>	- Set default tabulation step size for paragraph

\tx<N>,\tqr,\tqc 	- positioned tabulation settings for paragraph. (HT/PRO edition only)

\paperw<N> 	- Set document width to N twips

\pard	- reset paragraph settings to default.

\plain	- reset current character settings to default.

\par	- paragraph break

\line	- soft line break

\page	- page break

\~	- nonbreaking space

\ATXbrdr<N> 	- Switch border on (N<>0) or off (N=0)	(HT/PRO edition only)�See the Make_Border function for more details.

\ATXht<N>	- Switch Htag on (N<>0) or off (N=0)	(HT/PRO edition only)

\ATXnt<N>	- Switch Ntag on (N<>0) or off (N=0)	(HT/PRO edition only)

\ATXpt<N>	- Switch Ptag on (N<>0) or off (N=0)	(HT/PRO edition only)

\object, \objemb, 	- support of embedded ole objects.	(HT/PRO edition only)

\objname, \objdata 	- support of embedded ole objects.	(HT/PRO edition only)

�Appendix 3

Mouse and Keyboard Control�XE "Keyboard Control"�

ALLText supports the following keyboard and mouse control mechanisms:

Selecting text by keyboard control:

Each caret moving action described above being processed along with SHIFT key pressed down selects text between prevous caret position and caret position moved to.

Selecting�XE "Selecting by mouse"� text by mouse:

Method 1: Press the left button down and drag the mouse along until reaching the character you want to set as the final edge of the select region.

Method 2: Click the left button where you want to set the starting edge of the select retion, then press the SHIFT key down and click the left button at the position you want to set as the moveable edge of selection.

Moving of the caret by mouse:

Click left button of mouse at the position desired.

Clicking the right mouse button over the ALLText control window will move focus to the control window without changing the caret position or selection region.

Moving of the caret by keyboard control:�XE "Cursor Control"��XE "Scrolling"�

LEFT ARROW	One character to the left.

RIGHT ARROW	One character to the right.

UP ARROW	One line up.

DOWN ARROW	One line down.

HOME	To the beginning of a line.

END	To the end of a line.

PAGE UP	Up one window.

PAGE DOWN	Down one window.

CTRL+LEFT	One word to the left.

CTRL+RIGHT	One word to the right.

CTRL+UP	One Paragraph up.

CTRL+DOWN	One Paragraph down.

CTRL+END	To the end of a Text.

CTRL+HOME	To the start of a Text.

CTRL+PAGE DOWN	To the bottom of a window.

CTRL+PAGE UP	To the top of a window.

�Entering Breaks

SHIFT+SPACE	Insert nonbreaking space�XE "Nonbreaking space"�

SHIFT+ENTER	Insert soft line break�XE "Soft line break"�

CTRL+ENTER Insert page break�XE "Page break"�

UNDO

ALT + BACKSPACE	Undo last editing action.

Insertion and deletion of text

INS		Toggles insert/overtype mode.

<any of printable character>	Typing any character will first initiate the appropriate 'Key' events and then insert that character into the text at the caret position, unless such action has been modified by VB code executed as a result of the 'Key' events. ��If no text is selected then In insert mode characters on the line shift right, in overtype mode the character previously at the caret position is replaced, and the caret is moved right ��If the character was typed while a selection region was active (SELECT=ON) the selected text is replaced by the typed character, the caret is positioned right of the character inserted, and the current paragraph is reformatted if necessary.

DEL or CTRL+DEL	If no text is selected then character in the caret position is deleted; otherwise selected text is deleted. The caret remains at the same position. The current paragraph is reformatted if necessary.

BACKSPACE	If no text is selected then the character to the immediate left of the caret is deleted and the caret is moved one character left; otherwise selected text is deleted and the caret remains at the same position. The current paragraph is reformatted if necessary.

ENTER	Splits the paragraph at the caret position into two of the same parameters (Alignment, margins, etc.).

<Tab>�XE "Tab key"�	With the TabEnabled�XE "TabEnabled Property"� property set to TRUE, this character inserts a tab character (Chr$9) into the text. Otherwise the <Tab> key serves as a change focus mechanism. See TabStep�XE "TabStep Property"� property.

Clipboard manipulations�XE "Clipboard manipulations"�.�XE "Cut & Paste"�

Note that ALLText does not recognize the <Cntrl> X and <Cntrl> V combinations - these may of course be added within your VB code using the Key Down, KeyPress and Key Up events.

CNTRL + X or SHIFT+DEL 	Cut selected text along with font and color information into clipboard.

CNTRL + C or CTRL+INS	Copy selected text along with font and color information into clipboard.

CNTRL + V or SHIFT+INS	Paste selected text from clipboard into caret position or replaces any selected text.

Other useful keys and actions.

F1	To get Help�XE "Help"� in Design mode. .

F2	To call the default Font Dialogue box�XE "Default Font Dialogue box"�. �(This functionality may be turned off by setting F2On property�XE "F2On property"� to FALSE.�XE "F2On Property"�

F3	Sends the contents (without bitmap) of the ALLText control to the current default printer�XE "Printing ALLText Content"�. Note that this functionality may be turned off by setting the F3On Property to FALSE.�XE "F3On Property"�

�

�Index

� INDEX \c "2" ��<Alt> <Backspace>, 28

Adding Text, 4

Alignment Property, 35

ATX_CurToXY Function, 96

ATX_DropFile Event, 28

ATX_DropFileStart Event, 28

ATX_Print Function, 15, 96

ATX_Print_Finish Function, 15

ATX_Print_Region Function, 15, 98

ATX_Print_Start Function, 15, 98

ATX_Print_Title Function, 15, 99

ATX_PrintEndPage Event, 15

ATX_PrintStartPage Event, 15

ATX_PrintThisPage Event, 15

ATX_RegNewExtern Function, 100

ATX_ToLower Function, 99

ATX_ToUpper Function, 99

ATX_XYToCur Function, 100

ATXChange Event, 29, 30, 71, 112

ATXGet Event, 23, 113

ATXHScrollClick Event, 18, 116

ATXPrintCancel Function, 97

ATXPrintFinish Function, 97

ATXPut Event, 23, 115

ATXVScrollClick Event, 18, 116

Background Bitmap, 21

BackGround Picture, 35, 36, 37

BackPicture Property, 21, 35, 36, 37

BackStyle Property, 21, 37

Bookmarks, how to, 29

Border Property, 38

BottomIndent Property, 39

CaretWidth Property, 40

Carriage Return, 12

Carriage Returns, Trouble shooting, 121

Case, changing, 25

ChangeEventMask Property, 40

ClearAll Property, 41

Clipboard, 4, 20

Clipboard manipulations, 126

ClipboardAction Property, 20, 42

ClipControls Property, 43

Constants, 1

CurChar Property, 43

CurPar Property, 43

CurPar Property, 17

Current Position, 17, 43

Cursor Control, 17, 125

Cut & Paste, 126

Cut, Copy, Paste, 20

Database support, 22

Database, Trouble shooting, 121

DataChanged Property, 44

DataType Property, 45

DDE, 3

Default, 3

Default Font Dialogue box, 127

Default Font, How to set, 6

DirectScreenOut Property, 46

DocHeight Property, 46

DocWidth Property, 12, 46

DocWidth, Trouble shooting, 122

Double Click Selection, how to, 25

Drag and Drop, how to, 28

DragDrop Event, 116

DragOver Event, 117

DropFile Event, 117

DropFileMode Property, 28, 47

DropFileStart Event, 117

Embedded codes, 8

Embedded Format Codes, 123

Embedding, How to, 25

ExtDataType Property, 48

ExternOleAction Event, 118

ExtObjParam Property, 49

ExtObjPicture Property, 51

ExtObjValueProperty, 50

F2 Key, 7, 8

F2On Property, 7, 8, 51, 127

F3 Key, 14

F3On Property, 51, 127

FAST SAVING - example, 54

File I/O, 4, 5, 90

FileLoad Property, 52

FileName Property, 52

FileSave Property, 53

Find_HTag Function, 29, 30, 101

Find_NTag Function, 102

Find_Phrase Function, 25, 102

Find_PhraseEX Function, 25, 103

FindHTag Function, 29, 30

FirstLineIndent Property, 55

Font Manipulations, 10

Font Selection Key, 51

Font Table definition, 10

Font Table, definition, 1

FontBold Property, 55

FontColor Property, 56

FontFamily Property, 57

FontHidden Property, 57

FontIndex Property, 11, 59

FontItalic Property, 58

FontName Property, 60

FontShadow Property, 60

FontSize Property, 61

FontStrike Property, 62

FontSubSup Property, 62

FontTableGet Function, 11, 104

FontTablePut Function, 11, 105

FontTableSize Property, 10, 63

FontUnder Property, 64

FontWidth Property, 64

FooterFText Property, 19, 65

Format Codes, 123

Format properties, 7

FormatPaste Property, 66

Formatting Trouble shooting, 121

Formatting, Embedded codes, 8

Formatting, How To, 6

FText Property, 4, 66

Get_Border Function, 106

Get_LineTopHeight Function, 106

Get_ParDet Function, 107

Get_Shadow Function, 107

Get_Underline Function, 108

Getting Started, 1

Hanging Indents, 55

HeaderFText Property, 19, 67

Headers/footers, How to, 19

Help, 127

HideSelection, 3

HTag Property, 29, 67

HTagL Property, 68

Hypertext, how to, 29

Insert, 75

Keyboard, 8, 14

Keyboard Control, 125

LeftIndent Property, 68

LineBreaks, how to, 12

LineNumber Property, 18, 69, 76

LineSpacing Property, 69

Loading, 5

Loading, how to, 4

LowLevel I/O, 113, 114

Mail Merge, 30

Mail Merge, how to, 29

Make_Border Function, 108

Make_Shadow Function, 109

Make_UnderLine Function, 110

MaxLength, 3

MouseHPointer Property, 29, 30, 70

Multi-Author Editing, 30

MultiLine, 3

NewHTag Property, 29, 71

Nonbreaking space, 126

NTag Property, 71

NTagL Property, 68

NumParagraphs Property, 72

OLEcode Property, 72

OLEObject Property, 73

OLEVerb PROPERTY, 74

OverType Property, 75

Page break, 126

PageHeight Property, 75

PageLineNumber Property, 18, 76

PageNumber Property, 18, 76

Paragraph, definition, 1

Parent, 4

Password, 4

Paste, 4

Pictures, Trouble shooting, 121

Pixel, Definition, 1

Point, definition, 1

Porting code, 3

Print_AText Function, 14

Print_ATextPages Function, 14

PrintEndPage Event, 118

PrinterDC Property, 76

Printing, 51, 96, 97, 98, 99, 118, 119

Printing ALLText Content, 127

Printing, How to, 13

PrintStartPage Event, 118

PrintThisPage Event, 119

PTag Property, 77

RightIndent Property, 77

Saving, How To, 5

ScrollBarH Property, 19, 78

ScrollBars, 4, 19, 78

ScrollBarV Property, 19, 78

Scrolling, 43, 78, 125

Scrolling, how to, 18

Searching, 25, 101, 102, 103

Select Property, 17, 79

Selecting by mouse, 125

SelFText Property, 4, 18, 20, 80

SelFType Property, 80

SelLength Property, 17, 82

SelStart Property, 17, 82

SelText Property, 4, 18, 20, 83

SelToChar Property, 84

SelToPar Property, 84

ShowHidden Property, 85

Size, 22

Soft line break, 126

Standard Mode I/O, 113

Tab key, 126

Tab key functions, 28

TabAdd Property, 85

TabAlignment Property, 86

TabCount Property, 87

TabDel Property, 87

TabEnabled Property, 28, 88, 126

Tables, How to, 19

TabLocations Property, 89

Tabs, How To, 24

TabStep Property, 89, 126

Tag number, 30

Tech Support, 122

Text, 3

Text Property, 4, 90

TextFormatted, 122

TextFormatted Property, 5, 90

TextLength Property, 91

TopIndent Property, 92

Transparency, 21, 37

Trapping keys, 28

TroubleShooting, 121

Twips, definition, 1

UnDoAction Property, 28, 92

Watermark, 21, 35

Word Wrapping, how to, 12, 22

Write Protected Fields, 30

WriteProtect Property, 5, 6, 13, 18, 30, 93

WYSIWYG, 76

��

		

p. � PAGE �2�	ALLText - Getting Started		

	ALLText - Getting Started		p. � PAGE �1�

p. � PAGE �30�	ALLText - Programming Technique		

	ALLText - Programming Technique		p. � PAGE �9�

p. � PAGE �82�	ALLText - Technical Description, Properties

	ALLText - Technical Description - Properties		p. � PAGE �83�

p. � PAGE �112�	ALLText - Technical Description - Functions

	ALLText - Technical Description - Functions		p. � PAGE �111�

p. � PAGE �120�	ALLText - Embedded Codes

p. � PAGE �122�	ALLText - Technical Description - Events

	ALLText - Technical Description - Events		p. � PAGE �121�

p. � PAGE �124�	ALLText - TroubleShooting

	ALLText - TroubleShooting		p. � PAGE �123�

p. � PAGE �126�	ALLText - Embedded Codes

	ALLText - Embedded Codes		p. � PAGE �125�

p. � PAGE �130�	ALLText - Mouse and Keyboard Control

	ALLText - Mouse and Keyboard Control		p. � PAGE �129�

			

			

